Журналов:     Статей:        

Вопросы вирусологии. 2022; 67: 227-236

Штаммы диплоидных клеток лёгкого летучей мыши Pipistrellus pipistrellus и их пермиссивность к орбивирусам (Reoviridae: Orbivirus) – возбудителям трансмиссивных болезней животных

Поволяева О. С., Чадаева А. А., Луницин А. В., Юрков С. Г.

https://doi.org/10.36233/0507-4088-114

Аннотация

Введение. Культуры клеток летучих мышей являются востребованной моделью как для изоляции вирусов трансмиссивных болезней, так и для оценки возможной роли данных видов млекопитающих в формировании природных резервуаров переносчиков возбудителей арбовирусных инфекций.
Цель исследования. Получение и характеристика штаммов диплоидных клеток лёгкого летучей мыши Pipistrellus pipistrellus, оценка их пермиссивности к вирусам блютанга, африканской чумы лошадей (АЧЛ), эпизоотической геморрагической болезни оленей (ЭГБО).
Материалы и методы. Культуры клеток лёгкого нетопыря-карлика получали методом стандартной ферментативной дезагрегации ткани доноров и селекцией клеток по адгезивным свойствам. Биологические свойства штаммов клеток изучены цитологическими, кариологическими методами. Пермиссивность культур клеток определяли к орбивирусам блютанга, АЧЛ, ЭГБО.
Результаты. Диплоидные штаммы клеток (эпителиоподобного и фибробластоподобного типа), сохраняющие цитоморфологические характеристики и стабильность кариотипа, получены из ткани лёгкого нетопыря-карлика Pipistrellus pipistrellus. Установлена их пермиссивность к вирусам рода Orbivirus семейства Reoviridae возбудителям трансмиссивных заболеваний животных. Паспортизированные штаммы диплоидных клеток чувствительны к орбивирусам блютанга, АЧЛ, ЭГБО. Инфекционная активность вирусов в эпителиоподобной культуре клеток соответствовала активности в референтных культурах Vero и CV-1. Фибробластоподная культура клеток была менее пермиссивна к вирусам блютанга и ЭГБО, однако накопление вируса АЧЛ было выше на 1,52,0 lg ТЦД50/см3.
Обсуждение. Пермиссивность полученных штаммов клеток лёгкого летучей мыши Pipistrellus pipistrellus к вирусам блютанга, АЧЛ, ЭГБО согласуется с данными изоляции орбивирусов у летучих мышей видов Pteropus poliocephalus, Pteropus hypomelanus, Rousettus aegyptiacus leachii, Syconycteris crassa, Myotis macrodactylus, Eidolon helvum.
Заключение. Штаммы диплоидных клеток лёгкого нетопыря-карлика пермиссивны к орбивирусам блютанга, АЧЛ, ЭГБО, что позволяет рекомендовать их для изоляции этих вирусов, а вид Pipistrellus pipistrellus рассматривать как потенциальный природный резервуар и переносчик возбудителей данных трансмиссивных болезней.

Список литературы

1. Narladkar B.W. Projected economic losses due to vector and vector-borne parasitic diseases in livestock of India and its significance in implementing the concept of integrated practices for vector management. Vet. World. 2018; 11(2): 151–60. https://doi.org/10.14202/vetworld.2018.151-160

2. ВОЗ. Трансмиссивные болезни: Информационный бюллетень; 2020. Available at: https://www.who.int/ru/news-room/fact-sheets/detail/vector-borne-diseases

3. Еремян А.А., Львов Д.К., Щетинин А.М., Дерябин П.Г., Аристова В.А., Гительман А.К. и др. Генетическое разнообразие вирусов вида Chenuda virus (Orbivirus, Reoviridae), циркулирующих в Средней Азии. Вопросы вирусологии. 2017; 62(2): 81–6. https://doi.org/10.18821/0507-4088-2017-62-2-81-86

4. Maclachlan N.J., Guthrie A.J. Re-emergence of bluetongue, African horse sickness, and other orbivirus diseases. Vet. Res. 2010; 41(6): 35. https://doi.org/10.1051/vetres/2010007

5. Львов Д.К., Алексеев К.П., Алимбарова Л.М., Алипер Т.И., Альховский С.В., Андронова В.Л. и др. Вирусы и вирусные ин- фекции человека и животных. Руководство по вирусологии. М.; МИА; 2013.

