Вопросы вирусологии. 2022; 67: 185-192
Энтеровирусные (Picornaviridae: Enterovirus) (неполио) вакцины
Новиков Д. В., Мелентьев Д. А.
https://doi.org/10.36233/0507-4088-111Аннотация
Неполиомиелитные энтеровирусы (НПЭВ) распространены повсеместно и являются одними из основных возбудителей заболеваний вирусной этиологии у детей. Наиболее часто НПЭВ инфицируют новорождённых и детей младшего возраста, что связано с отсутствием у них антител. У детей клинические проявления могут варьировать от острых лихорадочных заболеваний до тяжёлых осложнений, требующих госпитализации и приводящих в ряде случаев к инвалидности или летальному исходу. Заражение НПЭВ способно приводить к тяжелым последствиям, таким как полиомиелитоподобные заболевания, серозный менингит, менингоэнцефалит, миокардит и др. Наиболее перспективной стратегией профилактики таких заболеваний является вакцинация. На территории России обнаружена циркуляция не менее 53 типов НПЭВ. Однако эпидемическое значение имеют возбудители экзантемных форм заболевания, асептического менингита и миокардита. При этом частота обнаружения НПЭВ в субъектах Российской Федерации характеризуется неравномерностью распределения и сезонными подъёмами. В обзоре обсуждается эпидемическая значимость разных типов энтеровирусов, в том числе актуальных для Российской Федерации, а также современные технологии, применяемые при создании энтеровирусных вакцин для профилактики тяжёлых заболеваний.
Список литературы
1. International committee on taxonomy of viruses (ICTV). Genus: Enterovirus. Available at: https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/picornaviridae/681/genus-enterovirus
2. Oberste M.S., Maher K., Kilpatrick D.R., Pallansch M.A. Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J. Virol. 1999; 73(3): 1941–8. https://doi.org/10.1128/JVI.73.3.1941-1948.1999
3. Simmonds P., Gorbalenya A.E., Harvala H., Hovi T., Knowles N.J., Lindberg A.M., et al. Recommendations for the nomenclature of enteroviruses and rhinoviruses. Arch. Virol. 2020; 165(3): 793–7. https://doi.org/10.1007/s00705-019-04520-6
4. Brouwer L., Moreni G., Wolthers K.C., Pajkrt D. World-wide prevalence and genotype distribution of enteroviruses. Viruses. 2021; 13(3): 434. https://doi.org/10.3390/v13030434
5. Wells A.I., Coyne C.B. Enteroviruses: A gut-wrenching game of entry, detection, and evasion. Viruses. 2019; 11(5): 460. https://doi.org/10.3390/v11050460
6. Harvala H., Benschop K.S.M., Berginc N., Midgley S., Wolthers K., Simmonds P., et al. European non-polio enterovirus network: introduction of hospital-based surveillance network to understand the true disease burden of non-polio enterovirus and parechovirus infections in Europe. Microorganisms. 2021; 9(9): 1827. https://doi.org/10.3390/microorganisms9091827
7. Государственный доклад «О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2019 году». М.; 2020.
8. Государственный доклад «О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2020 году». М.; 2021.
9. Cheng H.Y., Huang Y.C., Yen T.Y., Hsia S.H., Hsieh Y.C., Li C.C., et al. The correlation between the presence of viremia and clinical severity in patients with enterovirus 71 infection: a multi-center cohort study. BMC Infect. Dis. 2014; 14: 417. https://doi.org/10.1186/1471-2334-14-417
10. Koh W.M., Badaruddin H., La H., Chen M.I.C., Cook A.R. Severity and burden of hand, foot and mouth disease in Asia: a modeling study. BMJ Glob. Health. 2018; 3(1): e000442. https://doi.org/10.1136/bmjgh-2017-000442
11. Aw-Yong K.L., NikNadia N.M.N., Tan C.W., Sam I.C., Chan Y.F. Immune responses against enterovirus A71 infection: Implications for vaccine success. Rev. Med. Virol. 2019; 29(5): e2073. https://doi.org/10.1002/rmv.2073
12. Ni H., Yi B., Yin J., He T., Du Y., Wang J., et al. Epidemiological and etiological characteristics of hand, foot and mouth disease in Ningbo, China, 2008-2011. J. Clin. Virol. 2012; 54(4): 342–8. https://doi.org/10.1016/j.jcv.2012.04.021
