Журналов:     Статей:        

Вопросы вирусологии. 2022; 67: 7-17

Современные представления о роли гена Х вируса гепатита В (Hepadnaviridae: Orthohepadnavirus: Hepatitis B virus) в патогенезе инфекции, вызванной вирусом гепатита B

Панасюк Я. В., Власенко Н. В., Чурилова Н. С., Клушкина В. В., Дубоделов Д. В., Кудрявцева Е. Н., Корабельникова М. И., Родионова З. С., Семененко Т. А., Кузин С. Н., Акимкин В. Г.

https://doi.org/10.36233/0507-4088-84

Аннотация

В обзоре представлена информация о роли Х гена вируса гепатита В (Hepadnaviridae: Orthohepadnavirus: Hepatitis B virus) (ВГВ) и кодируемого им белка Х в патогенезе вирусного гепатита В (ГB). Рассмотрена эволюция возбудителя от первоосновы до современного варианта гепаднавирусов (Hepadnaviridae) как процесс, начавшийся около 407 млн лет назад и продолжающийся до настоящего времени. Обобщены результаты научных трудов зарубежных исследователей о многообразии воздействия белка X на течение инфекционного процесса и роли этой вирусной структуры в механизмах канцерогенеза. Описаны различия в характере влияния белка на течение заболевания у пациентов различных этнических групп с учётом генотипической принадлежности ВГВ. Обсуждается значение определения генетической вариабельности гена Х как фундаментальной характеристики вируса, имеющей значение для оценки рисков распространения гепатоцеллюлярной карциномы (ГЦК) среди населения Российской Федерации.

Список литературы

1. WHO. Hepatitis B: Fact sheet. Available at: https://www.who.int/newsroom/fact-sheets/detail/hepatitis-b (accessed November 29, 2021).

2. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., et.al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2020; 71(3): 209–49. https://doi.org/10.3322/caac.21660

3. Ющук Н.Д., Климова Е.А., Знойко О.О., Кареткина Г.Н., Максимов С.Л., Маев И.В. Вирусные гепатиты: клиника, диагностика, лечение. М.: ГЭОТАР-Медиа; 2014.

4. Revill P.A., Tu T., Netter H.J., Yuen L.K.W., Locarnini S.A., Littlejohn M. The evolution and clinical impact of hepatitis B virus genome diversity. Nat. Rev. Gastroenterol. Hepatol. 2020; 17(10): 618–34. https://doi.org/10.1038/s41575-020-0296-6

5. Datta S. An overview of molecular epidemiology of hepatitis B virus (HBV) in India. Virol. J. 2008; 5: 156. https://doi.org/10.1186/1743-422X-5-156

6. Tuteja A., Siddiqui A.B., Madan K., Goyal R., Shalimar, Sreenivas V., et al. Mutation profiling of the hepatitis B virus strains circulating in North Indian population. PLoS One. 2014; 9(3): e91150. https://doi.org/10.1371/journal.pone.0091150

7. Tarocchi M., Polvani S., Marroncini G., Galli A. Molecular mechanism of hepatitis B virus-induced hepatocarcinogenesis. World J. Gastroenterol. 2014; 20(33): 11630–40. https://doi.org/10.3748/wjg.v20.i33.11630

8. Levrero M., Zucman-Rossi J. Mechanisms of HBV-induced hepatocellular carcinoma. J. Hepatol. 2016; 64(1 Suppl.): S84–101. https://doi.org/10.1016/j.jhep.2016.02.021

9. Lau K.C.K., Burak K.W., Coffin C.S. Impact of hepatitis B virus genetic variation, integration, and lymphotropism in antiviral treatment and oncogenesis. Microorganisms. 2020; 8(10): 1470. https://doi.org/10.3390/microorganisms8101470

10. Godoy C., Tabernero D., Sopena S., Gregori J., Cortese M.F., González C., et al. Characterization of hepatitis B virus X gene quasispecies complexity in mono-infection and hepatitis delta virus superinfection. World J. Gastroenterol. 2019; 25(13): 1566–79. https://doi.org/10.3748/wjg.v25.i13.1566

11. Sung W.K., Lu Y., Lee C.W.H., Zhang D., Ronaghi M., Lee C.G.L. Deregulated direct targets of the hepatitis B virus (HBV) protein, HBx, identified through chromatin immunoprecipitation and expression microarray profiling. J. Biol. Chem. 2009; 284(33): 21941–54. https://doi.org/10.1074/jbc.M109.014563

12. van Hemert F.J., van de Klundert M.A.A., Lukashov V.V., Kootstra N.A., Berkhout B., Zaaijer H.L., et al. Protein X of hepatitis B virus: origin and structure similarity with the central domain of DNA glycosylase. PLoS One. 2011; 6(8): e23392. https://doi.org/10.1371/journal.pone.0023392

13. Al-Qahtani A.A., Al-Anazi M.R., Nazir N., Ghai R., Abdo A.A., Sanai F.M., et al. Hepatitis B virus (HBV) X gene mutations and their association with liver disease progression in HBV-infected patients. Oncotarget. 2017; 8(62): 105115–25. https://doi.org/10.18632/oncotarget.22428

14. Rahmani Z., Huh K.W., Lasher R., Siddiqui A. Hepatitis B virus X protein colocalizes to mitochondria with a human voltage-dependent anion channel, HVDAC3, and alters its transmembrane potential. J. Virol. 2000; 74(6): 2840–6. https://doi.org/10.1128/jvi.74.6.2840-2846.2000

15. Salpini R., Surdo M., Cortese M.F., Palumbo G.A., Carioti L., Cappiello G., et al The novel HBx mutation F30V correlates with hepatocellular carcinoma in vivo, reduces hepatitis B virus replicative efficiency and enhances anti-apoptotic activity of HBx N terminus in vitro. Clin. Microbiol. Infect. 2019; 25(7): 906.e1–7. https://doi.org/10.1016/j.cmi.2018.11.017

