Вопросы вирусологии. 2022; 67: 206-216
Проблемы специфической профилактики африканской чумы свиней
Власова Н. Н., Верховский О. А., Алипер Т. И., Капустина О. В., Алексеев К. П., Южаков А. Г., Гулюкин М. И., Гулюкин А. М.
https://doi.org/10.36233/0507-4088-117Аннотация
В обзоре представлено современное состояние проблемы разработки и применения средств специфической профилактики африканской чумы свиней (АЧС) с кратким описанием её этиологии и патогенеза. Понимание уникальности природы вируса АЧС определило ряд ограничений и сложность решения проблемы создания вакцины, что стимулировало разработку высокоспецифичных методов диагностики для быстрого и точного выявления возбудителя болезни. В связи с этим приводятся результаты исследований, включая собственные, касающиеся сравнительного анализа генома вакцинных и вирулентных штаммов вируса АЧС, а также иммунодиагностических подходов для определения причин высокой вирулентности и низкой протективной активности этого вируса. Особое внимание уделено вопросу, связанному с разработкой безопасных и эффективных вакцин против АЧС. При этом подробно рассматриваются недостатки и возможные преимущества живых аттенуированных (ЖАВ) и рекомбинантных (РВ) вакцин. Приводятся результаты последних исследований по оценке иммуногенности генетически модифицированных вакцин (ГМВ), созданных в различных лабораториях мира. Полученные данные свидетельствуют о том, что вакцинопрофилактика АЧС в настоящее время является наиболее перспективной мерой борьбы с распространением этой болезни в нашей стране и мире, однако предыдущий опыт вакцинации против АЧС выявил ряд проблем её разработки и применения. Отмечен значительный вклад зарубежных исследователей в изучение основ вирулентности этого возбудителя и функций его генов. Возможное дальнейшее распространение АЧС в странах Европы и Азии на приграничных с Россией территориях, а также установленный факт распространения вируса АЧС среди диких кабанов свидетельствуют о постоянной угрозе его повторной интродукции в нашу страну. В заключение подчеркнута важность разработки безопасной вакцины против АЧС и анализа рисков создания искусственных источников возбудителя в природе в результате её применения.
Список литературы
1. Mebus C. African swine fever. Adv. Virus Res. 1988; 35: 251–69.
2. Dixon L.K., Abrams C.C., Chapman D.G., Zhang F. African swine fever virus. In: Mettenleiter T.C., Sobrino F., eds. Animal Viruses: Molecular Biology. Norfolk: Caister Academic Press; 2008: 457–521.
3. Sanchez-Vizcaino J.M., Martinez-Lopez B., Martinez-Aviles M., Martins C., Boinas F., Vial L., et al. Scientific review on African swine fever. EFSA Supporting Publications. 2009; 6(8): 5E.
4. Montgomery R.E. On a form of swine fever occurring in British East Africa (Kenya Colony). J. Comp. Pathol. 1921; 34: 159–91.
5. Dixon L.K., Costa J.V., Escribano J.M., Rock D.L., Vinuela E., Wilkinson P.J. Family Asfarviridae. In: Van Regenmortel M.H.V., Fauquet C.M., Bishop D.H.L., Carestens E.B., Estes M.K., Lemon S.M., eds. Virus Taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses. San Diego: Summers Academic Press; 2000: 159–65.
6. Colson P., De Lamballerie X., Yutin N., Asgari S., Bigot Y., Bideshi D.K., et al. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch. Virol. 2013; 158(12): 2517–21. https://doi.org/10.1007/s00705-013-1768-6
7. Гулюкин М.И. 120 лет Всероссийскому научно-исследовательскому институту экспериментальной ветеринарии имени Я.Р. Коваленко. Труды Всероссийского НИИ экспериментальной ветеринарии им. Я.Р. Коваленко. 2018; 80(1): 12–36. https://doi.org/10.30917/ATT-PRINT-2018-1
8. Митин Н.И., Балышев В.М., Федорищев И.В., Шевченко А.А., Петров Ю.И. Схема классификации вируса АЧС. В кн.: Материалы научной конференции ВНИИВВиМ. Том 1. Покров; 1986: 69–73.
9. Вишняков И.Ф., Митин Н.И., Петров Ю.И., Черятников Л.Л., Киселев А.В., Бурлаков В.А. и др. Сероиммунологическая классификация природных изолятов вируса африканской чумы свиней. В кн.: Актуальные вопросы ветеринарной вирусологии: материалы научно-практической конференции «Классическая чума свиней – неотложные проблемы науки и практики». Покров; 1995: 141–3.