13. Yee P.T.I., Poh L.C. Impact of genetic changes, pathogenicity and antigenicity on Enterovirus-A71 vaccine development. Virology. 2017; 506: 121–9. https://doi.org/10.1016/j.virol.2017.03.017
14. Mao Q., Wang Y., Yao X., Bian L., Wu X., Xu M., et al. Coxsackievirus A16: epidemiology, diagnosis, and vaccine. Hum. Vaccin. Immunother. 2014; 10(2): 360–7. https://doi.org/10.4161/hv.27087
15. Li J.L., Yuan J., Yang F., Wu Z.Q., Hu Y.F., Xue Y., et al. Epidemic characteristics of hand, foot, and mouth disease in southern China, 2013: coxsackievirus A6 has emerged as the predominant causative agent. J. Infect. 2014; 69(3): 299–303. https://doi.org/10.1016/j.jinf.2014.04.001
16. Yang Q., Ding J., Cao J., Huang Q., Hong C., Yang B. Epidemiological and etiological characteristics of hand, foot, and mouth disease in Wuhan, China from 2012 to 2013: outbreaks of coxsackieviruses A10. J. Med. Virol. 2015; 87(6): 954–60. https://doi.org/10.1002/jmv.24151
17. Kim H.J., Kang B., Hwang S., Hong J., Kim K., Cheon D.S. Epidemics of viral meningitis caused by echovirus 6 and 30 in Korea in 2008. Virol. J. 2012; 9: 38. https://doi.org/10.1186/1743-422X-9-38
18. Chen P., Tao Z., Song Y., Liu G., Wang H., Liu Y., et al. A coxsackievirus B5-associated aseptic meningitis outbreak in Shandong Province, China in 2009. J. Med. Virol. 2013; 85(3): 483–9. https://doi.org/10.1002/jmv.23478
19. Kim D.S., Nam J.H. Characterization of attenuated coxsackievirus B3 strains and prospects of their application as live-attenuated vaccines. Expert. Opin. Biol. Ther. 2010; 10(2): 179–90. https://doi.org/10.1517/14712590903379502
20. Sousa I.P. Jr., Burlandy F.M., Ferreira J.L., Alves J.C.S., Sousa-Júnior E.C., Tavares F.N., da Silva E.E. Re-emergence of a coxsackievirus A24 variant causing acute hemorrhagic conjunctivitis in Brazil from 2017 to 2018. Arch. Virol. 2019; 164(4): 1181–5. https://doi.org/10.1007/s00705-019-04157-5
21. Holm-Hansen C.C., Midgley S.E., Fischer T.K. Global emergence of enterovirus D68: a systematic review. Lancet Infect. Dis. 2016; 16(5): e64–75. https://doi.org/10.1016/S1473-3099(15)00543-5
22. Golitsyna L.N., Zverev V.V., Fomina S.G., Sozonov D.V., Novikova N.A. Enterovirus infection in the Russian Federation in 2008-2018. Infektsiya i immunitet. 2018; 8(4): 558. https://doi.org/10.15789/2220-7619-2018-4-3.16
23. Сапега Е.Ю., Бутакова Л.В., Троценко О.Е., Зайцева Т.А., Гарбуз Ю.А., Балахонов С.В. и др. Роль молекулярно-генетических методов исследования в выявлении потенциальных рисков завоза энтеровирусной инфекции на территорию Хабаровского края. Здоровье населения и среда обитания. 2018; (2): 44–51. https://doi.org/10.35627/2219-5238/2018-299-2-44-51
24. Yuan J., Shen L., Wu J., Zou X., Gu J., Chen J., et al. Enterovirus A71 proteins: structure and function. Front. Microbiol. 2018; 9: 286. https://doi.org/10.3389/fmicb.2018.00286
25. Huang K.A. Structural basis for neutralization of enterovirus. Curr. Opin. Virol. 2021; 51: 199–206. https://doi.org/10.1016/j.coviro.2021.10.006
26. Yang C., Deng C., Wan J., Zhu L., Leng Q. Neutralizing antibody response in the patients with hand, foot and mouth disease to enterovirus 71 and its clinical implications. Virol. J. 2011; 8(1): 306. https://doi.org/10.1186/1743-422X-8-306
27. Luo S.T., Chiang P.S., Chao A.S., Liou G.Y., Lin R., Lin T.Y., et al. Enterovirus 71 maternal antibodies in infants, Taiwan. Emerg. Infect. Dis. 2009; 15(4): 581–4. https://doi.org/10.3201/eid1504.081550
28. Zhu R., Cheng T., Yin Z., Liu D., Xu L., Li Y., et al. Serological survey of neutralizing antibodies to eight major enteroviruses among healthy population. Emerg. Microbes Infect. 2018; 7(1): 2. https://doi.org/10.1038/s41426-017-0003-z
29. Zhu F., Xu W., Xia J., Liang Z., Liu Y., Zhang X., et al. Efficacy, safety, and immunogenicity of an enterovirus 71 vaccine in China. N. Engl. J. Med. 2014; 370(9): 818–28. https://doi.org/10.1056/NEJMoa1304923
