Журналов:     Статей:        

Вопросы радиоэлектроники. 2018; : 145-153

СИСТЕМА АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ БОРТОВЫХ КОСМИЧЕСКИХ СЕТЕЙ

Оленев В. Л., Лавровская И. Я., Курбанов Л. И., Коробков И. Л., Шейнин Ю. Е.

https://doi.org/10.21778/2218-5453-2018-8-145-153

Аннотация

Современные бортовые космические сети состоят из большого количества элементов, которые взаимодействуют друг с другом через коммуникационную сеть. SpaceWire является сетевой технологией нового поколения, которая сейчас активно внедряется в космические аппараты. Для проверки работы сети на ранних этапах проектирования целесообразно проводить ее программное моделирование. В статье представлен анализ существующих программ для моделирования бортовых сетей и сетей общего назначения. Мы рассматриваем их основные возможности и предлагаем новую систему автоматизированного проектирования и моделирования сетей SpaceWire - SANDS. Данный программный продукт решит важные задачи, с которыми разработчики космических аппаратов сталкиваются по время создания спутников и других летательных аппаратов. SANDS будет поддерживать полный маршрут разработки и моделирования, который начинается с построения топологии сети и заканчивается получением результатов моделирования и статистики ее работы.
Список литературы

1. ECSS-E-50-12С. SpaceWire - Links, nodes, routers and networks. European Cooperation for Space Standardization (ECSS), 31 July 2008, 129 p.

2. Parkes S. SpaceWire User’s Guide. Published by STAR-Dundee Limited, 2012, 114 p.

3. Siraj S., Gupta A., Badgujar R. Network Simulation Tools Survey. International Journal of Advanced Research in Computer and Communication Engineering, 2012, vol. 1, iss. 4, pp. 201–210.

4. Doerffel T. Simulation of wireless ad-hoc sensor networks with QualNet. Advanced Seminar on Embedded Systems. Technische Universitat Chemnitz, 2009, 16 p.

5. Jianru H., Xiaomin C., Huixian S. An OPNET Model of SpaceWire and Validation. Proceedings of the 2012 International Conference on Electronics, Communications and Control, Zhoushan, 2012, pp. 792–795.

6. NS-3 Manual, NS-3 Network Simulator, 2017, 165 p.

7. Varga A., Hornig R. An overview of the OMNeT++ simulation environment. Proceedings of the 1st international conference on Simulation tools and techniques for communications, networks and systems & workshops, France, Marseille, 2008, p. 60.

8. Sobeih A. et al. J-Sim: a simulation and emulation environment for wireless sensor networks. IEEE Wireless Communications. 2006, vol. 13, no. 4, pp. 104–119.

9. Dellandrea B., Gouin B., Parkes S., Jameux D. MOST: Modeling of SpaceWire & SpaceFibre Traffic-Applications and Operations: On-Board Segment. Proceedings of the DASIA 2014 conference, Warsaw, 2014, pp. 101–113.

10. Thales Alenia Space. Modeling Of SpaceWire Traffic. Project Executive Summary & Final Report, 2011, 25 p.

11. Van Leeuwen B., Eldridge J., Leemaster J. SpaceWire Model Development Technology for Satellite Architecture, Sandia Report. Sandia National Laboratories, 2011, 30 p.

12. Mirabilis Design, Mirabilis VisualSIM data sheet, 2003, 4 p.

13. Eganyan A., Suvorova E., Sheynin Y., Khakhulin A., Orlovsky I. DCNSimulator – Software Tool for SpaceWire Networks Simulation. Proceedings of International SpaceWire Conference 2013, 2013, pp. 216–221.

14. ESA. Standard ECSS-E-ST-50-52C, SpaceWire – Remote memory access protocol. Noordwijk: Publications Division ESTEC, February 5, 2010.

15. Sheynin Y., Olenev V., Lavrovskaya I., Korobkov I., Dymov D. STP-ISS Transport Protocol for Spacecraft On-board Networks. Proceedings of 6th International SpaceWire Conference 2014. Program; Greece, Athens, 2014, pp. 26–31.

16. Syschikov A., Sheynin Y., Sedov B., Ivanova V. Domain-specific programming environment for heterogeneous multicore embedded systems. International Journal of Embedded and Real-Time Communication Systems, vol. 5, iss. 4, 2014, pp. 1–23.

