Журналов:     Статей:        

Вопросы вирусологии. 2016; 61: 222-229

Анализ изменчивости гена env варианта IDU-A ВИЧ-1 в ходе развития эпидемии ВИЧ-инфекции на территории Пермского края России (1996-2011)

Лебедев А. В., Казеннова Е. В., Зверев С. Я., Нистратова Ю. И., Лага В. Ю., Туманов А. С., Глущенко Н. В., Ярыгина Е. И., Бобкова М. Р.

https://doi.org/10.18821/0507-4088-2016-61-5-222-229

Аннотация

Проанализированы 132 генетические последовательности С2-V3-С3-области гена env ВИЧ-1 варианта IDU-A, полученные для вирусов, циркулировавших в разное время среди потребителей инъекционных наркотиков (ПИН) и гетеросексуалов на территории Пермского края. В ходе исследования установлено, что степень дивергенции вариантов IDU-A ВИЧ-1 от общего предка в указанном регионе в 2011 г. была выше в 4,3 раза (р < 0,001) по сравнению с началом эпидемии. Темп эволюции ВИЧ-1 различается в двух изученных группах риска инфицирования. Средние генетические дистанции между вариантами ВИЧ-1, циркулирующими среди гетеросексуалов, больше в среднем в 1,3 раза (р = 0,008), чем среди ПИН. Скорость накопления нуклеотидных, в том числе несинонимичных замен в С2-V3-С3-области гена env ВИЧ-1 среди лиц, инфицированных гетеросексуальным путем, была в 1,7 раза выше, чем в группе ПИН. Продемонстрированы различия в положениях кодонов, находящихся под действием положительного отбора, в зависимости от принадлежности вариантов ВИЧ-1 к указанным группам риска.
Список литературы

1. Joos B., Fischer M., Schweizer A., Kuster H., Böni J., Wong J.K. et al. Positive in vivo selection of the HIV-1 envelope protein gp120 occurs at surface-exposed regions. J. Infect. Dis. 2007; 196(2): 313-20.

2. Lythgoe K.A., Fraser C. New insights into the evolutionary rate of HIV-1 at the within-host and epidemiological levels. Proc. Biol. Sci. 2012; 279(1741): 3367-75.

3. Berry I.M., Ribeiro R., Kothari M., Athreya G., Daniels M., Lee H.Y. et al. Unequal evolutionary rates in the human immunodeficiency virus type 1 (HIV-1) pandemic: the evolutionary rate of HIV-1 slows down when the epidemic rate increases. J. Virol. 2007; 81(19): 10625-35.

4. Korber B., Muldoon M., Theiler J., Gao F., Gupta R., Lapedes A. et al. Timing the ancestor of the HIV-1 pandemic strains. Science. 2000; 288(5472): 1789-96.

5. Frost S.D., Wrin T., Smith D.M., Kosakovsky Pond S.L., Liu Y., Paxinos E. et al. Neutralizing antibody responses drive the evolution of human immunodeficiency virus type 1 envelope during recent HIV infection. Proc. Natl. Acad. Sci. USA. 2005; 102(51): 18514-9.

6. Barroso H., Borrego P., Bartolo I., Marcelino J.M., Familia C., Quintas A. et al. Evolutionary and structural features of the C2, V3 and C3 envelope regions underlying the differences in HIV-1 and HIV-2 biology and infection. PLoS One. 2011; 6(1): e14548.

7. Abebe A., Lukashov V.V., Rinke De Wit TF., Fisseha B., Tegbaru B., Kliphuis A. et al. Timing of the introduction into Ethiopia of subcluster C of HIV type 1 subtype C. AIDS Res. Hum. Retroviruses. 2001; 17(7): 657-61.

8. Lukashov V.V., Goudsmit J. Recent evolutionary history of human immunodeficiency virus type 1 subtypes B: reconstruction of epidemic onset based on sequence distances to the common ancestor. J. Mol. Evol. 2002; 54(5): 680-91.

9. Kuiken C., Thakallapalli R., Esklid A., de Ronde A. Genetic analysis reveals epidemiologic patterns in the spread of human immunodeficiency virus. Am. J. Epidemiol. 2000; 152(9): 814-22.

10. Dukhovlinova E., Masharsky A., Toussova O., Verevochkin S., Solovyeva T., Meringof M. et al. Two Independent HIV Epidemics in Saint Petersburg, Russia Revealed by Molecular Epidemiology. AIDS Res. Hum. Retroviruses. 2015; 31(6): 608-14.