30. Lei D., Griffiths E., Martin J. WHO working group meeting to develop WHO Recommendations to assure the quality, safety and efficacy of enterovirus 71 vaccines. Vaccine. 2020; 38(32): 4917–23. https://doi.org/10.1016/j.vaccine.2020.05.001
31. Huang L.M., Chiu C.H., Chiu N.C., Lin C.Y., Li M.T., Kuo T.Y., et al. Immunogenicity, safety, cross-reaction, and immune persistence of an inactivated enterovirus A71 vaccine in children aged from two months to 11 years in Taiwan. Vaccine. 2019; 37(13): 1827–35. https://doi.org/10.1016/j.vaccine.2019.02.023
32. Cai Y., Ku Z., Liu Q., Leng Q., Huang Z. A combination vaccine comprising of inactivated enterovirus 71 and coxsackievirus A16 elicits balanced protective immunity against both viruses. Vaccine. 2014; 32(21): 2406–12. https://doi.org/10.1016/j.vaccine.2014.03.012
33. Yang T., Xie T., Li H., Song X., Yue L., Wang X., et al. Immune responses of a CV-A16 live attenuated candidate strain and its protective effects in rhesus monkeys. Emerg. Microbes Infect. 2020; 9(1): 2136–46. https://doi.org/10.1080/22221751.2020.1823889
34. Yeh M.T., Wang S., Yu C.K., Lin K.H., Lei H.Y., Su I.J., et al. A single nucleotide in stem loop II of 5’-untranslated region contributes to virulence of enterovirus 71 in mice. PLoS One. 2011; 6(11): e27082. https://doi.org/10.1371/journal.pone.0027082
35. Meng T., Kwang J. Attenuation of human enterovirus 71 high-replication-fidelity variants in AG129 mice. J. Virol. 2014; 88(10): 5803–15. https://doi.org/10.1128/JVI.00289-14
36. Tsa Y.H., Huang S.W., Hsieh W.S., Cheng C.K., Chang C.F., Wang Y.F., et al. Enterovirus A71 containing codon deoptimized VP1 and high-fidelity polymerase as next-generation vaccine candidate. J. Virol. 2019; 93(13): e02308-18. https://doi.org/10.1128/JVI.02308-1
37. Yee P.T.I., Tan S.H., Ong K.C., Tan K.O., Wong K.T., Hassan S.S., et al. Development of live attenuated Enterovirus 71 vaccine strains that confer protection against lethal challenge in mice. Sci. Rep. 2019; 9(1): 4805. https://doi.org/10.1038/s41598-019-41285-z
38. Lasrado N., Gangaplara A., Massilamany C., Arumugam R., Shelbourn A., Rasquinha M.T., et al. Attenuated strain of CVB3 with a mutation in the CAR interacting region protects against both myocarditis and pancreatitis. Sci. Rep. 2021; 11(1): 12432. https://doi.org/10.1038/s41598-021-90434-w
39. Muslin C., Kain A.M., Bessaud M., Blondel B., Delpeyroux F. Recombination in enteroviruses, a multi-step modular evolutionary process. Viruses. 2019; 11(9): 859. https://doi.org/10.3390/v11090859
40. Anasir M.I., Poh C.L. Advances in antigenic peptide-based vaccine and neutralizing antibodies against viruses causing hand, foot, and mouth disease. Int. J. Mol. Sci. 2019; 20(6): 1256. https://doi.org/:10.3390/ijms20061256
41. Tian X., Su X., Li X., Li H., Li T., Zhou Z., et al. Protection against enterovirus 71 with neutralizing epitope incorporation within adenovirus type 3 hexon. PLoS One. 2012; 7(7): e41381. https://doi.org/10.1371/journal.pone.0041381
42. Dai W., Xiong P., Zhang X., Liu Z., Chen J., Zhou Y., et al. Recombinant virus-like particle presenting a newly identified coxsackievirus A10 neutralization epitope induces protective immunity in mice. Antiviral Res. 2019; 164: 139–46. https://doi.org/10.1016/j.antiviral.2019.02.016
43. Jiang L., Fan R., Sun S., Fan P., Su W., Zhou Y., et al. A new EV71 VP3 epitope in norovirus P particle vector displays neutralizing activity and protection in vivo in mice. Vaccine. 2015; 33(48): 6596–603. https://doi.org/10.1016/j.vaccine.2015.10.104
44. Новиков Д.В., Мелентьев Д.А., Мохонов В.В., Кашников А.Ю., Новикова Н.А., Лапин В.А. и др. Получение вирусоподобных частиц норовируса (Caliciviridae; Norovirus), содержащих белок VP1 энтеровируса Echovirus 30 (Picornaviridae; Enterovirus). Вопросы вирусологии. 2021; 66(5): 383–9. https://doi.org/10.36233/0507-4088-79