6. Attoui H., Mohd Jaafar F. Zoonotic and emerging orbivirus infections. Rev. Sci. Tech. 2015; 34(2): 353–61. https://doi.org/10.20506/rst.34.2.2362

7. Calisher C.H., Childs J.E., Field H.E., Holmes K.V., Schountz T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006; 19(3): 531–45. https://doi.org/10.1128/CMR.00017-06

8. Leroy E.M., Kumulungui B., Pourrut X., Rouquet P., Hassanin A., Yaba P., et al. Fruit bats as reservoirs of Ebola virus. Nature. 2005; 438(7068): 575–6. https://doi.org/10.1038/438575a

9. Lau S.K., Woo P.C., Li K.S., Huang Y., Tsoi H.W., Wong B.H., et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl Acad. Sci. USA. 2005; 102(39): 14040–5. https://doi.org/10.1073/pnas.0506735102

10. Ge X.Y., Li J.L., Yang X.L., Chmura A.A., Zhu G., Epstein J.H., et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013; 7477(503): 535–8. https://doi.org/10.1038/nature12711

11. Aréchiga Ceballos N., Vázquez Morón S., Berciano J.M., Nicolás O., Aznar López C., Juste J., et al. Novel lyssavirus in bat, Spain. Emerg. Infect. Dis. 2013; 19(5): 793–5. https://doi.org/10.3201/eid1905

12. Jánoska M., Vidovszky M., Molnár V., Liptovszky M., Harrach B., Benko M. Novel adenoviruses and herpesviruses detected in bats. Vet. J. 2011; 189(1): 118–21. https://doi.org/10.1016/j.tvjl.2010.06.020

13. Aurine N., Baquerre C., Gaudino M., Jean C., Dumont C., Rival- Gervier S., et al. Reprogrammed Pteropus bat stem cells as a model to study host-pathogen interaction during Henipavirus infection. Microorganisms. 2021; 9(12): 2567. https://doi.org/10.3390/microorganisms9122567

14. Waruhiu C., Ommeh S., Obanda V., Agwanda B., Gakuya F., Ge X.Y., et al. Molecular detection of viruses in Kenyan bats and discovery of novel astroviruses, caliciviruses and rotaviruses. Virol. Sin. 2017; 32(2): 101–14. https://doi.org/10.1007/s12250-016-3930-2

15. Kohl C., Lesnik R., Brinkmann A., Ebinger A., Radonić A., Nitsche A., et al. Isolation and characterization of three mammalian orthoreoviruses from European bats. PLoS One. 2012; 7(8): e43106. https://doi.org/10.1371/journal.pone.0043106

16. Chua K.B., Crameri G., Hyatt A., Yu M., Tompang M.R., Rosli J., et al. A previously unknown reovirus of bat origin is associated with an acute respiratory disease in humans. Proc. Natl Acad. Sci. USA. 2007; 104(27): 11424–9. https://doi.org/10.1073/pnas.0701372104

17. Макаров В.В., Лозовой Д.А. Новые особо опасные инфекции, ассоциированные с рукокрылыми. Владимир; 2016.