16. Chang S.F., Netter H.J., Hildt E., Schuster R., Schaefer S., Hsu Y.C., et al. Duck hepatitis B virus expresses a regulatory HBx-like protein from a hidden open reading frame. J. Virol. 2001; 75(1): 161–70. https://doi.org/10.1128/JVI.75.1.161-170.2001

17. Bouchard M.J., Schneider R.J. The enigmatic X gene of hepatitis B virus. J. Virol. 2004; 78(23): 12725–34. https://doi.org/10.1128/JVI.78.23.12725-12734.2004

18. Gómez-Gonzalo M., Carretero M., Rullas J., Lara-Pezzi E., Aramburu J., Berkhout B., et al. The hepatitis B virus X protein induces HIV-1 replication and transcription in synergy with T-cell activation signals: functional roles of NF-κB/NF-AT and SP1-binding sites in the HIV-1 long terminal repeat promoter. J. Biol. Chem. 2001; 276(38): 35435–43. https://doi.org/10.1074/jbc.M103020200

19. González C., Tabernero D., Cortese M.F., Gregori J., Casillas R., Riveiro-Barciela M., et al. Detection of hyper-conserved regions in hepatitis B virus X gene potentially useful for gene therapy. World J. Gastroenterol. 2018; 24(19): 2095–107. https://doi.org/10.3748/wjg.v24.i19.2095

20. Kim H., Lee S.A., Kim B.J. X region mutations of hepatitis B virus related to clinical severity. World J. Gastroenterol. 2016; 22(24): 5467–78. https://doi.org/10.3748/wjg.v22.i24.5467

21. Suh A., Brosius J., Schmitz J., Kriegs J.O. The genome of a Mesozoic paleovirus reveals the evolution of hepatitis B viruses. Nat. Commun. 2013; 4: 1791. https://doi.org/10.1038/ncomms2798

22. Suh A., Weber C.C., Kehlmaier C., Braun E.L., Green R.E., Fritz U., et al. Early Mesozoic Coexistence of Amniotes and Hepadnaviridae. PLoS Genet. 2014; 10(12): e1004559. https://doi.org/10.1371/journal.pgen.1004559

23. Lauber C., Seitz S., Mattei S., Suh A., Beck J., Herstein J., et al. Deciphering the origin and evolution of hepatitis B viruses by means of a family of non-enveloped fish viruses. Cell Host Microbe. 2017; 22(3): 387–99.e6. https://doi.org/10.1016/j.chom.2017.07.0192

24. Pesavento P.A., Jackson K., Scase T., Tse T., Hampson B., Munday J.S., et al. A novel hepadnavirus is associated with chronic hepatitis and hepatocellular carcinoma in cats. Viruses. 2019; 11(10): 969. https://doi.org/10.3390/v11100969

25. Bonvicino C.R., Moreira M.A., Soares M.A. Hepatitis B virus lineages in mammalian hosts: potential for bidirectional cross-species transmission. World J. Gastroenterol. 2014; 20(24): 7665–74. https://doi.org/10.3748/wjg.v20.i24.7665

26. Hu X., Javadian A., Gagneux P., Robertson B.H. Paired chimpanzee hepatitis B virus (ChHBV) and mtDNA sequences suggest different ChHBV genetic variants are found in geographically distinct chimpanzee subspecies. Virus. Res. 2001; 79(1-2): 103–8. https://doi.org/10.1016/s0168-1702(01)00334-3

27. He B., Fan Q., Yang F., Hu T., Qiu W., Feng Y., et al. Hepatitis virus in long-fingered bats, Myanmar. Emerg. Infect. Dis. 2013; 19(4): 638–40. https://doi.org/10.3201/eid1904.121655

28. Li W., She R., Liu L., You H., Yin J. Prevalence of a virus similar to human hepatitis B virus in swine. Virol. J. 2010; 7: 60. https://doi.org/10.1186/1743-422x-7-60

29. Sa-Nguanmoo P., Rianthavorn P., Amornsawadwattana S., Poovorawan Y. Hepatitis B virus infection in non-human primates. Acta Virol. 2009; 53(2): 73–82. https://doi.org/10.4149/av_2009_02_73

30. Lanford R.E., Chavez D., Brasky K.M., Burns R.B. III, Rico-Hesse R. Isolation of a hepadnavirus from the woolly monkey, a New World primate. Proc. Natl Acad. Sci. USA. 1998; 95(10): 5757–61. https://doi.org/10.1073/pnas.95.10.5757

31. Tian J., Xia K., She R., Li W., Ding Y., Wang J., et al. Detection of Hepatitis B virus in serum and liver of chickens. Virol. J. 2012; 9: 2. https://doi.org/10.1186/1743-422X-9-2

32. Summers J., Smolec J.M., Snyder R. A virus similar to human hepatitis B virus associated with hepatitis and hepatoma in woodchucks. Proc. Natl Acad. Sci. USA. 1978; 75(9): 4533–7. https://doi.org/10.1073/pnas.75.9.4533

33. Mason W.S., Seal G., Summers J. Virus of Pekin ducks with structural and biological relatedness to human hepatitis B virus. J. Virol. 1980; 36(3): 829–36. https://doi.org/10.1128/JVI.36.3.829-836.1980

34. Sprengel R., Kaleta E.F., Will H. Isolation and characterization of a hepatitis B virus endemic in herons. J. Virol. 1988; 62(10): 3832–9. https://doi.org/10.1128/JVI.62.10.3832-3839.1988