11. Бобков А.Ф., Зверев С.Я., Бобкова М.Р., Осташова В.Л., Красникова Л.А., Зубриков В.В. и др. Эпидемиологическая и генетическая характеристика первых 40 случаев ВИЧ-инфекции на территории Пермской области. Вопросы вирусологии. 2000; 45(4): 18-21.

12. Фельдблюм И.В., Зверев С.Я., Остапович А.В., Аликина Ю.И., Суханова А.Л., Казеннова Е.В. и др. Молекулярно-эпидемиологические аспекты распространения ВИЧ-инфекции в Пермском крае. Журнал микробиологии, эпидемиологии и иммунобиологии. 2007; (2): 18-24.

13. Лага В.Ю., Казеннова Е.В., Васильев А.В., Лаповок И.А., Исмаилова А., Бейшеева Н. и др. Молекулярно-генетическая характеристика вариантов ВИЧ-1, распространенных на территории Киргизии. Вопросы вирусологии. 2012; 57(5): 26-32.

14. Delwart E., Shpaer E.G., Louwagie J., McCutchan F.E., Grez M., R@übsamen-Waigmann H. et al. Genetic relationships determined by a DNA heteroduplex mobility assay analysis of HIV-1 env genes. Science. 1993; 262(5137): 1257-61.

15. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013; 30(12): 2725-9.

16. Darriba D., Taboada G.L., Doallo R., Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods. 2012; 9(8): 772.

17. Yang W., Bielawski J.P., Yang Z. Widespread adaptive evolution in the human immunodeficiency virus type 1 genome. J. Mol. Evol. 2003, 57(2): 212-21.

18. Delport W., Poon A.F., Frost S.D., Kosakovsky Pond S.L. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics. 2010; 26(19): 2455-7.

19. Thomson M.M., de Parga E.V., Vinogradova A., Sierra M., Yakovlev A., Rakhmanova A. et al. New insights into the origin of the HIV type 1 subtype A epidemic in former Soviet Union’s countries derived from sequence analyses of preepidemically transmitted viruses. AIDS Res. Hum. Retroviruses. 2007; 23(12): 1599-604.

20. Riva C., Romano L., Saladini F., Lai A., Carr J.K., Francisci D. et al. Identification of a possible ancestor of the subtype A1 HIV Type 1 variant circulating in the former Soviet Union. AIDS Res. Hum. Retroviruses. 2008; 24(10): 1319-25.

21. Lemey P., Rambaut A., Pybus O.G. HIV evolutionary dynamics within and among hosts. AIDS Rev. 2006; 8(3): 125-40.

Problems of Virology. 2016; 61: 222-229

Analysis of the env gene variability of the IDU-A HIV-1 variant in the outbreak of the HIV infection epidemic in Perm region of Russia (1996-2011)

Lebedev A. V., Kazennova E. V., Zverev S. Ya., Nistratova Yu. I., Laga V. Yu., Tumanov A. S., Glushchenko N. V., Yarygina E. I., Bobkova M. R.

https://doi.org/10.18821/0507-4088-2016-61-5-222-229

Abstract

In the present work, a total of 132 HIV-1 env gene C2-V3-C3 sequences belonging to the IDU-A genetic variant were analyzed. The variants were obtained from the viruses circulating among IDUs and heterosexuals in the Perm region at different periods. It was shown that the rate of the divergence of the IDU-A HIV-1 viruses from a common ancestor increased 4.3 times (p < 0.001) in 2011 as compared with the onset of the epidemics. The rate of the HIV-1 evolution was different in the two risk groups of the infection. The mean genetic distance of HIV-1 variants circulating among heterosexuals was 1.3 times longer (p = 0.008) than that among IDUs. The accumulation rate of the nucleotide (including nonsynonymous) substitutions in the C2-V3-C3 HIV-1 env gene region among individuals infected by heterosexual contacts was 1.7 times higher than that among IDUs. The differences in the positions of the codons subjected to positive selection were demonstrated depending on the infection risk group tested.
References

1. Joos B., Fischer M., Schweizer A., Kuster H., Böni J., Wong J.K. et al. Positive in vivo selection of the HIV-1 envelope protein gp120 occurs at surface-exposed regions. J. Infect. Dis. 2007; 196(2): 313-20.

2. Lythgoe K.A., Fraser C. New insights into the evolutionary rate of HIV-1 at the within-host and epidemiological levels. Proc. Biol. Sci. 2012; 279(1741): 3367-75.

3. Berry I.M., Ribeiro R., Kothari M., Athreya G., Daniels M., Lee H.Y. et al. Unequal evolutionary rates in the human immunodeficiency virus type 1 (HIV-1) pandemic: the evolutionary rate of HIV-1 slows down when the epidemic rate increases. J. Virol. 2007; 81(19): 10625-35.