18. Gonsalves L., Bicknell B., Law B., Webb C., Monamy V. Mosquito consumption by insectivorous bats: does size matter? PLoS One. 2013; 8(10): e77183. https://doi.org/10.1371/journal.pone.0077183

19. La Motte L.C. Jr. Japanese B encephalitis in bats during simulated hibernation. Am. J. Hyg. 1958; 67(1): 101–8. https://doi.org/10.1093/oxfordjournals.aje.a119912

20. Melaun C., Werblow A., Busch M.W., Liston A., Klimpel S. Bats as potential reservoir hosts for vector-borne diseases. In: Klimpel S., Mehlhorn H. Bats (Chiroptera) as Vectors of Diseases and Parasites. Parasitology Research Monographs, Volume 5. Berlin, Heidelberg: Springer; 2014. https://doi.org/10.1007/978-3-642-39333-4_3

21. Schuh A.J., Amman B.R., Jones M.E., Sealy T.K., Uebelhoer L.S., Spengler J.R., et al. Modelling filovirus maintenance in nature by experimental transmission of Marburg virus between Egyptian rousette bats. Nat. Commun. 2017; 8: 14446. https://doi.org/10.1038/ncomms14446

22. Smith I., Wang L.F. Bats and their virome: an important source of emerging viruses capable of infecting humans. Curr. Opin. Virol. 2013; 3(1): 84–91. https://doi.org/10.1016/j.coviro.2012.11.006

23. Gloza-Rausch F., Ipsen A., Seebens A., Göttsche M., Panning M., Drexler J.F., et al. Detection and prevalence patterns of group I coronaviruses in bats, northern Germany. Emerg. Infect. Dis. 2008; 14(4): 626–31. https://doi.org/10.3201/eid1404.071439

24. Geldenhuys M., Coertse J., Mortlock M., Markotter W. In Vitro Isolation of Bat Viruses Using Commercial and Bat-Derived Cell Lines. Caister Academic Press; 2020: 149–80. https://doi.org/10.21775/9781912530144.10

25. Banerjee A., Misra V., Schountz T., Baker M.L. Tools to study pathogen-host interactions in bats. Virus Res. 2018; 248: 5–12. https://doi.org/10.1016/j.virusres.2018.02.013

26. Crameri G., Todd S., Grimley S., McEachern J.A., Marsh G.A., Smith C., et al. Establishment, immortalisation and characterisation of pteropid bat cell lines. PLoS One. 2009; 4(12): e8266. https://doi.org/10.1371/journal.pone.0008266

27. Hoffmann M., Müller M.A., Drexler J.F., Glende J., Erdt M., Gützkow T., et al. Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses. PLoS One. 2013; 8(8): e72942. https://doi.org/10.1371/journal.pone.0072942

28. Поволяева О.С., Юрков С.Г., Лаптева О.Г., Колбасова О.Л., Чадаева А.А., Кольцов А.Ю. и др. Биологическая характери- стика и пермиссивность к вирусам штамма диплоидных клеток почки летучей мыши нетопыря Натузиуса (Pipistrellus nathusii Keyserling & Blasius, 1839; (Chiroptera: Microchiroptera: Vespertilionidae). Вопросы вирусологии. 2021; 66(1): 29–39. https://doi.org/10.36233/0507-4088-12

29. OIE; World Animal Health Information System. Disease situation. Available at: https://wahis.oie.int/#/dashboards/country-or-disease-dashboard

30. Юрков С.Г., Зуев В.В., Сидоров С.И., Кушнир С.Д., Смыслова Н.Ю., Неверовская Н.С. и др. Каталог коллекции клеточных культур ВНИИВВиМ. Покров; 2010.

31. Ford C.E., Hamerton J.L. A colchicine, hypotonic citrate, squash sequence for mammalian chromosomes. Stain Technol. 1956; 31(6): 247–51. https://doi.org/10.3109/10520295609113814

32. Rothfels K.H., Siminovitch L. Air drying technique for flattening chromosomes in mammalian cells grown in vitro. Stain Technol. 1958; 33(2): 73–7. https://doi.org/10.3109/10520295809111827

33. Baker K.S., Todd S., Marsh G., Fernandez-Loras A., Suu-Ire R., Wood J.L.N., et al. Co-circulation of diverse paramyxoviruses in an urban African fruit bat population. J. Gen. Virol. 2012; 93(Pt. 4): 850–6. https://doi.org/10.1099/vir.0.039339-0