45. Chung C.Y., Chen C.Y., Lin S.Y., Chung Y.C., Chiu H.Y., Chi W.K., et al. Enterovirus 71 virus-like particle vaccine: improved production conditions for enhanced yield. Vaccine. 2010; 28(43): 6951–7. https://doi.org/10.1016/j.vaccine.2010.08.052
46. Li H.Y., Han J.F., Qin C.F., Chen R. Virus-like particles for enterovirus 71 produced from Saccharomyces cerevisiae potently elicits protective immune responses in mice. Vaccine. 2013; 31(32): 3281–7. https://doi.org/10.1016/j.vaccine.2013.05.019
47. Zhang W., Dai W., Zhang C., Zhou Y., Xiong P., Wang S., et al. A virus-like particle-based tetravalent vaccine for hand, foot, and mouth disease elicits broad and balanced protective immunity. Emerg. Microbes Infect. 2018; 7(1): 94. https://doi.org/10.1038/s41426-018-0094-1
48. Kim H.J., Son H., Lee S.W., Yoon Y., Hyeon J-Y., Chung G.T., et al. Efficient expression of enterovirus 71 based on virus-like particles vaccine. PLoS One. 2019; 14(3): e0210477. https://doi.org/10.1371/journal.pone.0210477
49. Hankaniemi M.M., Baikoghli M.A., Stone V.M., Xing L., Vaatainen O., Soppela S., et al. Structural insight into CVB3-VLP non-adjuvanted vaccine. Microorganisms. 2020; 8(9): 1287. https://doi.org/10.3390/microorganisms8091287
50. Zhang C., Ku Z., Liu Q., Wang X., Chen T., Ye X., et al. Highyield production of recombinant virus-like particles of enterovirus 71 in Pichia pastoris and their protective efficacy against oral viral challenge in mice. Vaccine. 2015; 33(20): 2335–41. https://doi.org/10.1016/j.vaccine.2015.03.034
51. Yang Z., Gao F., Wang X., Shi L., Zhou Z., Jiang Y., et al. Development and characterization of an enterovirus 71 (EV71) virus-like particles (VLPs) vaccine produced in Pichia pastoris. Hum. Vaccin. Immunother. 2020; 16(7): 1602–10. https://doi.org/10.1080/216455 15.2019.1649554
52. Wang Z., Zhou C., Gao F., Zhu Q., Jiang Y., Ma X., et al. Preclinical evaluation of recombinant HFMD vaccine based on enterovirus 71 (EV71) virus-like particles (VLP): Immunogenicity, efficacy and toxicology. Vaccine. 2021; 39(31): 4296–305. https://doi.org/10.1016/j.vaccine.2021.06.031
53. Zhang C., Zhang X., Zhang W., Dai W., Xie J., Ye L., et al. Enterovirus D68 virus-like particles expressed in Pichia pastoris potently induce neutralizing antibody responses and confer protection against lethal viral infection in mice. Emerg. Microbes Infect. 2018; 7(1): 3. https://doi.org/10.1038/s41426-017-0005-x
54. Sherry L., Grehan K., Snowden J.S., Knight M.L., Adeyemi O.O., Rowlands D.J., et al. Comparative molecular biology approaches for the production of poliovirus virus-like particles using Pichia pastoris. mSphere. 2020; 5(2): e00838-19. https://doi.org/10.1128/mSphere.00838-19
Problems of Virology. 2022; 67: 185-192
Enteroviral (Picornaviridae: Enterovirus) (nonpolio) vaccines
https://doi.org/10.36233/0507-4088-111Abstract
Non-polio enteroviruses (NPEVs) are ubiquitous and are one of the main causative agents of viral infections in children. NPEVs most commonly infect newborns and young children, due to their lack of antibodies. In children, clinical manifestations can range from acute febrile illness to severe complications that require hospitalization and lead in some cases to disability or death. NPEV infections can have severe consequences, such as polio-like diseases, serous meningitis, meningoencephalitis, myocarditis, etc. The most promising strategy for preventing such diseases is vaccination. No less than 53 types of NPEVs have been found to circulate in Russia. However, of epidemic importance are the causative agents of exanthemic forms of the disease, aseptic meningitis and myocarditis. At the same time, the frequency of NPEV detection in the constituent entities of the Russian Federation is characterized by uneven distribution and seasonal upsurges. The review discusses the epidemic significance of different types of enteroviruses, including those relevant to the Russian Federation, as well as current technologies used to create enterovirus vaccines for the prevention of serious diseases.