10. Бурлаков В.А. Иммунологические свойства вируса и проблемы разработки средств специфической профилактики АЧС: Автореф. дисс. д-ра вет. наук. Покров; 1979.
11. Балышев В.М., Книзе А.В., Цыбанов С.Ж. География АЧС и серотиповая гетерогенность возбудителя болезни. В кн.: Материалы конференции Московской ветеринарной академии. М.; 1999: 92–4.
12. Manso-Ribeiro J., Nunes-Petisca J.L., Lopez-Frazao F., Sobral M. Vaccination against ASF. Bull. Off. Int. Epizoot. 1963; 60: 921–37.
13. Boinas F., Hutchings G., Dixon L., Wilkinson P. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J. General. Virol. 2004; 85(Pt. 8): 2177–87. https://doi.org/10.1099/vir.0.80058-0
14. Моргунов Ю.П., Петров Ю.И. Изучение иммунологических свойств вируса АЧС 5 типа: выделение, идентификация и типирование референтного штамма. Проблемы биологии продуктивных животные. 2010; (4): 104–11.
15. Балышев В.М., Лагуткин Н.А., Салина М.В., Зубаиров М.М., Федорищев И.В., Карпов Г.М. Экспресс-метод получения типоспецифических референс-сывороток при АЧС. В кн.: Материалы Международной научно-практической конференции «Диагностика, профилактика и меры борьбы с особо опасными и экзотическими болезнями животных». Покров; 1998: 64–5.
16. Carrascosa J.L., Carazo J.M., Carrascosa A.L., Garcia N., Santisteban A., Vinuela E., et al. General morphology and capsid fine structure of African swine fever virus particles. Virology. 1984; 132(1): 160–72.
17. Salas M.L., Andrés M.G. African swine fever virus morphogenesis. Virus Res. 2012; 173(1): 29–41. https://doi.org/10.1016/j.virusres.2012.09.016
18. Dixon L.K., Baylis S.A., Vydelingum S., Twigg S.R., Hammond J.M., Hingamp P.M., et al. African swine fever virus genome content and variability. Arch. Virol. Suppl. 1993; 7: 185–99. https://doi.org/10.1007/978-3-7091-9300-6_15
19. Dixon L.K., Chapman D.A., Netherton C.L., Upton C. African swine fever virus replication and genomics. Virus Res. 2013; 173: 3–14. https://doi.org/10.1016/j.virusres.2012.10.020
20. Yáñez R.J., Rodriguez J.M., Nogal M.L., Yuste L., Enriquez C., Rodriguez J.F., et al. Analysis of the complete nucleotide sequence of African swine fever virus. Virology. 1995; 208(1): 249–78. https://doi.org/10.1006/viro.1995.1149
21. Gonzalez A., Talavera A., Almendral J.M., Viñuela E. Hairpin loop structure of African swine fever virus DNA. Nucleic Acids Res. 1986; 14(17): 6835–44. https://doi.org/10.1093/nar/14.17.6835.
22. Vlasova N.N., Vlasova A.N. African Swine Fever Virus pathogenesis and vaccine development: challenges and possible approaches. Charter I. In: Fevers: Types, Treatments and Health Risks. New York: Nova Science Publishers, Inc.; 2013: 3–26.
23. Dixon L.K., Abrams C.C., Bowick G., Goatley L.C., Kay-Jackson P.C., Chapman D., et al. African swine fever virus proteins involved in evading host defence systems. Vet. Immunol. Immunopathol. 2004; 100(3-4): 117–34. https://doi.org/10.1016/j.vetimm.2004.04.002
24. Dixon L.K., Abrams C.C., Chapman D.G., Zhang F. African swine fever virus. In: Sobrino T.C.M.F., ed. Animal Viruses Molecular Biology. Norwich: Caister Academic Press; 2008: 457–521.
