Вопросы радиоэлектроники. 2016; : 120-127
АДАПТИВНАЯ ФИЛЬТРАЦИЯ И ВЫДЕЛЕНИЕ ПРИЗНАКОВ ПОТОКОВЫХ СИГНАЛОВ ЭЛЕКТРОЭНЦЕФАЛОГРАММЫ
Аннотация
Список литературы
1. [Электронный ресурс]. — Режим доступа: http://www.businesswire.com/news/home/20150727005820/en/Brain-toMachine-Interface-Market-Top-US200-Million-2020#.Vbhva1IuPPx (дата обращения 06.01.2016).
2. [Электронный ресурс]. — Режим доступа: https://www.abiresearch.com (дата обращения 07.01.2016).
3. R. Pamavathi, V. Ranganathan. Areview on EEG based brain computer interface systems // International Journal of Emerging Technology and Advanced Engineering, 2014, P. 683.
4. Zhou Shang-Ming. Classifying mental tasks based on features of higher-order statistics from EEG signals in brain-computer interface / Shang-Ming Zhou, John Q. Gan, Francisco Sepu // Information Sciences, 2008, pp. 1629—1640.
5. Hubert Cecotti and Axel Graser. Neural network pruning for feature selection Application to a P300 Brain-Computer Interface // European Symposium on Artificial Neural Networks. Advances in Computational Intelligence and Learning. Bruges (Belgium), 2008, pp. 473—478.
6. Damien Coyle, Girijesh Prasad and Thomas M. McGinnity. Extracting Features for a Brain-Computer Interface by SelfOrganising Fuzzy Neural Network-based Time Series Prediction // Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (San Francisco, CA), 2004, pp. 4371—4374.
7. Rakendu Rao and Reza Derakhshani. A Comparison of EEG Preprocessing Methods using Time Delay Neural Networks // Proceedings of the 2 International IEEE EMBS Conference on Neural Engineering Arlington, Virginia, March 16—19, 2005.
8. Guilherme A. Barreto, Rewbenio A. Frota and Fatima N. S. de Medeiros. The Classification Of Mental Tasks: A Performance Comparison Of Neural And Statistical Approaches // In Proceedings of the IEEE Workshop on Machine Learning for Signal Processing, 2004.
9. X. Yong, M. Fatourechi, R. K. Ward, and G. E. Birch. Automatic artefact removal in a self-paced hybrid brain-computer interface system // Journal of Neuro Engineering and Rehabilitation, vol. 9, article 50, 2012.
10. Huang N. E., Shen Z., Long S. R., Wu M. C., Shih H. H., Zheng Q., Yen N. — C., Tung С. C., and Liu H. H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis // Proc. R. Soc. Lond. A., 1998, Т. 454, P. 903—995.
11. Buzsáki György. Rhythms of the Brain. — Oxford University Press, 2006.
12. Кривоногов Л. Ю., Папшев Д. В. Повышение эффективности подавления высокочастотных помех в электрокардиосигналах // Измерение. Мониторинг. Управление. Контроль. — 2014. — № 2 (8). — С. 17—24.
Issues of radio electronics. 2016; : 120-127
ADAPTIVE FILTRATION AND PATTERN RECOGNITION IN EEG DATA FLOW
Abstract
References
1. [Elektronnyi resurs]. — Rezhim dostupa: http://www.businesswire.com/news/home/20150727005820/en/Brain-toMachine-Interface-Market-Top-US200-Million-2020#.Vbhva1IuPPx (data obrashcheniya 06.01.2016).
2. [Elektronnyi resurs]. — Rezhim dostupa: https://www.abiresearch.com (data obrashcheniya 07.01.2016).
3. R. Pamavathi, V. Ranganathan. Areview on EEG based brain computer interface systems // International Journal of Emerging Technology and Advanced Engineering, 2014, P. 683.
4. Zhou Shang-Ming. Classifying mental tasks based on features of higher-order statistics from EEG signals in brain-computer interface / Shang-Ming Zhou, John Q. Gan, Francisco Sepu // Information Sciences, 2008, pp. 1629—1640.
5. Hubert Cecotti and Axel Graser. Neural network pruning for feature selection Application to a P300 Brain-Computer Interface // European Symposium on Artificial Neural Networks. Advances in Computational Intelligence and Learning. Bruges (Belgium), 2008, pp. 473—478.
6. Damien Coyle, Girijesh Prasad and Thomas M. McGinnity. Extracting Features for a Brain-Computer Interface by SelfOrganising Fuzzy Neural Network-based Time Series Prediction // Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (San Francisco, CA), 2004, pp. 4371—4374.
7. Rakendu Rao and Reza Derakhshani. A Comparison of EEG Preprocessing Methods using Time Delay Neural Networks // Proceedings of the 2 International IEEE EMBS Conference on Neural Engineering Arlington, Virginia, March 16—19, 2005.
8. Guilherme A. Barreto, Rewbenio A. Frota and Fatima N. S. de Medeiros. The Classification Of Mental Tasks: A Performance Comparison Of Neural And Statistical Approaches // In Proceedings of the IEEE Workshop on Machine Learning for Signal Processing, 2004.
9. X. Yong, M. Fatourechi, R. K. Ward, and G. E. Birch. Automatic artefact removal in a self-paced hybrid brain-computer interface system // Journal of Neuro Engineering and Rehabilitation, vol. 9, article 50, 2012.
10. Huang N. E., Shen Z., Long S. R., Wu M. C., Shih H. H., Zheng Q., Yen N. — C., Tung S. C., and Liu H. H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis // Proc. R. Soc. Lond. A., 1998, T. 454, P. 903—995.
11. Buzsáki György. Rhythms of the Brain. — Oxford University Press, 2006.
12. Krivonogov L. Yu., Papshev D. V. Povyshenie effektivnosti podavleniya vysokochastotnykh pomekh v elektrokardiosignalakh // Izmerenie. Monitoring. Upravlenie. Kontrol'. — 2014. — № 2 (8). — S. 17—24.
События
-
Журнал «Успехи наук о животных» присоединился к Elpub! >>>
18 июл 2025 | 12:37 -
Журнал «Наука. Инновации. Технологии» принят в DOAJ >>>
17 июл 2025 | 12:17 -
К платформе Elpub присоединился журнал « Библиотечный мир» >>>
15 июл 2025 | 12:17 -
Журнал «Концепт: Философия, религия, культура» принят в Scopus >>>
9 июл 2025 | 13:25 -
К платформе Elpub присоединился журнал «The BRICS Health Journal» >>>
10 июн 2025 | 12:52