References
1. International committee on taxonomy of viruses (ICTV). Genus: Enterovirus. Available at: https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/picornaviridae/681/genus-enterovirus
2. Oberste M.S., Maher K., Kilpatrick D.R., Pallansch M.A. Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J. Virol. 1999; 73(3): 1941–8. https://doi.org/10.1128/JVI.73.3.1941-1948.1999
3. Simmonds P., Gorbalenya A.E., Harvala H., Hovi T., Knowles N.J., Lindberg A.M., et al. Recommendations for the nomenclature of enteroviruses and rhinoviruses. Arch. Virol. 2020; 165(3): 793–7. https://doi.org/10.1007/s00705-019-04520-6
4. Brouwer L., Moreni G., Wolthers K.C., Pajkrt D. World-wide prevalence and genotype distribution of enteroviruses. Viruses. 2021; 13(3): 434. https://doi.org/10.3390/v13030434
5. Wells A.I., Coyne C.B. Enteroviruses: A gut-wrenching game of entry, detection, and evasion. Viruses. 2019; 11(5): 460. https://doi.org/10.3390/v11050460
6. Harvala H., Benschop K.S.M., Berginc N., Midgley S., Wolthers K., Simmonds P., et al. European non-polio enterovirus network: introduction of hospital-based surveillance network to understand the true disease burden of non-polio enterovirus and parechovirus infections in Europe. Microorganisms. 2021; 9(9): 1827. https://doi.org/10.3390/microorganisms9091827
7. Gosudarstvennyi doklad «O sostoyanii sanitarno-epidemiologicheskogo blagopoluchiya naseleniya v Rossiiskoi Federatsii v 2019 godu». M.; 2020.
8. Gosudarstvennyi doklad «O sostoyanii sanitarno-epidemiologicheskogo blagopoluchiya naseleniya v Rossiiskoi Federatsii v 2020 godu». M.; 2021.
9. Cheng H.Y., Huang Y.C., Yen T.Y., Hsia S.H., Hsieh Y.C., Li C.C., et al. The correlation between the presence of viremia and clinical severity in patients with enterovirus 71 infection: a multi-center cohort study. BMC Infect. Dis. 2014; 14: 417. https://doi.org/10.1186/1471-2334-14-417
10. Koh W.M., Badaruddin H., La H., Chen M.I.C., Cook A.R. Severity and burden of hand, foot and mouth disease in Asia: a modeling study. BMJ Glob. Health. 2018; 3(1): e000442. https://doi.org/10.1136/bmjgh-2017-000442
11. Aw-Yong K.L., NikNadia N.M.N., Tan C.W., Sam I.C., Chan Y.F. Immune responses against enterovirus A71 infection: Implications for vaccine success. Rev. Med. Virol. 2019; 29(5): e2073. https://doi.org/10.1002/rmv.2073
12. Ni H., Yi B., Yin J., He T., Du Y., Wang J., et al. Epidemiological and etiological characteristics of hand, foot and mouth disease in Ningbo, China, 2008-2011. J. Clin. Virol. 2012; 54(4): 342–8. https://doi.org/10.1016/j.jcv.2012.04.021
13. Yee P.T.I., Poh L.C. Impact of genetic changes, pathogenicity and antigenicity on Enterovirus-A71 vaccine development. Virology. 2017; 506: 121–9. https://doi.org/10.1016/j.virol.2017.03.017
14. Mao Q., Wang Y., Yao X., Bian L., Wu X., Xu M., et al. Coxsackievirus A16: epidemiology, diagnosis, and vaccine. Hum. Vaccin. Immunother. 2014; 10(2): 360–7. https://doi.org/10.4161/hv.27087
15. Li J.L., Yuan J., Yang F., Wu Z.Q., Hu Y.F., Xue Y., et al. Epidemic characteristics of hand, foot, and mouth disease in southern China, 2013: coxsackievirus A6 has emerged as the predominant causative agent. J. Infect. 2014; 69(3): 299–303. https://doi.org/10.1016/j.jinf.2014.04.001
16. Yang Q., Ding J., Cao J., Huang Q., Hong C., Yang B. Epidemiological and etiological characteristics of hand, foot, and mouth disease in Wuhan, China from 2012 to 2013: outbreaks of coxsackieviruses A10. J. Med. Virol. 2015; 87(6): 954–60. https://doi.org/10.1002/jmv.24151