25. Gomez-Villamandos J.C., Bautista M.J., Carrasco L., Chacon-Manrique de Lara F., Hervas J., Wilkinson P.J., et al. Thrombocytopenia associated with apoptotic megakaryocytes in a viral haemorrhagic syndrome induced by a moderately virulent strain of African swine fever virus. J. Comp. Pathol. 1998; 118(1): 1–13. https://doi.org/10.1016/s0021-9975(98)80023-6
26. Goatley L.C., Twigg S.R., Miskin J.E., Monaghan P., St-Arnaud R., Smith G.L., et al. The African swine fever virus protein j4R binds to the alpha chain of nascent polypeptide-associated complex. J. Virol. 2002; 76(19): 9991–9. https://doi.org/10.1128/jvi.76.19.9991-9999.2002
27. Zsak L., Lu Z., Burrage T.G., Neilan J.G., Kutish G.F., Moore D.M., et al. African swine fever virus multigene family 360 and 530 genes are novel macrophage host range determinants. J. Virol. 2001; 75(7): 3066–76. https://doi.org/10.1128/jvi.75.7.3066-3076.2001
28. Tulman E.R., Rock D.L. Novel virulence and host range genes of African swine fever virus. Curr. Opin. Microbiol. 2001; 4(4): 456–61. https://doi.org/10.1016/s1369-5274(00)00235-6
29. Rock D.L. Challenges for African swine fever vaccine development – “…perhaps the end of the beginning.” Vet. Microbiol. 2017; 206: 52–8. https://doi.org/10.1016/j.vetmic.2016.10.003
30. Blome S., Gabriel C., Beer M. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine. 2014; 32(31): 3879–82. https://doi.org/10.1016/j.vaccine.2014.05.051
31. Alonso C., Galindo I., Cuesta-Geijo M.A., Cabezas M., Hernaez B., Munoz-Moreno R. African swine fever virus-cell interactions: From virus entry to cell survival. Virus Res. 2013; 173(1): 42–57. https://doi.org/10.1016/j.virusres.2012.12.006
32. Borca M.V., Irusta P., Carrillo C., Afonso C.L., Burrage T., Rock D.L. African swine fever virus structural protein p72 contains a conformational neutralizing epitope. Virology. 1994; 201(2): 413– 8. https://doi.org/10.1006/viro.1994.1311
33. Onisk D., Borca M., Kutish S., Kramer E., Irusta P., Rock D.L. Passively transferred African swine fever virus antibodies protect swine against lethal infection. Virology. 1994; 198(1): 350–4. https://doi.org/10.1006/viro.1994.1040
34. Escribano J.M., Galindo I., Alonso C. Antibody-mediated neutralization of African swine fever virus: Myths and facts. Virus Res. 2013; 173(1): 101–9. https://doi.org/10.1016/j.virusres.2012.10.012
35. Ruiz-Gonzalvo F., Carnero M.E., Caballero C., Martínez J. Inhibition of African swine fever infection in the presence of immune sera in vivo and in vitro. Am. J. Vet. Res. 1986; 47(6): 1249–52.
36. Halstead S.B., Chow J., Marchette N.J. Immunologic enhancement of Dengue virus replication. Nat. New Biol. 1973; 243(122): 24–6.
37. Tirado S.M., Yoon K.J. Antibody-dependent enhancement of virus infection and disease. Viral Immunol. 2003; 16(1): 69–86. https://doi.org/10.1089/088282403763635465
38. Першин А.С., Ремыга С.Г., Шевченко И.В., Жуков И.Ю., Шевцов А.А., Ерофеев С.Г. и др. Влияние пассивной иммунизации на клинические и патологоанатомические изменения у свиней, зараженных изолятом Мартинс-Крым 01/16 вируса АЧС. Ветеринария. 2018; (1): 25–31. https://doi.org/10.30896/0042-4846.2018.21.1.25-31
39. Hanada K., Suzuki Y., Gojobori T. A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes. Mol. Biol. Evol. 2004; 21(6): 1074–80. https://doi.org/10.1093/molbev/msh109
40. Gómez-Puertas P., Rodríguez F., Oviedo J.M., Brun A., Alonso C., Escribano J.M. The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology. 1998; 243(2): 461–71. https://doi.org/10.1006/viro.1998.9068
41. Neilan J.G., Zsak L., Lu Z., Burrage T.G., Kutish G.F., Rock D.L. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology. 2004; 319(2): 337–42. https://doi.org/10.1016/j.virol.2003.11.011
42. Ruiz-Gonzalvo F., Rodriguez F., Escribano J. Functional and immunological properties of the baculovirus-expressed hemagglutinin of African swine fever virus. Virology. 1996; 218(1): 285–9. https://doi.org/10.1006/viro.1996.0193
43. Goatley L.C., Reis A.L., Portugal R., Goldswain H., Shimmon G.L., Hargreaves Z., et al. A pool of eight virally vectored African swine fever antigens protect pigs against fatal disease. Vaccines (Basel). 2020; 8(2): 234. https://doi.org/10.3390/vaccines8020234