35. Chang S.F., Netter H.J., Bruns M., Schneider R., Frölich K., Will H. A new avian hepadnavirus infecting snow geese (Anser caerulescens) produces a significant fraction of virions containing single-stranded DNA. Virology. 1999; 262(1): 39–54. https://doi.org/10.1006/viro.1999.9844

36. Pult I., Netter H.J., Bruns M., Prassolov A., Sirma H., Hohenberg H., et al. Identification and analysis of a new hepadnavirus in white storks. Virology. 2001; 289(1): 114–28. https://doi.org/10.1006/viro.2001.1115

37. Prassolov A., Hohenberg H., Kalinina T., Schneider C., Cova L., Krone O., et al. New hepatitis B virus of cranes that has an unexpected broad host range. J. Virol. 2003; 77(3): 1964–76. https://doi.org/10.1128/jvi.77.3.1964-1976.2003

38. Lauber C., Seitz S., Mattei S., Suh A., Beck J., Herstein J., et al. Deciphering the origin and evolution of hepatitis B viruses by means of a family of non-enveloped fish viruses. Cell Host Microbe. 2017; 22(3): 387–99.e6. https://doi.org/10.1016/j.chom.2017.07.0192

39. Meier A., Mehrle S., Weiss T.S., Mier W., Urban S. Myristoylated PreS1-domain of the hepatitis B virus L-protein mediates specific binding to differentiated hepatocytes. Hepatology. 2013; 58(1): 31–42. https://doi.org/10.1002/hep.26181

40. Kumar V., Jayasuryan N., Kumar R. A truncated mutant (residues 58–140) of the hepatitis B virus X protein retains transactivation function. Proc. Natl Acad. Sci. USA. 1996; 93(11): 5647–52. https://doi.org/10.1073/pnas.93.11.5647

41. Qadri I., Maguire H.F., Siddiqui A. Hepatitis B virus transactivator protein X interacts with the TATA-binding protein. Proc. Natl Acad. Sci. USA. 1995; 92(4): 1003–7. https://doi.org/10.1073/pnas.92.4.1003

42. Belloni L., Pollicino T., De Nicola F., Guerrieri F., Raffa G., Fanciulli M., et. al. Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function. Proc. Natl Acad. Sci. USA. 2009; 106(47): 19975–9. https://doi.org/10.1073/pnas.0908365106

43. Kornyeyev D., Ramakrishnan D., Voitenleitner C., Livingston C.M., Xing W., Hung M., et al. Spatiotemporal analysis of hepatitis B virus X protein in primary human hepatocytes. J. Virol. 2019; 93(16): e00248-19. https://doi.org/10.1128/JVI.00248-19

44. Ali A., Abdel-Hafiz H., Suhail M., Al-Mars A., Zakaria M.K., Fatima K., et al. Hepatitis B virus, HBx mutants and their role in hepatocellular carcinoma. World J. Gastroenterol. 2014; 20(30): 10238–48. https://doi.org/10.3748/wjg.v20.i30.10238

45. Taylor E.M., Moghraby J.S., Lees J.H., Smit B., Moens P.B., Lehmann A.R. Characterization of a novel human SMC heterodimer homologous to the Schizosaccharomyces pombe Rad18/Spr18 complex. Mol. Biol. Cell. 2001; 12(6): 1583–94. https://doi.org/10.1091/mbc.12.6.1583

46. Murphy C.M., Xu Y., Li F., Nio K., Reszka-Blanco N., Li X., et al. Hepatitis B virus X protein promotes degradation of SMC5/6 to enhance HBV replication. Cell Rep. 2016; 16(11): 2846–54. https://doi.org/10.1016/j.celrep.2016.08.026

47. Abdul F., Filleton F., Gerossier L., Paturel A., Hall J., Strubin M., et al. Smc5/6 Antagonism by HBx Is an Evolutionarily Conserved Function of Hepatitis B Virus Infection in Mammals. J. Virol. 2018; 92(16): e00769-18. https://doi.org/10.1128/JVI.00769-18

48. Rivière L., Gerossier L., Ducroux A., Dion S., Deng Q., Michel M.L., et al. HBx relieves chromatin-mediated transcriptional repression of hepatitis B viral cccDNA involving SETDB1 histone methyltransferase. J. Hepatol. 2015; 63(5): 1093–102. https://doi.org/10.1016/j.jhep.2015.06.023

49. Datta S., Banerjee A., Chandra P.K., Biswas A., Panigrahi R., Mahapatra P.K., et al Analysis of hepatitis B virus X gene phylogeny, genetic variability and its impact on pathogenesis: Implications in Eastern Indian HBV carriers. Virology. 2008; 382(2): 190–8. https://doi.org/10.1016/j.virol.2008.09.007

50. Su F., Schneider R.J. Hepatitis B virus HBx protein sensitizes cells to apoptotic killing by tumor necrosis factor alpha. Proc. Natl Acad. Sci. USA. 1997; 94(16): 8744–9. https://doi.org/10.1073/pnas.94.16.8744

51. Sung W.K. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat. Genet. 2012; 44(7): 765–9. https://doi.org/10.1038/ng.2295

52. Shafritz D.A., Kew M.C. Identification of integrated hepatitis B virus DNA sequences in human hepatocellular carcinomas. Hepatology. 1981; 1(1): 1–8. https://doi.org/10.1002/hep.1840010102

53. Chauhan R., Michalak T.I. Earliest hepatitis B virus-hepatocyte genome integration: sites, mechanism, and significance in carcinogenesis. Hepatoma Res. 2021; 7: 20. http://doi.org/10.20517/2394-5079.2020.136

54. Zhang X., You X., Li N., Zhang W., Gagos S., Wang Q. Involvement of hepatitis B virus X gene (HBx) integration in hepatocarcinogenesis via a recombination of HBx/Alu core sequence/subtelomeric DNA. FEBS Lett. 2012; 586(19): 3215–21. https://doi.org/10.1016/j.febslet.2012.06.039