17. Dally W. J., Seitz C. L. Deadlock-free message routing in multiprocessor interconnection networks, 1988, 17 p.

Issues of radio electronics. 2018; : 145-153

COMPUTER AIDED DESIGN SYSTEM FOR SPACECRAFT ONBOARD NETWORKS

Olenev V. L., Lavrovskaya I. Ya., Kurbanov L. I., Korobkov I. L., Sheynin Yu. E.

https://doi.org/10.21778/2218-5453-2018-8-145-153

Abstract

Modern spacecraft onboard networks consist of a large number of nodes which interact with each other via a communication network. SpaceWire is a new generation technology which is being integrated into new spacecraft systems. In order to check network operation on the early stages of network design it is reasonable to perform its software simulation. The paper provides an analysis of existing simulation tools for the on-board and local area networks. We overview the main abilities of the existing software and then propose the computer-aided design (CAD) system for SpaceWire onboard networks design and simulation - SANDS. This software will solve important tasks, which spacecraft developers face with during implementation of satellites and other space vehicles. SANDS system will support the full on-board network design and simulation flow, which begins from the network topology automated generation and finishes with getting the network structure, configuration and parameters setting, simulation results and statistics.
References

1. ECSS-E-50-12S. SpaceWire - Links, nodes, routers and networks. European Cooperation for Space Standardization (ECSS), 31 July 2008, 129 p.

2. Parkes S. SpaceWire User’s Guide. Published by STAR-Dundee Limited, 2012, 114 p.

3. Siraj S., Gupta A., Badgujar R. Network Simulation Tools Survey. International Journal of Advanced Research in Computer and Communication Engineering, 2012, vol. 1, iss. 4, pp. 201–210.

4. Doerffel T. Simulation of wireless ad-hoc sensor networks with QualNet. Advanced Seminar on Embedded Systems. Technische Universitat Chemnitz, 2009, 16 p.

5. Jianru H., Xiaomin C., Huixian S. An OPNET Model of SpaceWire and Validation. Proceedings of the 2012 International Conference on Electronics, Communications and Control, Zhoushan, 2012, pp. 792–795.

6. NS-3 Manual, NS-3 Network Simulator, 2017, 165 p.

7. Varga A., Hornig R. An overview of the OMNeT++ simulation environment. Proceedings of the 1st international conference on Simulation tools and techniques for communications, networks and systems & workshops, France, Marseille, 2008, p. 60.

8. Sobeih A. et al. J-Sim: a simulation and emulation environment for wireless sensor networks. IEEE Wireless Communications. 2006, vol. 13, no. 4, pp. 104–119.

9. Dellandrea B., Gouin B., Parkes S., Jameux D. MOST: Modeling of SpaceWire & SpaceFibre Traffic-Applications and Operations: On-Board Segment. Proceedings of the DASIA 2014 conference, Warsaw, 2014, pp. 101–113.

10. Thales Alenia Space. Modeling Of SpaceWire Traffic. Project Executive Summary & Final Report, 2011, 25 p.

11. Van Leeuwen B., Eldridge J., Leemaster J. SpaceWire Model Development Technology for Satellite Architecture, Sandia Report. Sandia National Laboratories, 2011, 30 p.

12. Mirabilis Design, Mirabilis VisualSIM data sheet, 2003, 4 p.

13. Eganyan A., Suvorova E., Sheynin Y., Khakhulin A., Orlovsky I. DCNSimulator – Software Tool for SpaceWire Networks Simulation. Proceedings of International SpaceWire Conference 2013, 2013, pp. 216–221.

14. ESA. Standard ECSS-E-ST-50-52C, SpaceWire – Remote memory access protocol. Noordwijk: Publications Division ESTEC, February 5, 2010.

15. Sheynin Y., Olenev V., Lavrovskaya I., Korobkov I., Dymov D. STP-ISS Transport Protocol for Spacecraft On-board Networks. Proceedings of 6th International SpaceWire Conference 2014. Program; Greece, Athens, 2014, pp. 26–31.

16. Syschikov A., Sheynin Y., Sedov B., Ivanova V. Domain-specific programming environment for heterogeneous multicore embedded systems. International Journal of Embedded and Real-Time Communication Systems, vol. 5, iss. 4, 2014, pp. 1–23.

17. Dally W. J., Seitz C. L. Deadlock-free message routing in multiprocessor interconnection networks, 1988, 17 p.