44. Leitão A., Cartaxeiro C., Coelho R., Cruz B., Parkhouse R.M.E., Portugal F.C., et al. The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. J. Gen. Virol. 2001; 82(Pt. 3): 513–23. https://doi.org/10.1099/0022-1317-82-3-513
45. Mulumba-Mfumu L.K., Goatley L.C., Saegerman C., Takamatsu H.H., Dixon L.K. Immunization of African indigenous pigs with attenuated genotype I African swine fever virus OURT88/3 induces protection against challenge with virulent strains of genotype I. Transbound. Emerg. Dis. 2016; 63(5): e323–7. https://doi.org/10.1111/tbed.12303
46. Takamatsu H.H., Denyer M.S., Lacasta A., Stirling C.M., Argilaguet J.M., Netherton C.L., et al. Cellular immunity in ASFV responses. Virus Res. 2013; 173(1): 110–21. https://doi.org/10.1016/j.virusres.2012.11.009
47. Oura C.A.L., Denyer M.S., Takamatsu H., Parkhouse R.M.E. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J. Gen. Virol. 2005; 86(Pt. 9): 2445–50. https://doi.org/10.1099/vir.0.81038-0
48. Arias M., de la Torre A., Dixon L., Gallardo C., Jori F., Laddomada A., et al. Approaches and perspectives for development of African swine fever virus vaccines. Vaccines (Basel). 2017; 5(4): 35. https://doi.org/10.3390/vaccines5040035
49. Gallardo C., Soler A., Nieto R., Cano C., Pelayo V., Sánchez M.A., et al. Experimental infection of domestic pigs with African swine fever virus Lithuania 2014 genotype II field isolate. Transbound. Emerg. Dis. 2017; 64(1): 300–4. https://doi.org/10.1111/tbed.12346
50. Sanford B., Holinka L., O’Donnell V., Krug P., Carlson J., Alfano M., et al. Deletion of the thymidine kinase gene induces complete attenuation of the Georgia isolate of African swine fever virus. Virus Res. 2016; 213: 165–71. https://doi.org/10.1016/j.virusres.2015.12.002
51. Reis A.L., Abrams C.C., Goatley L.C., Netherton C., Chapman D.G., Sanchez-Cordon P., et al. Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response. Vaccine. 2016; 34(39): 4698–705. https://doi.org/10.1016/j.vaccine.2016.08.011
52. Borca M.V., Ramirez-Medina E., Silva E., Vuono E., Rai A., Pruitt S., et al. Development of a highly effective African Swine Fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain. J. Virol. 2020; 94(7): e02017-19. https://doi.org/10.1128/JVI.02017-19
53. O’Donnell V., Holinka L.G., Gladue D.P., Sanford B., Krug P.W., Lu X., et al. African swine fever virus Georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. J. Virol. 2015; 89(11): 6048–56. https://doi.org/10.1128/JVI.00554-15
54. Barasona J.A., Gallardo C., Cadenas-Fernández E., Jurado C., Rivera B., Rodríguez-Bertos A., et al. First oral vaccination of Eurasian wild boar against African swine fever virus genotype II. Front. Vet. Sci. 2019; 6: 137. https://doi.org/10.3389/fvets.2019.00137
55. Monteagudo P.L., Lacasta A., López E., Bosch L., Collado J., Pina- Pedrero S., et al. BA71ΔCD2: a new recombinant live attenuated African swine fever virus with cross-protective capabilities. J. Virol. 2017; 91(21): e01058-17. https://doi.org/10.1128/JVI.01058-17
56. Argilaguet J.M., Pérez-Martín E., Nofrarías M., Gallardo C., Accensi F., Lacasta A., et al. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS One. 2012; 7(9): e40942. https://doi.org/10.1371/journal.pone.0040942
57. Lokhandwala S., Petrovan V., Popescu L., Sangewar N., Elijah C., Stoian A., et al. Adenovirus-vectored African Swine Fever Virus antigen cocktails are immunogenic but not protective against intranasal challenge with Georgia 2007/1 isolate. Vet. Microbiol. 2019; 235: 10–20. https://doi.org/10.1016/j.vetmic.2019.06.006
58. Lacasta A., Ballester M., Monteagudo P.L., Rodríguez J.M., Salas M.L., Accensi F., et al. Expression library immunization can confer protection against lethal challenge with African swine fever virus. J. Virol. 2014; 88(22): 13322–32. https://doi.org/10.1128/JVI.01893-14.58
59. Nedosekov V., Martyniuk A., Stepanova T., Yustyniuk V., Gulyukina I., Parshikova A., et al. Chlamydiosis of dogs and cats in modern cities. E3S Web Conf. 2021; 258: 04004. https://doi.org/10.1051/e3sconf/202125804004
Problems of Virology. 2022; 67: 206-216
Problems of specific prevention of African swine fever
Vlasova N. N., Verkhovsky O. A., Aliper T. I., Kapustina O. V., Alekseev K. P., Yuzhakov A. G., Gulukin M. I., Gulukin A. M.
