Журналов:     Статей:        

Вопросы радиоэлектроники. 2020; 49: 40-46

МОРФОЛОГИЧЕСКИЙ АНАЛИЗ ИНТЕГРАЛЬНЫХ СВЧ-УСИЛИТЕЛЕЙ С РАСПРЕДЕЛЕННЫМ УСИЛЕНИЕМ

Добуш И. М., Калентьев А. А., Метель А. А., Горяинов А. Е.

https://doi.org/10.21778/2218-5453-2020-6-40-46

Аннотация

Эффективным  способом  снижения  трудоемкости  и  стоимости  проектирования  СВЧ  интегральных  схем  (ИС)  является развитие подходов, методик, алгоритмов и программных модулей для автоматизироанного синтеза  схемных  и  топологических  решений.  В  частности,  перспективными  являются  подходы  к  структурнопараметрическому  синтезу  СВЧ-устройств,  базирующиеся  на  принципах  искусственного  интеллекта  и эволюционных вычислений. В статье представлены результаты морфологического анализа СВЧ-усилителей 
с распределенным усилением (СВЧ УРУ), разрабатываемых на базе различных интегральных технологий (GaAs,  GaN, InP, Si, SiGe). На его основе сформирована модель морфологического множества СВЧ УРУ, которая может  быть  использована  для  последующего  создания  методики,  алгоритма  и  программного  модуля,  позволяющих  выполнить автоматизированный структурно-параметрический синтез схемных решений интегральных СВЧ УРУ  по комплексу требований к его характеристикам.


Список литературы

1. Vye D. Network synthesis wizard automates interactive matching‑circuit design // Microwave Journal. 2018. Vol. 61. No. 11. P. 96–102.

2. Kalentyev A. A., Babak L. I., Garays D. V. Genetic‑algorithm‑based sythesis of low‑noise amplifiers with automatic selection of active elements and DC biases. 44th European Microwave Conference. 2014. P. 1464–1467.

3. Акимов С. В. Анализ проблемы автоматизации структурно‑параметрического синтеза // Доклады ТУСУР. 2011. № 2 (24). С. 204–211.

4. Zebulum R. S., Pacheco M. A., Vellasco M. M. Evolutionary electronics: automatic design of electronic circuits and systems by genetic algorithms. CRC Press, 2001. P. 306.

5. Koza J. R., Bennett F. H., Andre D., Keane M. A. Evolutionary design of analog electrical circuits using genetic programming. 3rd International Conference on Adaptive Computing in Design and Manufacture. 1998. P. 177–192.

6. Sripramong T., Toumazou C. The invention of CMOS amplifier using genetic programming and current‑flow analysis // IEEE Transactions on Computer‑Aided Design of Integrated Circuits and Systems. 2002. Vol. 21. No. 11. P. 1237–1252.

7. Chen D., Aoki T., et al. Graph‑based evolutionary design of arithmetic // IEEE Transactions on Evolutionary Computation. 2002. Vol. 6. No. 1. P. 86–100.

8. Курейчик В. М., Лебедев Б. К., Лебедев В. Б. Планирование сверхбольших интегральных схем на основе интеграции моделей адаптивного поиска // Известия Российской академии наук. Теория и системы управления. 2013. № 1. С. 84–101.

9. Linden D. S., Rayno J. Synthesis of robust UHF RFID antennas on dielectric substrates // Antenna systems and technology. 2016. P. 6–10.

10. Babak L. I., Vjushkov V. A., et al. Synthesis of matching networks for microwave active circuits based on genetic algorithm // Microwave and Optical Technology Letters. 2014. Vol. 56. No. 11. P. 2719–2722.

11. Zhabin D. A., Garays D. V., et al. Automated synthesis of low noise amplifiers using s‑parameter sets of passive elements. Asia Pacific Microwave Conference. 2017. P. 1262–1264.

12. Акимов С. В. Модель морфологического множества уровня идентификации // Труды учебных заведений связи. 2005. № 172. С. 120–135.

13. Верхова Г. В., Акимов С. В. Модель морфологического множества широкополосных согласующих цепей // Антенны и распространение радиоволн. 2018. С.134–138.

14. Campbell C. F. Evolution of the nonuniform distributed power amplifier: a distinguished microwave lecture. IEEE Microwave Magazine. 2019. Vol. 20. No. 1. P. 18–27.

15. Hamidi E., Mohammad‑Taheri M., Moradi G. Improvements in the noise theory of the MMIC distributed amplifiers // IEEE Transactions on Microwave Theory and Techniques. 2008. Vol. 56. No. 8. P. 1797–1806.

16. Shivan T., Hossain M., et al. An ultra‑broadband low‑noise distributed amplifier in InP DHBT technology. 13th European Microwave Integrated Circuits Conference. 2018. P. 241–244.

17. Duperrier C., Campovecchio M., et al. New design method of uniform and nonuniform distributed power amplifiers // IEEE Transactions on Microwave Theory and Techniques. 2001. Vol. 49. No. 12. P. 2494–2500.

18. Nikandish G., Medi A. A 40‑GHz bandwidth tapered distributed LNA // IEEE Transactions on Circuits and Systems II: Express Briefs. 2018. Vol. 65. No. 11. P. 1614–1618.

19. Nikandish G., Staszewski R., Zhu A. The (R)evolution of distributed amplifiers: from vacuum tubes to modern CMOS and GaN ICs // IEEE Microwave Magazine. 2018. Vol. 19. No. 4. P. 66–83.