55. Wang Y., Wang H., Pan S., Hu T., Shen J., Zheng H., et al. Capable infection of hepatitis B virus in diffuse large B-cell lymphoma. J. Cancer. 2018; 9(9): 1575–81. https://doi.org/10.7150/jca.24384

56. Baghbanian M., Hoseini Mousa S.A., Doosti M., Moghimi M. Association between gastric pathology and hepatitis B virus infection in patients with or without Helicobacter pylori. Asian Pac. J. Cancer Prev. 2019; 20(7): 2177–80. https://doi.org/10.31557/APJCP.2019.20.7.2177

57. Niedźwiedzka-Rystwej P., Grywalska E., Hrynkiewicz R., Wołącewicz M., Becht R., Roliński J. The double-edged sword role of viruses in gastric cancer. Cancers (Basel). 2020; 12(6): 1680. https://doi.org/10.3390/cancers12061680

58. Tagieva N.E., Gizatullin R.Z., Zakharyev V.M., Kisselev L.L. A genome-integrated hepatitis B virus DNA in human neuroblastoma. Gene. 1995; 152(2): 277–8. https://doi.org/10.1016/0378-1119(94)00665-f

59. Schulte L.A., López-Gil J.C., Sainz B. Jr., Hermann P.C. The cancer stem cell in hepatocellular carcinoma. Cancers (Basel). 2020; 12(3): 684. https://doi.org/10.3390/cancers12030684

60. Sukowati C.H.C., Reyes P.A.C., Tell G., Tiribelli C. Oncogenicity of viral hepatitis B and C in the initiation of hepatic cancer stem cells. Hepatoma Res. 2019; 5: 2. https://doi.org/10.20517/2394-5079.2018.106

61. Mani S.K.K., Andrisani O. Hepatitis B virus-associated hepatocellular carcinoma and hepatic cancer stem cells. Genes (Basel). 2018; 9(3): 137. https://doi.org/10.3390/genes9030137

62. Suetsugu A., Nagaki M., Aoki H., Motohashi T., Kunisada T., Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem. Biophys. Res. Commun. 2006; 351(4): 820–4. https://doi.org/10.1016/j.bbrc.2006.10.128

63. Li Z. CD133: a stem cell biomarker and beyond. Exp. Hematol. Oncol. 2013; 2(1): 17. https://doi.org/10.1186/2162-3619-2-17

64. Hagiwara S., Nishida N., Park A., Komeda Y., Sakurai T., Watanabe T., et al. Contribution of C1485T mutation in the HBx gene to human and murine hepatocarcinogenesis. Sci. Rep. 2017; 7(1): 10440. https://doi.org/10.1038/s41598-017-10570-0

65. Hussain Z., Jung H.S., Ryu D.K., Ryu W.S. Genetic dissection of naturally occurring basal core promoter mutations of hepatitis B virus reveals a silent phenotype in the overlapping X gene. J. Gen. Virol. 2009; 90(Pt. 9): 2272–81. https://doi.org/10.1099/vir.0.010421-0

66. Sánchez-Tapias J.M., Costa J., Mas A., Bruguera M., Rodés J. Influence of hepatitis B virus genotype on the long-term outcome of chronic hepatitis B in western patients. Gastroenterology. 2002; 123(6): 184–56. https://doi.org/10.1053/gast.2002.37041

67. Kim H., Gong J.R., Lee S.A., Kim B.J. Discovery of a novel mutation (X8Del) resulting in an 8-bp deletion in the hepatitis B virus X gene associated with occult infection in Korean vaccinated individuals. PLoS One. 2015; 10(10): e0139551. https://doi.org/10.1371/journal.pone.0139551

68. Li W., Goto K., Matsubara Y., Ito S., Muroyama R., Li Q., et al. The characteristic changes in hepatitis B virus X region for hepatocellular carcinoma: a comprehensive analysis based on global data. PLoS One. 2015; 10(5): e0125555. https://doi.org/10.1371/journal.pone.0125555

69. Kurbanov F., Tanaka Y., Fujiwara K., Sugauchi F., Mbanya D., Zekeng L., et al. A new subtype (subgenotype) Ac (A3) of hepatitis B virus and recombination between genotypes A and E in Cameroon. J. Gen. Virol. 2005; 86(Pt. 7): 2047–56. https://doi.org/10.1099/vir.0.80922-0

70. Wungu C.D.K., Amin M., Ruslan S.E.N., Purwono P.B., Kholili U., Maimunah U., et al. Association between host TNF-α, TGF-β1, p53 polymorphisms, HBV X gene mutation, HBV viral load and the progression of HBV-associated chronic liver disease in Indonesian patients. Biomed. Rep. 2019; 11(4): 145–53. https://doi.org/10.3892/br.2019.1239

71. Melegari M., Wolf S.K., Schneider R.J. Hepatitis B virus DNA replication is coordinated by core protein serine phosphorylation and HBx expression. J. Virol. 2005; 79(15): 9810–20. https://doi.org/10.1128/JVI.79.15.9810-9820.2005

72. Prieto C., Montecinos J., Jiménez G., Riquelme C., Garrido D., Hernández S., et al. Phosphorylation of phylogenetically conserved amino acid residues confines HBx within different cell compartments of human hepatocarcinoma cells. Molecules. 2021; 26(5): 1254. https://doi.org/10.3390/molecules26051254

73. Goto T., Kato N., Ono-Nita S.K., Yoshida H., Otsuka M., Shiratori Y., et al. Large isoform of hepatitis delta antigen activates serum response factor-associated transcription. J. Biol. Chem. 2000; 275(48): 37311-6. https://doi.org/10.1074/jbc.M002947200