https://doi.org/10.36233/0507-4088-117Abstract
This review presents the current state of the problem of development and application of the specific prevention of African swine fever (ASF) with a brief description of its etiology and pathogenesis. The unique nature of the ASF virus (ASFV) determines some limitations and the complexity of solving the problem of vaccine development. Such situation stimulated the development of highly specific diagnostic methods for rapid and accurate detection of the ASFV. In this regard, results of studies, including our own, concerning the comparative analysis of the genome of vaccine and virulent strains of the ASFV, as well as immunodiagnostic approaches to determine causes of high virulence and low protective activity of the ASFV, are briefly presented. Special attention is given to the issue related to the development of safe and effective vaccines against ASF. In this context disadvantages and possible advantages of live attenuated (LAV) and recombinant (RV) vaccines are considered in details. Results of recent studies on the assessment of the immunogenicity of genetically modified vaccines (GMV) which developed in various laboratories around the world are presented. The obtained data indicate that ASF vaccination is currently the most promising measure to stop the spread of this disease in our country and in the world, however, previous experience with ASF vaccination has revealed some problems in its development and application. The significant contribution of foreign researchers to the study of the basics of virulence of this pathogen and the study of its genes functions are noted. The possible further expansion of ASF in Europe and Asia in bordering Russia territories, as well as the established fact of the persistence of ASFV in wild boar population indicate a constant threat of its re-introduction into our country. In conclusion, the importance of developing a safe effective vaccine against ASF and the assessing of the possible risks of creating the artificial sources of the infection in nature as a result of its use is emphasized.
References
1. Mebus C. African swine fever. Adv. Virus Res. 1988; 35: 251–69.
2. Dixon L.K., Abrams C.C., Chapman D.G., Zhang F. African swine fever virus. In: Mettenleiter T.C., Sobrino F., eds. Animal Viruses: Molecular Biology. Norfolk: Caister Academic Press; 2008: 457–521.
3. Sanchez-Vizcaino J.M., Martinez-Lopez B., Martinez-Aviles M., Martins C., Boinas F., Vial L., et al. Scientific review on African swine fever. EFSA Supporting Publications. 2009; 6(8): 5E.
4. Montgomery R.E. On a form of swine fever occurring in British East Africa (Kenya Colony). J. Comp. Pathol. 1921; 34: 159–91.
5. Dixon L.K., Costa J.V., Escribano J.M., Rock D.L., Vinuela E., Wilkinson P.J. Family Asfarviridae. In: Van Regenmortel M.H.V., Fauquet C.M., Bishop D.H.L., Carestens E.B., Estes M.K., Lemon S.M., eds. Virus Taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses. San Diego: Summers Academic Press; 2000: 159–65.
6. Colson P., De Lamballerie X., Yutin N., Asgari S., Bigot Y., Bideshi D.K., et al. “Megavirales”, a proposed new order for eukaryotic nucleocytoplasmic large DNA viruses. Arch. Virol. 2013; 158(12): 2517–21. https://doi.org/10.1007/s00705-013-1768-6
7. Gulyukin M.I. 120 let Vserossiiskomu nauchno-issledovatel'skomu institutu eksperimental'noi veterinarii imeni Ya.R. Kovalenko. Trudy Vserossiiskogo NII eksperimental'noi veterinarii im. Ya.R. Kovalenko. 2018; 80(1): 12–36. https://doi.org/10.30917/ATT-PRINT-2018-1
8. Mitin N.I., Balyshev V.M., Fedorishchev I.V., Shevchenko A.A., Petrov Yu.I. Skhema klassifikatsii virusa AChS. V kn.: Materialy nauchnoi konferentsii VNIIVViM. Tom 1. Pokrov; 1986: 69–73.
9. Vishnyakov I.F., Mitin N.I., Petrov Yu.I., Cheryatnikov L.L., Kiselev A.V., Burlakov V.A. i dr. Seroimmunologicheskaya klassifikatsiya prirodnykh izolyatov virusa afrikanskoi chumy svinei. V kn.: Aktual'nye voprosy veterinarnoi virusologii: materialy nauchno-prakticheskoi konferentsii «Klassicheskaya chuma svinei – neotlozhnye problemy nauki i praktiki». Pokrov; 1995: 141–3.
10. Burlakov V.A. Immunologicheskie svoistva virusa i problemy razrabotki sredstv spetsificheskoi profilaktiki AChS: Avtoref. diss. d-ra vet. nauk. Pokrov; 1979.
11. Balyshev V.M., Knize A.V., Tsybanov S.Zh. Geografiya AChS i serotipovaya geterogennost' vozbuditelya bolezni. V kn.: Materialy konferentsii Moskovskoi veterinarnoi akademii. M.; 1999: 92–4.