20. Green B., Lee S., et al. High efficiency monolithic gallium nitride distributed amplifier // IEEE Microwave and Guided Wave Letters. 2000. Vol. 10. No. 7. P. 270–272.

Issues of radio electronics. 2020; 49: 40-46

MORPHOLOGICAL ANALYSIS OF MMIC DISTRIBUTED AMPLIFIERS

Dobush I. M., Kalentyev A. A., Metel A. A., Goryainov A. E.

https://doi.org/10.21778/2218-5453-2020-6-40-46

Abstract

An effective way to reduce the complexity and cost of designing microwave integrated circuits (IС) is to develop approaches, techniques, algorithms and software modules for the automated synthesis of circuit and topological solutions. In particular, approaches to the structural‑parametric synthesis of microwave devices based on the principles of artificial intelligence and evolutionary computing are promising. The article presents the results of a morphological analysis of microwave distributed amplifiers (DAs). The DAs manufactured using various MMIC processes (GaAs, GaN, InP, Si, SiGe) were analyzed. A MMIC DA morphological set model was created and presented in the article. The model can be used for the technique, algorithm, and software module development for automated structural‑parametric synthesis of MMIC DA schematics according to the set of characteristics requirements.

References

1. Vye D. Network synthesis wizard automates interactive matching‑circuit design // Microwave Journal. 2018. Vol. 61. No. 11. P. 96–102.

2. Kalentyev A. A., Babak L. I., Garays D. V. Genetic‑algorithm‑based sythesis of low‑noise amplifiers with automatic selection of active elements and DC biases. 44th European Microwave Conference. 2014. P. 1464–1467.

3. Akimov S. V. Analiz problemy avtomatizatsii strukturno‑parametricheskogo sinteza // Doklady TUSUR. 2011. № 2 (24). S. 204–211.

4. Zebulum R. S., Pacheco M. A., Vellasco M. M. Evolutionary electronics: automatic design of electronic circuits and systems by genetic algorithms. CRC Press, 2001. P. 306.

5. Koza J. R., Bennett F. H., Andre D., Keane M. A. Evolutionary design of analog electrical circuits using genetic programming. 3rd International Conference on Adaptive Computing in Design and Manufacture. 1998. P. 177–192.

6. Sripramong T., Toumazou C. The invention of CMOS amplifier using genetic programming and current‑flow analysis // IEEE Transactions on Computer‑Aided Design of Integrated Circuits and Systems. 2002. Vol. 21. No. 11. P. 1237–1252.

7. Chen D., Aoki T., et al. Graph‑based evolutionary design of arithmetic // IEEE Transactions on Evolutionary Computation. 2002. Vol. 6. No. 1. P. 86–100.

8. Kureichik V. M., Lebedev B. K., Lebedev V. B. Planirovanie sverkhbol'shikh integral'nykh skhem na osnove integratsii modelei adaptivnogo poiska // Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya. 2013. № 1. S. 84–101.

9. Linden D. S., Rayno J. Synthesis of robust UHF RFID antennas on dielectric substrates // Antenna systems and technology. 2016. P. 6–10.

10. Babak L. I., Vjushkov V. A., et al. Synthesis of matching networks for microwave active circuits based on genetic algorithm // Microwave and Optical Technology Letters. 2014. Vol. 56. No. 11. P. 2719–2722.

11. Zhabin D. A., Garays D. V., et al. Automated synthesis of low noise amplifiers using s‑parameter sets of passive elements. Asia Pacific Microwave Conference. 2017. P. 1262–1264.

12. Akimov S. V. Model' morfologicheskogo mnozhestva urovnya identifikatsii // Trudy uchebnykh zavedenii svyazi. 2005. № 172. S. 120–135.

13. Verkhova G. V., Akimov S. V. Model' morfologicheskogo mnozhestva shirokopolosnykh soglasuyushchikh tsepei // Antenny i rasprostranenie radiovoln. 2018. S.134–138.

14. Campbell C. F. Evolution of the nonuniform distributed power amplifier: a distinguished microwave lecture. IEEE Microwave Magazine. 2019. Vol. 20. No. 1. P. 18–27.

15. Hamidi E., Mohammad‑Taheri M., Moradi G. Improvements in the noise theory of the MMIC distributed amplifiers // IEEE Transactions on Microwave Theory and Techniques. 2008. Vol. 56. No. 8. P. 1797–1806.

16. Shivan T., Hossain M., et al. An ultra‑broadband low‑noise distributed amplifier in InP DHBT technology. 13th European Microwave Integrated Circuits Conference. 2018. P. 241–244.

17. Duperrier C., Campovecchio M., et al. New design method of uniform and nonuniform distributed power amplifiers // IEEE Transactions on Microwave Theory and Techniques. 2001. Vol. 49. No. 12. P. 2494–2500.

18. Nikandish G., Medi A. A 40‑GHz bandwidth tapered distributed LNA // IEEE Transactions on Circuits and Systems II: Express Briefs. 2018. Vol. 65. No. 11. P. 1614–1618.

19. Nikandish G., Staszewski R., Zhu A. The (R)evolution of distributed amplifiers: from vacuum tubes to modern CMOS and GaN ICs // IEEE Microwave Magazine. 2018. Vol. 19. No. 4. P. 66–83.

20. Green B., Lee S., et al. High efficiency monolithic gallium nitride distributed amplifier // IEEE Microwave and Guided Wave Letters. 2000. Vol. 10. No. 7. P. 270–272.