Problems of Virology. 2022; 67: 7-17

Modern views on the role of X gene of the hepatitis B virus (Hepadnaviridae: Orthohepadnavirus: Hepatitis B virus) in the pathogenesis of the infection it causes

Panasiuk Y. V., Vlasenko N. V., Churilova N. S., Klushkina V. V., Dubodelov D. V., Kudryavtseva E. N., Korabelnikova M. I., Rodionova Z. S., Semenenko T. A., Kuzin S. N., Akimkin V. G.

https://doi.org/10.36233/0507-4088-84

Abstract

The review presents information on the role of hepatitis B virus (Hepadnaviridae: Orthohepadnavirus: Hepatitis B virus) (HBV) X gene and the protein it encodes (X protein) in the pathogenesis of viral hepatitis B. The evolution of HBV from primordial to the modern version of hepadnaviruses (Hepadnaviridae), is outlined as a process that began about 407 million years ago and continues to the present. The results of scientific works of foreign researchers on the variety of the influence of X protein on the infectious process and its role in the mechanisms of carcinogenesis are summarized. The differences in the effect of the X protein on the course of the disease in patients of different ethnic groups with regard to HBV genotypes are described. The significance of determining the genetic variability of X gene as a fundamental characteristic of the virus that has significance for the assessment of risks of hepatocellular carcinoma (HCC) spread among the population of the Russian Federation is discussed.

References

1. WHO. Hepatitis B: Fact sheet. Available at: https://www.who.int/newsroom/fact-sheets/detail/hepatitis-b (accessed November 29, 2021).

2. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., et.al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2020; 71(3): 209–49. https://doi.org/10.3322/caac.21660

3. Yushchuk N.D., Klimova E.A., Znoiko O.O., Karetkina G.N., Maksimov S.L., Maev I.V. Virusnye gepatity: klinika, diagnostika, lechenie. M.: GEOTAR-Media; 2014.

4. Revill P.A., Tu T., Netter H.J., Yuen L.K.W., Locarnini S.A., Littlejohn M. The evolution and clinical impact of hepatitis B virus genome diversity. Nat. Rev. Gastroenterol. Hepatol. 2020; 17(10): 618–34. https://doi.org/10.1038/s41575-020-0296-6

5. Datta S. An overview of molecular epidemiology of hepatitis B virus (HBV) in India. Virol. J. 2008; 5: 156. https://doi.org/10.1186/1743-422X-5-156

6. Tuteja A., Siddiqui A.B., Madan K., Goyal R., Shalimar, Sreenivas V., et al. Mutation profiling of the hepatitis B virus strains circulating in North Indian population. PLoS One. 2014; 9(3): e91150. https://doi.org/10.1371/journal.pone.0091150

7. Tarocchi M., Polvani S., Marroncini G., Galli A. Molecular mechanism of hepatitis B virus-induced hepatocarcinogenesis. World J. Gastroenterol. 2014; 20(33): 11630–40. https://doi.org/10.3748/wjg.v20.i33.11630

8. Levrero M., Zucman-Rossi J. Mechanisms of HBV-induced hepatocellular carcinoma. J. Hepatol. 2016; 64(1 Suppl.): S84–101. https://doi.org/10.1016/j.jhep.2016.02.021

9. Lau K.C.K., Burak K.W., Coffin C.S. Impact of hepatitis B virus genetic variation, integration, and lymphotropism in antiviral treatment and oncogenesis. Microorganisms. 2020; 8(10): 1470. https://doi.org/10.3390/microorganisms8101470

10. Godoy C., Tabernero D., Sopena S., Gregori J., Cortese M.F., González C., et al. Characterization of hepatitis B virus X gene quasispecies complexity in mono-infection and hepatitis delta virus superinfection. World J. Gastroenterol. 2019; 25(13): 1566–79. https://doi.org/10.3748/wjg.v25.i13.1566

11. Sung W.K., Lu Y., Lee C.W.H., Zhang D., Ronaghi M., Lee C.G.L. Deregulated direct targets of the hepatitis B virus (HBV) protein, HBx, identified through chromatin immunoprecipitation and expression microarray profiling. J. Biol. Chem. 2009; 284(33): 21941–54. https://doi.org/10.1074/jbc.M109.014563

12. van Hemert F.J., van de Klundert M.A.A., Lukashov V.V., Kootstra N.A., Berkhout B., Zaaijer H.L., et al. Protein X of hepatitis B virus: origin and structure similarity with the central domain of DNA glycosylase. PLoS One. 2011; 6(8): e23392. https://doi.org/10.1371/journal.pone.0023392

13. Al-Qahtani A.A., Al-Anazi M.R., Nazir N., Ghai R., Abdo A.A., Sanai F.M., et al. Hepatitis B virus (HBV) X gene mutations and their association with liver disease progression in HBV-infected patients. Oncotarget. 2017; 8(62): 105115–25. https://doi.org/10.18632/oncotarget.22428

14. Rahmani Z., Huh K.W., Lasher R., Siddiqui A. Hepatitis B virus X protein colocalizes to mitochondria with a human voltage-dependent anion channel, HVDAC3, and alters its transmembrane potential. J. Virol. 2000; 74(6): 2840–6. https://doi.org/10.1128/jvi.74.6.2840-2846.2000

15. Salpini R., Surdo M., Cortese M.F., Palumbo G.A., Carioti L., Cappiello G., et al The novel HBx mutation F30V correlates with hepatocellular carcinoma in vivo, reduces hepatitis B virus replicative efficiency and enhances anti-apoptotic activity of HBx N terminus in vitro. Clin. Microbiol. Infect. 2019; 25(7): 906.e1–7. https://doi.org/10.1016/j.cmi.2018.11.017