4. Korber B., Muldoon M., Theiler J., Gao F., Gupta R., Lapedes A. et al. Timing the ancestor of the HIV-1 pandemic strains. Science. 2000; 288(5472): 1789-96.

5. Frost S.D., Wrin T., Smith D.M., Kosakovsky Pond S.L., Liu Y., Paxinos E. et al. Neutralizing antibody responses drive the evolution of human immunodeficiency virus type 1 envelope during recent HIV infection. Proc. Natl. Acad. Sci. USA. 2005; 102(51): 18514-9.

6. Barroso H., Borrego P., Bartolo I., Marcelino J.M., Familia C., Quintas A. et al. Evolutionary and structural features of the C2, V3 and C3 envelope regions underlying the differences in HIV-1 and HIV-2 biology and infection. PLoS One. 2011; 6(1): e14548.

7. Abebe A., Lukashov V.V., Rinke De Wit TF., Fisseha B., Tegbaru B., Kliphuis A. et al. Timing of the introduction into Ethiopia of subcluster C of HIV type 1 subtype C. AIDS Res. Hum. Retroviruses. 2001; 17(7): 657-61.

8. Lukashov V.V., Goudsmit J. Recent evolutionary history of human immunodeficiency virus type 1 subtypes B: reconstruction of epidemic onset based on sequence distances to the common ancestor. J. Mol. Evol. 2002; 54(5): 680-91.

9. Kuiken C., Thakallapalli R., Esklid A., de Ronde A. Genetic analysis reveals epidemiologic patterns in the spread of human immunodeficiency virus. Am. J. Epidemiol. 2000; 152(9): 814-22.

10. Dukhovlinova E., Masharsky A., Toussova O., Verevochkin S., Solovyeva T., Meringof M. et al. Two Independent HIV Epidemics in Saint Petersburg, Russia Revealed by Molecular Epidemiology. AIDS Res. Hum. Retroviruses. 2015; 31(6): 608-14.

11. Bobkov A.F., Zverev S.Ya., Bobkova M.R., Ostashova V.L., Krasnikova L.A., Zubrikov V.V. i dr. Epidemiologicheskaya i geneticheskaya kharakteristika pervykh 40 sluchaev VICh-infektsii na territorii Permskoi oblasti. Voprosy virusologii. 2000; 45(4): 18-21.

12. Fel'dblyum I.V., Zverev S.Ya., Ostapovich A.V., Alikina Yu.I., Sukhanova A.L., Kazennova E.V. i dr. Molekulyarno-epidemiologicheskie aspekty rasprostraneniya VICh-infektsii v Permskom krae. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2007; (2): 18-24.

13. Laga V.Yu., Kazennova E.V., Vasil'ev A.V., Lapovok I.A., Ismailova A., Beisheeva N. i dr. Molekulyarno-geneticheskaya kharakteristika variantov VICh-1, rasprostranennykh na territorii Kirgizii. Voprosy virusologii. 2012; 57(5): 26-32.

14. Delwart E., Shpaer E.G., Louwagie J., McCutchan F.E., Grez M., R@übsamen-Waigmann H. et al. Genetic relationships determined by a DNA heteroduplex mobility assay analysis of HIV-1 env genes. Science. 1993; 262(5137): 1257-61.

15. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013; 30(12): 2725-9.

16. Darriba D., Taboada G.L., Doallo R., Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods. 2012; 9(8): 772.

17. Yang W., Bielawski J.P., Yang Z. Widespread adaptive evolution in the human immunodeficiency virus type 1 genome. J. Mol. Evol. 2003, 57(2): 212-21.

18. Delport W., Poon A.F., Frost S.D., Kosakovsky Pond S.L. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics. 2010; 26(19): 2455-7.

19. Thomson M.M., de Parga E.V., Vinogradova A., Sierra M., Yakovlev A., Rakhmanova A. et al. New insights into the origin of the HIV type 1 subtype A epidemic in former Soviet Union’s countries derived from sequence analyses of preepidemically transmitted viruses. AIDS Res. Hum. Retroviruses. 2007; 23(12): 1599-604.

20. Riva C., Romano L., Saladini F., Lai A., Carr J.K., Francisci D. et al. Identification of a possible ancestor of the subtype A1 HIV Type 1 variant circulating in the former Soviet Union. AIDS Res. Hum. Retroviruses. 2008; 24(10): 1319-25.

21. Lemey P., Rambaut A., Pybus O.G. HIV evolutionary dynamics within and among hosts. AIDS Rev. 2006; 8(3): 125-40.