34. Directive 2010/63/EU of the European parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32010L0063

35. Fagre A.C., Lee J.S., Kityo R.M., Bergren N.A., Mossel E.C., Nakayiki T., et al. Discovery and characterization of Bukakata orbivirus (Reoviridae:Orbivirus), a novel virus from a Ugandan bat. Viruses. 2019; 11(3): 209. https://doi.org/10.3390/v11030209

Problems of Virology. 2022; 67: 227-236

Dwarf bat’s (Pipistrellus pipistrellus) lung diploid cell strains and their permissivity to orbiviruses (Reoviridae: Orbivirus) – pathogens of vector-borne animal diseases

Povolyaeva O. S., Chadaeva A. A., Lunitsin A. V., Yurkov S. G.

https://doi.org/10.36233/0507-4088-114

Abstract

Introduction. Bat cell cultures are a popular model both for the isolation of vector-borne disease viruses and for assessing the possible role of these mammalian species in forming the natural reservoirs of arbovirus infection vectors. The goal of the research was to obtain and characterize strains of diploid lung cells of the bat (Pipistrellus pipistrellus) and evaluate their permissivity to bluetongue, African horse sickness (AHS), and epizootic hemorrhagic disease of deer (EHD) viruses.
Materials and methods. Cell cultures of the dwarf bat’s lung were obtained by standard enzymatic disaggregation of donor tissue and selection of cells for adhesive properties. The permissivity of cell cultures was determined to bluetongue, AHL, and EHD orbiviruses.
Results. Diploid cell strains (epithelium-like and fibroblast-like types) retaining cytomorphological characteristics and karyotype stability were obtained from tissue of the bat’s lung. Their permissivity to viruses of the genus Orbivirus of the Reoviridae family, pathogens of transmissible animal diseases, has been established.
Discussion. The permissivity of the obtained strains of bat’s lung cells to bluetongue, AHL, and EHD viruses is consistent with the isolation of orbiviruses in bats of the species Pteropus poliocephalus, Pteropus hypomelanus, Rousettus aegyptiacus leachii, Syconycteris crassa, Myotis macrodactylus, and Eidolon helvum.
Conclusion. Strains of diploid lung cells of the dwarf bat are permissive to orbiviruses of bluetongue, AHS, and EHD, which allows us to recommend them for the isolation of these viruses, and the species Pipistrellus pipistrellus to be considered as a potential natural reservoir and carrier of pathogens of these vector-borne diseases.

References

1. Narladkar B.W. Projected economic losses due to vector and vector-borne parasitic diseases in livestock of India and its significance in implementing the concept of integrated practices for vector management. Vet. World. 2018; 11(2): 151–60. https://doi.org/10.14202/vetworld.2018.151-160

2. VOZ. Transmissivnye bolezni: Informatsionnyi byulleten'; 2020. Available at: https://www.who.int/ru/news-room/fact-sheets/detail/vector-borne-diseases

3. Eremyan A.A., L'vov D.K., Shchetinin A.M., Deryabin P.G., Aristova V.A., Gitel'man A.K. i dr. Geneticheskoe raznoobrazie virusov vida Chenuda virus (Orbivirus, Reoviridae), tsirkuliruyushchikh v Srednei Azii. Voprosy virusologii. 2017; 62(2): 81–6. https://doi.org/10.18821/0507-4088-2017-62-2-81-86

4. Maclachlan N.J., Guthrie A.J. Re-emergence of bluetongue, African horse sickness, and other orbivirus diseases. Vet. Res. 2010; 41(6): 35. https://doi.org/10.1051/vetres/2010007

5. L'vov D.K., Alekseev K.P., Alimbarova L.M., Aliper T.I., Al'khovskii S.V., Andronova V.L. i dr. Virusy i virusnye in- fektsii cheloveka i zhivotnykh. Rukovodstvo po virusologii. M.; MIA; 2013.