16. Chang S.F., Netter H.J., Hildt E., Schuster R., Schaefer S., Hsu Y.C., et al. Duck hepatitis B virus expresses a regulatory HBx-like protein from a hidden open reading frame. J. Virol. 2001; 75(1): 161–70. https://doi.org/10.1128/JVI.75.1.161-170.2001

17. Bouchard M.J., Schneider R.J. The enigmatic X gene of hepatitis B virus. J. Virol. 2004; 78(23): 12725–34. https://doi.org/10.1128/JVI.78.23.12725-12734.2004

18. Gómez-Gonzalo M., Carretero M., Rullas J., Lara-Pezzi E., Aramburu J., Berkhout B., et al. The hepatitis B virus X protein induces HIV-1 replication and transcription in synergy with T-cell activation signals: functional roles of NF-κB/NF-AT and SP1-binding sites in the HIV-1 long terminal repeat promoter. J. Biol. Chem. 2001; 276(38): 35435–43. https://doi.org/10.1074/jbc.M103020200

19. González C., Tabernero D., Cortese M.F., Gregori J., Casillas R., Riveiro-Barciela M., et al. Detection of hyper-conserved regions in hepatitis B virus X gene potentially useful for gene therapy. World J. Gastroenterol. 2018; 24(19): 2095–107. https://doi.org/10.3748/wjg.v24.i19.2095

20. Kim H., Lee S.A., Kim B.J. X region mutations of hepatitis B virus related to clinical severity. World J. Gastroenterol. 2016; 22(24): 5467–78. https://doi.org/10.3748/wjg.v22.i24.5467

21. Suh A., Brosius J., Schmitz J., Kriegs J.O. The genome of a Mesozoic paleovirus reveals the evolution of hepatitis B viruses. Nat. Commun. 2013; 4: 1791. https://doi.org/10.1038/ncomms2798

22. Suh A., Weber C.C., Kehlmaier C., Braun E.L., Green R.E., Fritz U., et al. Early Mesozoic Coexistence of Amniotes and Hepadnaviridae. PLoS Genet. 2014; 10(12): e1004559. https://doi.org/10.1371/journal.pgen.1004559

23. Lauber C., Seitz S., Mattei S., Suh A., Beck J., Herstein J., et al. Deciphering the origin and evolution of hepatitis B viruses by means of a family of non-enveloped fish viruses. Cell Host Microbe. 2017; 22(3): 387–99.e6. https://doi.org/10.1016/j.chom.2017.07.0192

24. Pesavento P.A., Jackson K., Scase T., Tse T., Hampson B., Munday J.S., et al. A novel hepadnavirus is associated with chronic hepatitis and hepatocellular carcinoma in cats. Viruses. 2019; 11(10): 969. https://doi.org/10.3390/v11100969

25. Bonvicino C.R., Moreira M.A., Soares M.A. Hepatitis B virus lineages in mammalian hosts: potential for bidirectional cross-species transmission. World J. Gastroenterol. 2014; 20(24): 7665–74. https://doi.org/10.3748/wjg.v20.i24.7665

26. Hu X., Javadian A., Gagneux P., Robertson B.H. Paired chimpanzee hepatitis B virus (ChHBV) and mtDNA sequences suggest different ChHBV genetic variants are found in geographically distinct chimpanzee subspecies. Virus. Res. 2001; 79(1-2): 103–8. https://doi.org/10.1016/s0168-1702(01)00334-3

27. He B., Fan Q., Yang F., Hu T., Qiu W., Feng Y., et al. Hepatitis virus in long-fingered bats, Myanmar. Emerg. Infect. Dis. 2013; 19(4): 638–40. https://doi.org/10.3201/eid1904.121655

28. Li W., She R., Liu L., You H., Yin J. Prevalence of a virus similar to human hepatitis B virus in swine. Virol. J. 2010; 7: 60. https://doi.org/10.1186/1743-422x-7-60

29. Sa-Nguanmoo P., Rianthavorn P., Amornsawadwattana S., Poovorawan Y. Hepatitis B virus infection in non-human primates. Acta Virol. 2009; 53(2): 73–82. https://doi.org/10.4149/av_2009_02_73

30. Lanford R.E., Chavez D., Brasky K.M., Burns R.B. III, Rico-Hesse R. Isolation of a hepadnavirus from the woolly monkey, a New World primate. Proc. Natl Acad. Sci. USA. 1998; 95(10): 5757–61. https://doi.org/10.1073/pnas.95.10.5757

31. Tian J., Xia K., She R., Li W., Ding Y., Wang J., et al. Detection of Hepatitis B virus in serum and liver of chickens. Virol. J. 2012; 9: 2. https://doi.org/10.1186/1743-422X-9-2

32. Summers J., Smolec J.M., Snyder R. A virus similar to human hepatitis B virus associated with hepatitis and hepatoma in woodchucks. Proc. Natl Acad. Sci. USA. 1978; 75(9): 4533–7. https://doi.org/10.1073/pnas.75.9.4533

33. Mason W.S., Seal G., Summers J. Virus of Pekin ducks with structural and biological relatedness to human hepatitis B virus. J. Virol. 1980; 36(3): 829–36. https://doi.org/10.1128/JVI.36.3.829-836.1980

34. Sprengel R., Kaleta E.F., Will H. Isolation and characterization of a hepatitis B virus endemic in herons. J. Virol. 1988; 62(10): 3832–9. https://doi.org/10.1128/JVI.62.10.3832-3839.1988

35. Chang S.F., Netter H.J., Bruns M., Schneider R., Frölich K., Will H. A new avian hepadnavirus infecting snow geese (Anser caerulescens) produces a significant fraction of virions containing single-stranded DNA. Virology. 1999; 262(1): 39–54. https://doi.org/10.1006/viro.1999.9844