17. Kim H.J., Kang B., Hwang S., Hong J., Kim K., Cheon D.S. Epidemics of viral meningitis caused by echovirus 6 and 30 in Korea in 2008. Virol. J. 2012; 9: 38. https://doi.org/10.1186/1743-422X-9-38
18. Chen P., Tao Z., Song Y., Liu G., Wang H., Liu Y., et al. A coxsackievirus B5-associated aseptic meningitis outbreak in Shandong Province, China in 2009. J. Med. Virol. 2013; 85(3): 483–9. https://doi.org/10.1002/jmv.23478
19. Kim D.S., Nam J.H. Characterization of attenuated coxsackievirus B3 strains and prospects of their application as live-attenuated vaccines. Expert. Opin. Biol. Ther. 2010; 10(2): 179–90. https://doi.org/10.1517/14712590903379502
20. Sousa I.P. Jr., Burlandy F.M., Ferreira J.L., Alves J.C.S., Sousa-Júnior E.C., Tavares F.N., da Silva E.E. Re-emergence of a coxsackievirus A24 variant causing acute hemorrhagic conjunctivitis in Brazil from 2017 to 2018. Arch. Virol. 2019; 164(4): 1181–5. https://doi.org/10.1007/s00705-019-04157-5
21. Holm-Hansen C.C., Midgley S.E., Fischer T.K. Global emergence of enterovirus D68: a systematic review. Lancet Infect. Dis. 2016; 16(5): e64–75. https://doi.org/10.1016/S1473-3099(15)00543-5
22. Golitsyna L.N., Zverev V.V., Fomina S.G., Sozonov D.V., Novikova N.A. Enterovirus infection in the Russian Federation in 2008-2018. Infektsiya i immunitet. 2018; 8(4): 558. https://doi.org/10.15789/2220-7619-2018-4-3.16
23. Sapega E.Yu., Butakova L.V., Trotsenko O.E., Zaitseva T.A., Garbuz Yu.A., Balakhonov S.V. i dr. Rol' molekulyarno-geneticheskikh metodov issledovaniya v vyyavlenii potentsial'nykh riskov zavoza enterovirusnoi infektsii na territoriyu Khabarovskogo kraya. Zdorov'e naseleniya i sreda obitaniya. 2018; (2): 44–51. https://doi.org/10.35627/2219-5238/2018-299-2-44-51
24. Yuan J., Shen L., Wu J., Zou X., Gu J., Chen J., et al. Enterovirus A71 proteins: structure and function. Front. Microbiol. 2018; 9: 286. https://doi.org/10.3389/fmicb.2018.00286
25. Huang K.A. Structural basis for neutralization of enterovirus. Curr. Opin. Virol. 2021; 51: 199–206. https://doi.org/10.1016/j.coviro.2021.10.006
26. Yang C., Deng C., Wan J., Zhu L., Leng Q. Neutralizing antibody response in the patients with hand, foot and mouth disease to enterovirus 71 and its clinical implications. Virol. J. 2011; 8(1): 306. https://doi.org/10.1186/1743-422X-8-306
27. Luo S.T., Chiang P.S., Chao A.S., Liou G.Y., Lin R., Lin T.Y., et al. Enterovirus 71 maternal antibodies in infants, Taiwan. Emerg. Infect. Dis. 2009; 15(4): 581–4. https://doi.org/10.3201/eid1504.081550
28. Zhu R., Cheng T., Yin Z., Liu D., Xu L., Li Y., et al. Serological survey of neutralizing antibodies to eight major enteroviruses among healthy population. Emerg. Microbes Infect. 2018; 7(1): 2. https://doi.org/10.1038/s41426-017-0003-z
29. Zhu F., Xu W., Xia J., Liang Z., Liu Y., Zhang X., et al. Efficacy, safety, and immunogenicity of an enterovirus 71 vaccine in China. N. Engl. J. Med. 2014; 370(9): 818–28. https://doi.org/10.1056/NEJMoa1304923
30. Lei D., Griffiths E., Martin J. WHO working group meeting to develop WHO Recommendations to assure the quality, safety and efficacy of enterovirus 71 vaccines. Vaccine. 2020; 38(32): 4917–23. https://doi.org/10.1016/j.vaccine.2020.05.001