6. Attoui H., Mohd Jaafar F. Zoonotic and emerging orbivirus infections. Rev. Sci. Tech. 2015; 34(2): 353–61. https://doi.org/10.20506/rst.34.2.2362

7. Calisher C.H., Childs J.E., Field H.E., Holmes K.V., Schountz T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006; 19(3): 531–45. https://doi.org/10.1128/CMR.00017-06

8. Leroy E.M., Kumulungui B., Pourrut X., Rouquet P., Hassanin A., Yaba P., et al. Fruit bats as reservoirs of Ebola virus. Nature. 2005; 438(7068): 575–6. https://doi.org/10.1038/438575a

9. Lau S.K., Woo P.C., Li K.S., Huang Y., Tsoi H.W., Wong B.H., et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl Acad. Sci. USA. 2005; 102(39): 14040–5. https://doi.org/10.1073/pnas.0506735102

10. Ge X.Y., Li J.L., Yang X.L., Chmura A.A., Zhu G., Epstein J.H., et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013; 7477(503): 535–8. https://doi.org/10.1038/nature12711

11. Aréchiga Ceballos N., Vázquez Morón S., Berciano J.M., Nicolás O., Aznar López C., Juste J., et al. Novel lyssavirus in bat, Spain. Emerg. Infect. Dis. 2013; 19(5): 793–5. https://doi.org/10.3201/eid1905

12. Jánoska M., Vidovszky M., Molnár V., Liptovszky M., Harrach B., Benko M. Novel adenoviruses and herpesviruses detected in bats. Vet. J. 2011; 189(1): 118–21. https://doi.org/10.1016/j.tvjl.2010.06.020

13. Aurine N., Baquerre C., Gaudino M., Jean C., Dumont C., Rival- Gervier S., et al. Reprogrammed Pteropus bat stem cells as a model to study host-pathogen interaction during Henipavirus infection. Microorganisms. 2021; 9(12): 2567. https://doi.org/10.3390/microorganisms9122567

14. Waruhiu C., Ommeh S., Obanda V., Agwanda B., Gakuya F., Ge X.Y., et al. Molecular detection of viruses in Kenyan bats and discovery of novel astroviruses, caliciviruses and rotaviruses. Virol. Sin. 2017; 32(2): 101–14. https://doi.org/10.1007/s12250-016-3930-2

15. Kohl C., Lesnik R., Brinkmann A., Ebinger A., Radonić A., Nitsche A., et al. Isolation and characterization of three mammalian orthoreoviruses from European bats. PLoS One. 2012; 7(8): e43106. https://doi.org/10.1371/journal.pone.0043106

16. Chua K.B., Crameri G., Hyatt A., Yu M., Tompang M.R., Rosli J., et al. A previously unknown reovirus of bat origin is associated with an acute respiratory disease in humans. Proc. Natl Acad. Sci. USA. 2007; 104(27): 11424–9. https://doi.org/10.1073/pnas.0701372104

17. Makarov V.V., Lozovoi D.A. Novye osobo opasnye infektsii, assotsiirovannye s rukokrylymi. Vladimir; 2016.

18. Gonsalves L., Bicknell B., Law B., Webb C., Monamy V. Mosquito consumption by insectivorous bats: does size matter? PLoS One. 2013; 8(10): e77183. https://doi.org/10.1371/journal.pone.0077183

19. La Motte L.C. Jr. Japanese B encephalitis in bats during simulated hibernation. Am. J. Hyg. 1958; 67(1): 101–8. https://doi.org/10.1093/oxfordjournals.aje.a119912

20. Melaun C., Werblow A., Busch M.W., Liston A., Klimpel S. Bats as potential reservoir hosts for vector-borne diseases. In: Klimpel S., Mehlhorn H. Bats (Chiroptera) as Vectors of Diseases and Parasites. Parasitology Research Monographs, Volume 5. Berlin, Heidelberg: Springer; 2014. https://doi.org/10.1007/978-3-642-39333-4_3

21. Schuh A.J., Amman B.R., Jones M.E., Sealy T.K., Uebelhoer L.S., Spengler J.R., et al. Modelling filovirus maintenance in nature by experimental transmission of Marburg virus between Egyptian rousette bats. Nat. Commun. 2017; 8: 14446. https://doi.org/10.1038/ncomms14446