36. Pult I., Netter H.J., Bruns M., Prassolov A., Sirma H., Hohenberg H., et al. Identification and analysis of a new hepadnavirus in white storks. Virology. 2001; 289(1): 114–28. https://doi.org/10.1006/viro.2001.1115

37. Prassolov A., Hohenberg H., Kalinina T., Schneider C., Cova L., Krone O., et al. New hepatitis B virus of cranes that has an unexpected broad host range. J. Virol. 2003; 77(3): 1964–76. https://doi.org/10.1128/jvi.77.3.1964-1976.2003

38. Lauber C., Seitz S., Mattei S., Suh A., Beck J., Herstein J., et al. Deciphering the origin and evolution of hepatitis B viruses by means of a family of non-enveloped fish viruses. Cell Host Microbe. 2017; 22(3): 387–99.e6. https://doi.org/10.1016/j.chom.2017.07.0192

39. Meier A., Mehrle S., Weiss T.S., Mier W., Urban S. Myristoylated PreS1-domain of the hepatitis B virus L-protein mediates specific binding to differentiated hepatocytes. Hepatology. 2013; 58(1): 31–42. https://doi.org/10.1002/hep.26181

40. Kumar V., Jayasuryan N., Kumar R. A truncated mutant (residues 58–140) of the hepatitis B virus X protein retains transactivation function. Proc. Natl Acad. Sci. USA. 1996; 93(11): 5647–52. https://doi.org/10.1073/pnas.93.11.5647

41. Qadri I., Maguire H.F., Siddiqui A. Hepatitis B virus transactivator protein X interacts with the TATA-binding protein. Proc. Natl Acad. Sci. USA. 1995; 92(4): 1003–7. https://doi.org/10.1073/pnas.92.4.1003

42. Belloni L., Pollicino T., De Nicola F., Guerrieri F., Raffa G., Fanciulli M., et. al. Nuclear HBx binds the HBV minichromosome and modifies the epigenetic regulation of cccDNA function. Proc. Natl Acad. Sci. USA. 2009; 106(47): 19975–9. https://doi.org/10.1073/pnas.0908365106

43. Kornyeyev D., Ramakrishnan D., Voitenleitner C., Livingston C.M., Xing W., Hung M., et al. Spatiotemporal analysis of hepatitis B virus X protein in primary human hepatocytes. J. Virol. 2019; 93(16): e00248-19. https://doi.org/10.1128/JVI.00248-19

44. Ali A., Abdel-Hafiz H., Suhail M., Al-Mars A., Zakaria M.K., Fatima K., et al. Hepatitis B virus, HBx mutants and their role in hepatocellular carcinoma. World J. Gastroenterol. 2014; 20(30): 10238–48. https://doi.org/10.3748/wjg.v20.i30.10238

45. Taylor E.M., Moghraby J.S., Lees J.H., Smit B., Moens P.B., Lehmann A.R. Characterization of a novel human SMC heterodimer homologous to the Schizosaccharomyces pombe Rad18/Spr18 complex. Mol. Biol. Cell. 2001; 12(6): 1583–94. https://doi.org/10.1091/mbc.12.6.1583

46. Murphy C.M., Xu Y., Li F., Nio K., Reszka-Blanco N., Li X., et al. Hepatitis B virus X protein promotes degradation of SMC5/6 to enhance HBV replication. Cell Rep. 2016; 16(11): 2846–54. https://doi.org/10.1016/j.celrep.2016.08.026

47. Abdul F., Filleton F., Gerossier L., Paturel A., Hall J., Strubin M., et al. Smc5/6 Antagonism by HBx Is an Evolutionarily Conserved Function of Hepatitis B Virus Infection in Mammals. J. Virol. 2018; 92(16): e00769-18. https://doi.org/10.1128/JVI.00769-18

48. Rivière L., Gerossier L., Ducroux A., Dion S., Deng Q., Michel M.L., et al. HBx relieves chromatin-mediated transcriptional repression of hepatitis B viral cccDNA involving SETDB1 histone methyltransferase. J. Hepatol. 2015; 63(5): 1093–102. https://doi.org/10.1016/j.jhep.2015.06.023

49. Datta S., Banerjee A., Chandra P.K., Biswas A., Panigrahi R., Mahapatra P.K., et al Analysis of hepatitis B virus X gene phylogeny, genetic variability and its impact on pathogenesis: Implications in Eastern Indian HBV carriers. Virology. 2008; 382(2): 190–8. https://doi.org/10.1016/j.virol.2008.09.007

50. Su F., Schneider R.J. Hepatitis B virus HBx protein sensitizes cells to apoptotic killing by tumor necrosis factor alpha. Proc. Natl Acad. Sci. USA. 1997; 94(16): 8744–9. https://doi.org/10.1073/pnas.94.16.8744

51. Sung W.K. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nat. Genet. 2012; 44(7): 765–9. https://doi.org/10.1038/ng.2295

52. Shafritz D.A., Kew M.C. Identification of integrated hepatitis B virus DNA sequences in human hepatocellular carcinomas. Hepatology. 1981; 1(1): 1–8. https://doi.org/10.1002/hep.1840010102

53. Chauhan R., Michalak T.I. Earliest hepatitis B virus-hepatocyte genome integration: sites, mechanism, and significance in carcinogenesis. Hepatoma Res. 2021; 7: 20. http://doi.org/10.20517/2394-5079.2020.136

54. Zhang X., You X., Li N., Zhang W., Gagos S., Wang Q. Involvement of hepatitis B virus X gene (HBx) integration in hepatocarcinogenesis via a recombination of HBx/Alu core sequence/subtelomeric DNA. FEBS Lett. 2012; 586(19): 3215–21. https://doi.org/10.1016/j.febslet.2012.06.039