12. Manso-Ribeiro J., Nunes-Petisca J.L., Lopez-Frazao F., Sobral M. Vaccination against ASF. Bull. Off. Int. Epizoot. 1963; 60: 921–37.
13. Boinas F., Hutchings G., Dixon L., Wilkinson P. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J. General. Virol. 2004; 85(Pt. 8): 2177–87. https://doi.org/10.1099/vir.0.80058-0
14. Morgunov Yu.P., Petrov Yu.I. Izuchenie immunologicheskikh svoistv virusa AChS 5 tipa: vydelenie, identifikatsiya i tipirovanie referentnogo shtamma. Problemy biologii produktivnykh zhivotnye. 2010; (4): 104–11.
15. Balyshev V.M., Lagutkin N.A., Salina M.V., Zubairov M.M., Fedorishchev I.V., Karpov G.M. Ekspress-metod polucheniya tipospetsificheskikh referens-syvorotok pri AChS. V kn.: Materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii «Diagnostika, profilaktika i mery bor'by s osobo opasnymi i ekzoticheskimi boleznyami zhivotnykh». Pokrov; 1998: 64–5.
16. Carrascosa J.L., Carazo J.M., Carrascosa A.L., Garcia N., Santisteban A., Vinuela E., et al. General morphology and capsid fine structure of African swine fever virus particles. Virology. 1984; 132(1): 160–72.
17. Salas M.L., Andrés M.G. African swine fever virus morphogenesis. Virus Res. 2012; 173(1): 29–41. https://doi.org/10.1016/j.virusres.2012.09.016
18. Dixon L.K., Baylis S.A., Vydelingum S., Twigg S.R., Hammond J.M., Hingamp P.M., et al. African swine fever virus genome content and variability. Arch. Virol. Suppl. 1993; 7: 185–99. https://doi.org/10.1007/978-3-7091-9300-6_15
19. Dixon L.K., Chapman D.A., Netherton C.L., Upton C. African swine fever virus replication and genomics. Virus Res. 2013; 173: 3–14. https://doi.org/10.1016/j.virusres.2012.10.020
20. Yáñez R.J., Rodriguez J.M., Nogal M.L., Yuste L., Enriquez C., Rodriguez J.F., et al. Analysis of the complete nucleotide sequence of African swine fever virus. Virology. 1995; 208(1): 249–78. https://doi.org/10.1006/viro.1995.1149
21. Gonzalez A., Talavera A., Almendral J.M., Viñuela E. Hairpin loop structure of African swine fever virus DNA. Nucleic Acids Res. 1986; 14(17): 6835–44. https://doi.org/10.1093/nar/14.17.6835.
22. Vlasova N.N., Vlasova A.N. African Swine Fever Virus pathogenesis and vaccine development: challenges and possible approaches. Charter I. In: Fevers: Types, Treatments and Health Risks. New York: Nova Science Publishers, Inc.; 2013: 3–26.
23. Dixon L.K., Abrams C.C., Bowick G., Goatley L.C., Kay-Jackson P.C., Chapman D., et al. African swine fever virus proteins involved in evading host defence systems. Vet. Immunol. Immunopathol. 2004; 100(3-4): 117–34. https://doi.org/10.1016/j.vetimm.2004.04.002
24. Dixon L.K., Abrams C.C., Chapman D.G., Zhang F. African swine fever virus. In: Sobrino T.C.M.F., ed. Animal Viruses Molecular Biology. Norwich: Caister Academic Press; 2008: 457–521.
