Журналов:     Статей:        

Вопросы радиоэлектроники. 2017; : 86-88

ПОДХОДЫ К ИНФОРМАЦИОННОМУ МОДЕЛИРОВАНИЮ В УПРАВЛЕНИИ СУЩЕСТВУЮЩЕЙ ИНФРАСТРУКТУРОЙ

Аксенов О. Ю., Гулевитский А. Ю.

Аннотация

Пространственные и атрибутивные данные об объектах инфраструктуры в настоящее время обычно хранятся и обрабатываются раздельно. Это приводит к деградации данных из-за асинхронности их обновления в разных системах. Архитектурное информационное моделирование (BIM) целесообразно только при новом строительстве. В статье рассмотрено компромиссное решение на базе трехмерной геоинформационной системы (ГИС). Опыт ее внедрения на действующем предприятии показал возможности применения и решения поставленных задач. Вместе с тем высокая стоимость моделирования, необходимость доработки ПО и аппаратные требования рассматриваемого решения делают его сложным во внедрении. Для задач, решение которых возможно средствами двухмерных ГИС, переход к трехмерному представлению нецелесообразен и лишь частично заменяет возможности двухмерных ГИС. Во всех случаях подход должен выбираться с учетом реалистичной оценки полноты существующих данных и готовности персонала к изменению рабочих процессов.
Список литературы

1. Kontio J. Common Gaps in Information Systems. Electronic Journal of Information Systems Evaluation, 2005, vol. 8, no. 2, pp. 123–132.

2. Singh R., Singh K. A Descriptive Classification of Causes of Data Quality Problems in Data Warehousing. International Journal of Computer Science, 2010, vol. 7, no. 3 (2).

3. Volk R., Stengel J., Schultmann F. Building Information Models (BIM) for existing buildings – literature review and future needs. Automation in Construction, 2014, no. 38, pp. 109–127.

4. Lu W., Fung A., Peng Y., Liang C., Rowlinson S. Cost-benefit analysis of Building Information Modeling implementation in building projects through demystification of time-effort distribution curves. Building and Environment, 2014, no. 82, pp. 317–327.

5. Liu X., Wang X., Wright G., Cheng J.C., Li X., Liu R. A State-of-the-Art Review on the Integration of Building Information Modeling (BIM) and Geographic Information System (GIS). ISPRS International Journal of Geo-Information, 2017, vol. 6, no. 2, p. 53.

6. Batkovskiy A. M., Fomina A. V., Semenova E. G., Khrustalev E. Yu., Khrustalev O. E. Models and methods for evaluating operational and financial reliability of high-tech enterprises. Journal of Applied Economic Sciences, 2016, vol. 11, no. 7, pp. 1384–1394.

7. Ellul C., Boyes G., Thomson C., Backes D. Towards Integrating BIM and GIS–An End-to-End Example from Point Cloud to Analysis. Advances in 3D Geoinformation, Springer, Cham, 2017, pp. 495–512.

8. Kerkhof R. M., Akkermans H., Noorderhaven N. G. Knowledge Lost in Data: Organizational Impediments to Condition-Based Maintenance in the Process Industry. Logistics and Supply Chain Innovation, Springer, Cham, 2015, pp. 223–237.

Issues of radio electronics. 2017; : 86-88

INFORMATION MODELLING APPROACHES FOR LEGACY INFRASTRUCTURE MANAGEMENT

Aksenov O. Yu., Gulevitskiy A. Yu.

Abstract

In infrastructure management, spatial and attribute data is traditionally stored and processed separately. Asynchronous updates in such separate systems lead to gradual data degradation. Building information modeling is cost-effective for new construction, but not legacy infrastructure. A compromise solution based on three-dimensional geographic information systems (GIS) is studied. Implementing such a solution in an established industrial enterprise has shown potential for meeting business goals. However, the high cost of 3D modeling, the need to extend base software functionality with custom add-ins, and high hardware requirements restrict such solutions to a niche. Where traditional two-dimensional GIS are sufficient, moving to three dimensions offers limited gains at the cost of a considerable loss of functionality. In all cases, software platform choice should be driven by a realistic evaluation of available data and personnel readiness for business process reengineering.

References

1. Kontio J. Common Gaps in Information Systems. Electronic Journal of Information Systems Evaluation, 2005, vol. 8, no. 2, pp. 123–132.

2. Singh R., Singh K. A Descriptive Classification of Causes of Data Quality Problems in Data Warehousing. International Journal of Computer Science, 2010, vol. 7, no. 3 (2).

3. Volk R., Stengel J., Schultmann F. Building Information Models (BIM) for existing buildings – literature review and future needs. Automation in Construction, 2014, no. 38, pp. 109–127.

4. Lu W., Fung A., Peng Y., Liang C., Rowlinson S. Cost-benefit analysis of Building Information Modeling implementation in building projects through demystification of time-effort distribution curves. Building and Environment, 2014, no. 82, pp. 317–327.

5. Liu X., Wang X., Wright G., Cheng J.C., Li X., Liu R. A State-of-the-Art Review on the Integration of Building Information Modeling (BIM) and Geographic Information System (GIS). ISPRS International Journal of Geo-Information, 2017, vol. 6, no. 2, p. 53.

6. Batkovskiy A. M., Fomina A. V., Semenova E. G., Khrustalev E. Yu., Khrustalev O. E. Models and methods for evaluating operational and financial reliability of high-tech enterprises. Journal of Applied Economic Sciences, 2016, vol. 11, no. 7, pp. 1384–1394.

7. Ellul C., Boyes G., Thomson C., Backes D. Towards Integrating BIM and GIS–An End-to-End Example from Point Cloud to Analysis. Advances in 3D Geoinformation, Springer, Cham, 2017, pp. 495–512.

8. Kerkhof R. M., Akkermans H., Noorderhaven N. G. Knowledge Lost in Data: Organizational Impediments to Condition-Based Maintenance in the Process Industry. Logistics and Supply Chain Innovation, Springer, Cham, 2015, pp. 223–237.