31. Huang L.M., Chiu C.H., Chiu N.C., Lin C.Y., Li M.T., Kuo T.Y., et al. Immunogenicity, safety, cross-reaction, and immune persistence of an inactivated enterovirus A71 vaccine in children aged from two months to 11 years in Taiwan. Vaccine. 2019; 37(13): 1827–35. https://doi.org/10.1016/j.vaccine.2019.02.023
32. Cai Y., Ku Z., Liu Q., Leng Q., Huang Z. A combination vaccine comprising of inactivated enterovirus 71 and coxsackievirus A16 elicits balanced protective immunity against both viruses. Vaccine. 2014; 32(21): 2406–12. https://doi.org/10.1016/j.vaccine.2014.03.012
33. Yang T., Xie T., Li H., Song X., Yue L., Wang X., et al. Immune responses of a CV-A16 live attenuated candidate strain and its protective effects in rhesus monkeys. Emerg. Microbes Infect. 2020; 9(1): 2136–46. https://doi.org/10.1080/22221751.2020.1823889
34. Yeh M.T., Wang S., Yu C.K., Lin K.H., Lei H.Y., Su I.J., et al. A single nucleotide in stem loop II of 5’-untranslated region contributes to virulence of enterovirus 71 in mice. PLoS One. 2011; 6(11): e27082. https://doi.org/10.1371/journal.pone.0027082
35. Meng T., Kwang J. Attenuation of human enterovirus 71 high-replication-fidelity variants in AG129 mice. J. Virol. 2014; 88(10): 5803–15. https://doi.org/10.1128/JVI.00289-14
36. Tsa Y.H., Huang S.W., Hsieh W.S., Cheng C.K., Chang C.F., Wang Y.F., et al. Enterovirus A71 containing codon deoptimized VP1 and high-fidelity polymerase as next-generation vaccine candidate. J. Virol. 2019; 93(13): e02308-18. https://doi.org/10.1128/JVI.02308-1
37. Yee P.T.I., Tan S.H., Ong K.C., Tan K.O., Wong K.T., Hassan S.S., et al. Development of live attenuated Enterovirus 71 vaccine strains that confer protection against lethal challenge in mice. Sci. Rep. 2019; 9(1): 4805. https://doi.org/10.1038/s41598-019-41285-z
38. Lasrado N., Gangaplara A., Massilamany C., Arumugam R., Shelbourn A., Rasquinha M.T., et al. Attenuated strain of CVB3 with a mutation in the CAR interacting region protects against both myocarditis and pancreatitis. Sci. Rep. 2021; 11(1): 12432. https://doi.org/10.1038/s41598-021-90434-w
39. Muslin C., Kain A.M., Bessaud M., Blondel B., Delpeyroux F. Recombination in enteroviruses, a multi-step modular evolutionary process. Viruses. 2019; 11(9): 859. https://doi.org/10.3390/v11090859
40. Anasir M.I., Poh C.L. Advances in antigenic peptide-based vaccine and neutralizing antibodies against viruses causing hand, foot, and mouth disease. Int. J. Mol. Sci. 2019; 20(6): 1256. https://doi.org/:10.3390/ijms20061256
41. Tian X., Su X., Li X., Li H., Li T., Zhou Z., et al. Protection against enterovirus 71 with neutralizing epitope incorporation within adenovirus type 3 hexon. PLoS One. 2012; 7(7): e41381. https://doi.org/10.1371/journal.pone.0041381
42. Dai W., Xiong P., Zhang X., Liu Z., Chen J., Zhou Y., et al. Recombinant virus-like particle presenting a newly identified coxsackievirus A10 neutralization epitope induces protective immunity in mice. Antiviral Res. 2019; 164: 139–46. https://doi.org/10.1016/j.antiviral.2019.02.016
43. Jiang L., Fan R., Sun S., Fan P., Su W., Zhou Y., et al. A new EV71 VP3 epitope in norovirus P particle vector displays neutralizing activity and protection in vivo in mice. Vaccine. 2015; 33(48): 6596–603. https://doi.org/10.1016/j.vaccine.2015.10.104