25. Gomez-Villamandos J.C., Bautista M.J., Carrasco L., Chacon-Manrique de Lara F., Hervas J., Wilkinson P.J., et al. Thrombocytopenia associated with apoptotic megakaryocytes in a viral haemorrhagic syndrome induced by a moderately virulent strain of African swine fever virus. J. Comp. Pathol. 1998; 118(1): 1–13. https://doi.org/10.1016/s0021-9975(98)80023-6
26. Goatley L.C., Twigg S.R., Miskin J.E., Monaghan P., St-Arnaud R., Smith G.L., et al. The African swine fever virus protein j4R binds to the alpha chain of nascent polypeptide-associated complex. J. Virol. 2002; 76(19): 9991–9. https://doi.org/10.1128/jvi.76.19.9991-9999.2002
27. Zsak L., Lu Z., Burrage T.G., Neilan J.G., Kutish G.F., Moore D.M., et al. African swine fever virus multigene family 360 and 530 genes are novel macrophage host range determinants. J. Virol. 2001; 75(7): 3066–76. https://doi.org/10.1128/jvi.75.7.3066-3076.2001
28. Tulman E.R., Rock D.L. Novel virulence and host range genes of African swine fever virus. Curr. Opin. Microbiol. 2001; 4(4): 456–61. https://doi.org/10.1016/s1369-5274(00)00235-6
29. Rock D.L. Challenges for African swine fever vaccine development – “…perhaps the end of the beginning.” Vet. Microbiol. 2017; 206: 52–8. https://doi.org/10.1016/j.vetmic.2016.10.003
30. Blome S., Gabriel C., Beer M. Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine. 2014; 32(31): 3879–82. https://doi.org/10.1016/j.vaccine.2014.05.051
31. Alonso C., Galindo I., Cuesta-Geijo M.A., Cabezas M., Hernaez B., Munoz-Moreno R. African swine fever virus-cell interactions: From virus entry to cell survival. Virus Res. 2013; 173(1): 42–57. https://doi.org/10.1016/j.virusres.2012.12.006
32. Borca M.V., Irusta P., Carrillo C., Afonso C.L., Burrage T., Rock D.L. African swine fever virus structural protein p72 contains a conformational neutralizing epitope. Virology. 1994; 201(2): 413– 8. https://doi.org/10.1006/viro.1994.1311
33. Onisk D., Borca M., Kutish S., Kramer E., Irusta P., Rock D.L. Passively transferred African swine fever virus antibodies protect swine against lethal infection. Virology. 1994; 198(1): 350–4. https://doi.org/10.1006/viro.1994.1040
34. Escribano J.M., Galindo I., Alonso C. Antibody-mediated neutralization of African swine fever virus: Myths and facts. Virus Res. 2013; 173(1): 101–9. https://doi.org/10.1016/j.virusres.2012.10.012
35. Ruiz-Gonzalvo F., Carnero M.E., Caballero C., Martínez J. Inhibition of African swine fever infection in the presence of immune sera in vivo and in vitro. Am. J. Vet. Res. 1986; 47(6): 1249–52.
36. Halstead S.B., Chow J., Marchette N.J. Immunologic enhancement of Dengue virus replication. Nat. New Biol. 1973; 243(122): 24–6.
37. Tirado S.M., Yoon K.J. Antibody-dependent enhancement of virus infection and disease. Viral Immunol. 2003; 16(1): 69–86. https://doi.org/10.1089/088282403763635465
38. Pershin A.S., Remyga S.G., Shevchenko I.V., Zhukov I.Yu., Shevtsov A.A., Erofeev S.G. i dr. Vliyanie passivnoi immunizatsii na klinicheskie i patologoanatomicheskie izmeneniya u svinei, zarazhennykh izolyatom Martins-Krym 01/16 virusa AChS. Veterinariya. 2018; (1): 25–31. https://doi.org/10.30896/0042-4846.2018.21.1.25-31
39. Hanada K., Suzuki Y., Gojobori T. A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes. Mol. Biol. Evol. 2004; 21(6): 1074–80. https://doi.org/10.1093/molbev/msh109
40. Gómez-Puertas P., Rodríguez F., Oviedo J.M., Brun A., Alonso C., Escribano J.M. The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology. 1998; 243(2): 461–71. https://doi.org/10.1006/viro.1998.9068
41. Neilan J.G., Zsak L., Lu Z., Burrage T.G., Kutish G.F., Rock D.L. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology. 2004; 319(2): 337–42. https://doi.org/10.1016/j.virol.2003.11.011
42. Ruiz-Gonzalvo F., Rodriguez F., Escribano J. Functional and immunological properties of the baculovirus-expressed hemagglutinin of African swine fever virus. Virology. 1996; 218(1): 285–9. https://doi.org/10.1006/viro.1996.0193
43. Goatley L.C., Reis A.L., Portugal R., Goldswain H., Shimmon G.L., Hargreaves Z., et al. A pool of eight virally vectored African swine fever antigens protect pigs against fatal disease. Vaccines (Basel). 2020; 8(2): 234. https://doi.org/10.3390/vaccines8020234