22. Smith I., Wang L.F. Bats and their virome: an important source of emerging viruses capable of infecting humans. Curr. Opin. Virol. 2013; 3(1): 84–91. https://doi.org/10.1016/j.coviro.2012.11.006

23. Gloza-Rausch F., Ipsen A., Seebens A., Göttsche M., Panning M., Drexler J.F., et al. Detection and prevalence patterns of group I coronaviruses in bats, northern Germany. Emerg. Infect. Dis. 2008; 14(4): 626–31. https://doi.org/10.3201/eid1404.071439

24. Geldenhuys M., Coertse J., Mortlock M., Markotter W. In Vitro Isolation of Bat Viruses Using Commercial and Bat-Derived Cell Lines. Caister Academic Press; 2020: 149–80. https://doi.org/10.21775/9781912530144.10

25. Banerjee A., Misra V., Schountz T., Baker M.L. Tools to study pathogen-host interactions in bats. Virus Res. 2018; 248: 5–12. https://doi.org/10.1016/j.virusres.2018.02.013

26. Crameri G., Todd S., Grimley S., McEachern J.A., Marsh G.A., Smith C., et al. Establishment, immortalisation and characterisation of pteropid bat cell lines. PLoS One. 2009; 4(12): e8266. https://doi.org/10.1371/journal.pone.0008266

27. Hoffmann M., Müller M.A., Drexler J.F., Glende J., Erdt M., Gützkow T., et al. Differential sensitivity of bat cells to infection by enveloped RNA viruses: coronaviruses, paramyxoviruses, filoviruses, and influenza viruses. PLoS One. 2013; 8(8): e72942. https://doi.org/10.1371/journal.pone.0072942

28. Povolyaeva O.S., Yurkov S.G., Lapteva O.G., Kolbasova O.L., Chadaeva A.A., Kol'tsov A.Yu. i dr. Biologicheskaya kharakteri- stika i permissivnost' k virusam shtamma diploidnykh kletok pochki letuchei myshi netopyrya Natuziusa (Pipistrellus nathusii Keyserling & Blasius, 1839; (Chiroptera: Microchiroptera: Vespertilionidae). Voprosy virusologii. 2021; 66(1): 29–39. https://doi.org/10.36233/0507-4088-12

29. OIE; World Animal Health Information System. Disease situation. Available at: https://wahis.oie.int/#/dashboards/country-or-disease-dashboard

30. Yurkov S.G., Zuev V.V., Sidorov S.I., Kushnir S.D., Smyslova N.Yu., Neverovskaya N.S. i dr. Katalog kollektsii kletochnykh kul'tur VNIIVViM. Pokrov; 2010.

31. Ford C.E., Hamerton J.L. A colchicine, hypotonic citrate, squash sequence for mammalian chromosomes. Stain Technol. 1956; 31(6): 247–51. https://doi.org/10.3109/10520295609113814

32. Rothfels K.H., Siminovitch L. Air drying technique for flattening chromosomes in mammalian cells grown in vitro. Stain Technol. 1958; 33(2): 73–7. https://doi.org/10.3109/10520295809111827

33. Baker K.S., Todd S., Marsh G., Fernandez-Loras A., Suu-Ire R., Wood J.L.N., et al. Co-circulation of diverse paramyxoviruses in an urban African fruit bat population. J. Gen. Virol. 2012; 93(Pt. 4): 850–6. https://doi.org/10.1099/vir.0.039339-0

34. Directive 2010/63/EU of the European parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32010L0063

35. Fagre A.C., Lee J.S., Kityo R.M., Bergren N.A., Mossel E.C., Nakayiki T., et al. Discovery and characterization of Bukakata orbivirus (Reoviridae:Orbivirus), a novel virus from a Ugandan bat. Viruses. 2019; 11(3): 209. https://doi.org/10.3390/v11030209