44. Novikov D.V., Melent'ev D.A., Mokhonov V.V., Kashnikov A.Yu., Novikova N.A., Lapin V.A. i dr. Poluchenie virusopodobnykh chastits norovirusa (Caliciviridae; Norovirus), soderzhashchikh belok VP1 enterovirusa Echovirus 30 (Picornaviridae; Enterovirus). Voprosy virusologii. 2021; 66(5): 383–9. https://doi.org/10.36233/0507-4088-79
45. Chung C.Y., Chen C.Y., Lin S.Y., Chung Y.C., Chiu H.Y., Chi W.K., et al. Enterovirus 71 virus-like particle vaccine: improved production conditions for enhanced yield. Vaccine. 2010; 28(43): 6951–7. https://doi.org/10.1016/j.vaccine.2010.08.052
46. Li H.Y., Han J.F., Qin C.F., Chen R. Virus-like particles for enterovirus 71 produced from Saccharomyces cerevisiae potently elicits protective immune responses in mice. Vaccine. 2013; 31(32): 3281–7. https://doi.org/10.1016/j.vaccine.2013.05.019
47. Zhang W., Dai W., Zhang C., Zhou Y., Xiong P., Wang S., et al. A virus-like particle-based tetravalent vaccine for hand, foot, and mouth disease elicits broad and balanced protective immunity. Emerg. Microbes Infect. 2018; 7(1): 94. https://doi.org/10.1038/s41426-018-0094-1
48. Kim H.J., Son H., Lee S.W., Yoon Y., Hyeon J-Y., Chung G.T., et al. Efficient expression of enterovirus 71 based on virus-like particles vaccine. PLoS One. 2019; 14(3): e0210477. https://doi.org/10.1371/journal.pone.0210477
49. Hankaniemi M.M., Baikoghli M.A., Stone V.M., Xing L., Vaatainen O., Soppela S., et al. Structural insight into CVB3-VLP non-adjuvanted vaccine. Microorganisms. 2020; 8(9): 1287. https://doi.org/10.3390/microorganisms8091287
50. Zhang C., Ku Z., Liu Q., Wang X., Chen T., Ye X., et al. Highyield production of recombinant virus-like particles of enterovirus 71 in Pichia pastoris and their protective efficacy against oral viral challenge in mice. Vaccine. 2015; 33(20): 2335–41. https://doi.org/10.1016/j.vaccine.2015.03.034
51. Yang Z., Gao F., Wang X., Shi L., Zhou Z., Jiang Y., et al. Development and characterization of an enterovirus 71 (EV71) virus-like particles (VLPs) vaccine produced in Pichia pastoris. Hum. Vaccin. Immunother. 2020; 16(7): 1602–10. https://doi.org/10.1080/216455 15.2019.1649554
52. Wang Z., Zhou C., Gao F., Zhu Q., Jiang Y., Ma X., et al. Preclinical evaluation of recombinant HFMD vaccine based on enterovirus 71 (EV71) virus-like particles (VLP): Immunogenicity, efficacy and toxicology. Vaccine. 2021; 39(31): 4296–305. https://doi.org/10.1016/j.vaccine.2021.06.031
53. Zhang C., Zhang X., Zhang W., Dai W., Xie J., Ye L., et al. Enterovirus D68 virus-like particles expressed in Pichia pastoris potently induce neutralizing antibody responses and confer protection against lethal viral infection in mice. Emerg. Microbes Infect. 2018; 7(1): 3. https://doi.org/10.1038/s41426-017-0005-x
54. Sherry L., Grehan K., Snowden J.S., Knight M.L., Adeyemi O.O., Rowlands D.J., et al. Comparative molecular biology approaches for the production of poliovirus virus-like particles using Pichia pastoris. mSphere. 2020; 5(2): e00838-19. https://doi.org/10.1128/mSphere.00838-19
События
-
Журнал «Концепт: Философия, религия, культура» принят в Scopus >>>
9 июл 2025 | 13:25 -
К платформе Elpub присоединился журнал «The BRICS Health Journal» >>>
10 июн 2025 | 12:52 -
Журнал «Неотложная кардиология и кардиоваскулярные риски» присоединился к Elpub >>>
6 июн 2025 | 09:45 -
К платформе Elpub присоединился «Медицинский журнал» >>>
5 июн 2025 | 09:41 -
НЭИКОН принял участие в конференции НИИ Организации здравоохранения и медицинского менеджмента >>>
30 мая 2025 | 10:32