44. Leitão A., Cartaxeiro C., Coelho R., Cruz B., Parkhouse R.M.E., Portugal F.C., et al. The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. J. Gen. Virol. 2001; 82(Pt. 3): 513–23. https://doi.org/10.1099/0022-1317-82-3-513
45. Mulumba-Mfumu L.K., Goatley L.C., Saegerman C., Takamatsu H.H., Dixon L.K. Immunization of African indigenous pigs with attenuated genotype I African swine fever virus OURT88/3 induces protection against challenge with virulent strains of genotype I. Transbound. Emerg. Dis. 2016; 63(5): e323–7. https://doi.org/10.1111/tbed.12303
46. Takamatsu H.H., Denyer M.S., Lacasta A., Stirling C.M., Argilaguet J.M., Netherton C.L., et al. Cellular immunity in ASFV responses. Virus Res. 2013; 173(1): 110–21. https://doi.org/10.1016/j.virusres.2012.11.009
47. Oura C.A.L., Denyer M.S., Takamatsu H., Parkhouse R.M.E. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J. Gen. Virol. 2005; 86(Pt. 9): 2445–50. https://doi.org/10.1099/vir.0.81038-0
48. Arias M., de la Torre A., Dixon L., Gallardo C., Jori F., Laddomada A., et al. Approaches and perspectives for development of African swine fever virus vaccines. Vaccines (Basel). 2017; 5(4): 35. https://doi.org/10.3390/vaccines5040035
49. Gallardo C., Soler A., Nieto R., Cano C., Pelayo V., Sánchez M.A., et al. Experimental infection of domestic pigs with African swine fever virus Lithuania 2014 genotype II field isolate. Transbound. Emerg. Dis. 2017; 64(1): 300–4. https://doi.org/10.1111/tbed.12346
50. Sanford B., Holinka L., O’Donnell V., Krug P., Carlson J., Alfano M., et al. Deletion of the thymidine kinase gene induces complete attenuation of the Georgia isolate of African swine fever virus. Virus Res. 2016; 213: 165–71. https://doi.org/10.1016/j.virusres.2015.12.002
51. Reis A.L., Abrams C.C., Goatley L.C., Netherton C., Chapman D.G., Sanchez-Cordon P., et al. Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response. Vaccine. 2016; 34(39): 4698–705. https://doi.org/10.1016/j.vaccine.2016.08.011
52. Borca M.V., Ramirez-Medina E., Silva E., Vuono E., Rai A., Pruitt S., et al. Development of a highly effective African Swine Fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain. J. Virol. 2020; 94(7): e02017-19. https://doi.org/10.1128/JVI.02017-19
53. O’Donnell V., Holinka L.G., Gladue D.P., Sanford B., Krug P.W., Lu X., et al. African swine fever virus Georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. J. Virol. 2015; 89(11): 6048–56. https://doi.org/10.1128/JVI.00554-15
54. Barasona J.A., Gallardo C., Cadenas-Fernández E., Jurado C., Rivera B., Rodríguez-Bertos A., et al. First oral vaccination of Eurasian wild boar against African swine fever virus genotype II. Front. Vet. Sci. 2019; 6: 137. https://doi.org/10.3389/fvets.2019.00137
55. Monteagudo P.L., Lacasta A., López E., Bosch L., Collado J., Pina- Pedrero S., et al. BA71ΔCD2: a new recombinant live attenuated African swine fever virus with cross-protective capabilities. J. Virol. 2017; 91(21): e01058-17. https://doi.org/10.1128/JVI.01058-17
56. Argilaguet J.M., Pérez-Martín E., Nofrarías M., Gallardo C., Accensi F., Lacasta A., et al. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS One. 2012; 7(9): e40942. https://doi.org/10.1371/journal.pone.0040942
57. Lokhandwala S., Petrovan V., Popescu L., Sangewar N., Elijah C., Stoian A., et al. Adenovirus-vectored African Swine Fever Virus antigen cocktails are immunogenic but not protective against intranasal challenge with Georgia 2007/1 isolate. Vet. Microbiol. 2019; 235: 10–20. https://doi.org/10.1016/j.vetmic.2019.06.006
58. Lacasta A., Ballester M., Monteagudo P.L., Rodríguez J.M., Salas M.L., Accensi F., et al. Expression library immunization can confer protection against lethal challenge with African swine fever virus. J. Virol. 2014; 88(22): 13322–32. https://doi.org/10.1128/JVI.01893-14.58
59. Nedosekov V., Martyniuk A., Stepanova T., Yustyniuk V., Gulyukina I., Parshikova A., et al. Chlamydiosis of dogs and cats in modern cities. E3S Web Conf. 2021; 258: 04004. https://doi.org/10.1051/e3sconf/202125804004
События
-
Журнал «Літасфера» присоединился к Elpub! >>>
22 июл 2025 | 11:00 -
К платформе Elpub присоединился журнал «Труды НИИСИ» >>>
21 июл 2025 | 10:43 -
Журнал «Успехи наук о животных» присоединился к Elpub! >>>
18 июл 2025 | 12:37 -
Журнал «Наука. Инновации. Технологии» принят в DOAJ >>>
17 июл 2025 | 12:17 -
К платформе Elpub присоединился журнал « Библиотечный мир» >>>
15 июл 2025 | 12:17