55. Wang Y., Wang H., Pan S., Hu T., Shen J., Zheng H., et al. Capable infection of hepatitis B virus in diffuse large B-cell lymphoma. J. Cancer. 2018; 9(9): 1575–81. https://doi.org/10.7150/jca.24384

56. Baghbanian M., Hoseini Mousa S.A., Doosti M., Moghimi M. Association between gastric pathology and hepatitis B virus infection in patients with or without Helicobacter pylori. Asian Pac. J. Cancer Prev. 2019; 20(7): 2177–80. https://doi.org/10.31557/APJCP.2019.20.7.2177

57. Niedźwiedzka-Rystwej P., Grywalska E., Hrynkiewicz R., Wołącewicz M., Becht R., Roliński J. The double-edged sword role of viruses in gastric cancer. Cancers (Basel). 2020; 12(6): 1680. https://doi.org/10.3390/cancers12061680

58. Tagieva N.E., Gizatullin R.Z., Zakharyev V.M., Kisselev L.L. A genome-integrated hepatitis B virus DNA in human neuroblastoma. Gene. 1995; 152(2): 277–8. https://doi.org/10.1016/0378-1119(94)00665-f

59. Schulte L.A., López-Gil J.C., Sainz B. Jr., Hermann P.C. The cancer stem cell in hepatocellular carcinoma. Cancers (Basel). 2020; 12(3): 684. https://doi.org/10.3390/cancers12030684

60. Sukowati C.H.C., Reyes P.A.C., Tell G., Tiribelli C. Oncogenicity of viral hepatitis B and C in the initiation of hepatic cancer stem cells. Hepatoma Res. 2019; 5: 2. https://doi.org/10.20517/2394-5079.2018.106

61. Mani S.K.K., Andrisani O. Hepatitis B virus-associated hepatocellular carcinoma and hepatic cancer stem cells. Genes (Basel). 2018; 9(3): 137. https://doi.org/10.3390/genes9030137

62. Suetsugu A., Nagaki M., Aoki H., Motohashi T., Kunisada T., Moriwaki H. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem. Biophys. Res. Commun. 2006; 351(4): 820–4. https://doi.org/10.1016/j.bbrc.2006.10.128

63. Li Z. CD133: a stem cell biomarker and beyond. Exp. Hematol. Oncol. 2013; 2(1): 17. https://doi.org/10.1186/2162-3619-2-17

64. Hagiwara S., Nishida N., Park A., Komeda Y., Sakurai T., Watanabe T., et al. Contribution of C1485T mutation in the HBx gene to human and murine hepatocarcinogenesis. Sci. Rep. 2017; 7(1): 10440. https://doi.org/10.1038/s41598-017-10570-0

65. Hussain Z., Jung H.S., Ryu D.K., Ryu W.S. Genetic dissection of naturally occurring basal core promoter mutations of hepatitis B virus reveals a silent phenotype in the overlapping X gene. J. Gen. Virol. 2009; 90(Pt. 9): 2272–81. https://doi.org/10.1099/vir.0.010421-0

66. Sánchez-Tapias J.M., Costa J., Mas A., Bruguera M., Rodés J. Influence of hepatitis B virus genotype on the long-term outcome of chronic hepatitis B in western patients. Gastroenterology. 2002; 123(6): 184–56. https://doi.org/10.1053/gast.2002.37041

67. Kim H., Gong J.R., Lee S.A., Kim B.J. Discovery of a novel mutation (X8Del) resulting in an 8-bp deletion in the hepatitis B virus X gene associated with occult infection in Korean vaccinated individuals. PLoS One. 2015; 10(10): e0139551. https://doi.org/10.1371/journal.pone.0139551

68. Li W., Goto K., Matsubara Y., Ito S., Muroyama R., Li Q., et al. The characteristic changes in hepatitis B virus X region for hepatocellular carcinoma: a comprehensive analysis based on global data. PLoS One. 2015; 10(5): e0125555. https://doi.org/10.1371/journal.pone.0125555

69. Kurbanov F., Tanaka Y., Fujiwara K., Sugauchi F., Mbanya D., Zekeng L., et al. A new subtype (subgenotype) Ac (A3) of hepatitis B virus and recombination between genotypes A and E in Cameroon. J. Gen. Virol. 2005; 86(Pt. 7): 2047–56. https://doi.org/10.1099/vir.0.80922-0

70. Wungu C.D.K., Amin M., Ruslan S.E.N., Purwono P.B., Kholili U., Maimunah U., et al. Association between host TNF-α, TGF-β1, p53 polymorphisms, HBV X gene mutation, HBV viral load and the progression of HBV-associated chronic liver disease in Indonesian patients. Biomed. Rep. 2019; 11(4): 145–53. https://doi.org/10.3892/br.2019.1239

71. Melegari M., Wolf S.K., Schneider R.J. Hepatitis B virus DNA replication is coordinated by core protein serine phosphorylation and HBx expression. J. Virol. 2005; 79(15): 9810–20. https://doi.org/10.1128/JVI.79.15.9810-9820.2005

72. Prieto C., Montecinos J., Jiménez G., Riquelme C., Garrido D., Hernández S., et al. Phosphorylation of phylogenetically conserved amino acid residues confines HBx within different cell compartments of human hepatocarcinoma cells. Molecules. 2021; 26(5): 1254. https://doi.org/10.3390/molecules26051254

73. Goto T., Kato N., Ono-Nita S.K., Yoshida H., Otsuka M., Shiratori Y., et al. Large isoform of hepatitis delta antigen activates serum response factor-associated transcription. J. Biol. Chem. 2000; 275(48): 37311-6. https://doi.org/10.1074/jbc.M002947200