Вопросы вирусологии. 2021; 66: 442-451
Особенности патологии дыхательной системы у сирийских хомяков (Mesocricetus auratus) при инфекции вирусом SARS-CoV-2 (Coronaviridae: Coronavirinae: Betacoronavirus: Sarbecovirus)
Чепур С. В., Алексеева И. И., Владимирова О. О., Мясников В. А., Тюнин М. А., Ильинский Н. С., Никишин А. С., Шевченко В. А., Смирнова А. В.
https://doi.org/10.36233/0507-4088-63Аннотация
Введение. На сегодняшний день в связи с необходимостью проведения доклинических исследований препаратов, предназначенных для профилактики и лечения новой коронавирусной инфекции COVID-19, важной задачей представляется верификация гистологических изменений дыхательной системы на экспериментальных моделях у лабораторных животных, в частности у сирийских (золотистых) хомяков (Mesocricetus auratus).
Цель работы – исследование патологических изменений лёгких применительно к биологической модели инфекции, вызываемой вирусом SARS-CoV-2 (Coronaviridae: Coronavirinae: Betacoronavirus; Sarbecovirus), у сирийских хомяков.
Материал и методы. Самцов сирийских хомяков массой 80–100 г заражали путём интраназального введения культуры с содержанием возбудителя 4 × 104 ТЦД50/мл (ТЦД – тканевая цитопатическая доза). Эвтаназию животных проводили на 3, 7 и 14 сут с регистрацией гравиметрических показателей. Содержание вируса в лёгких определяли методом полимеразной цепной реакции (ПЦР). Гистологические препараты ткани правого лёгкого и трахеи окрашивали гематоксилином и эозином, а также по Маллори.
Результаты и обсуждение. У инфицированных SARS-CoV-2 животных через 3 сут после заражения определяли максимальные значения репликативной активности вируса в лёгочной ткани. Спустя 7 сут на фоне снижения количественного содержания инфекционного агента в тканях лёгкого выявляли патологически значимое увеличение гравиметрических показателей органа. В период 3–14 сут после заражения в гистологической картине лёгких наблюдали развитие воспалительного процесса, характеризовавшегося последовательной сменой инфильтративно-пролиферативных, отёчно-макрофагальных и фибробластических изменений. Установлено, что начальные изменения эпителия дыхательных путей могут протекать без паранекротического интерстициального воспаления, тогда как при формировании множественного поражения лёгочной паренхимы повреждения эпителия бронхиол и ацинарных ходов могут иметь вторичный характер. В качестве патоморфологического признака, характерного для инфекции SARS-CoV-2 у данного вида, отмечено появление эпителиоидных крупноклеточных форм метаплазированного эпителия, формирующих псевдоацинарные структуры.
Заключение. В результате исследования описаны особенности патологии дыхательной системы у сирийских хомяков на экспериментальной модели инфекции SARS-CoV-2. Полученные данные имеют практическое значение как референтные и могут быть использованы при проведении доклинических исследований по оценке эффективности вакцинных препаратов и лекарственных средств.
Список литературы
1. Чепур С.В., Плужников Н.Н., Чубарь О.В., Бакулина Л.С., Литвиненко И.В., Макаров В.А., и др. Респираторные РНК-вирусы: как подготовиться к встрече с новыми пандемическими штаммами. Успехи соврем. биологии. 2020; 140(4): 359–77. https://doi.org/10.31857/S0042132420040043
2. Bradley B.T., Maioli H., Johnston R., Chaudhry I., Fink S.L., Xu P.H., et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet. 2020; 396(10247): 320–32. https://doi.org/10.1016/S0140-6736(20)31305-2
3. Чучалин А.Г. COVID-19 пневмония: лекция для студентов ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова»; 2020. Available at: https://youtu.be/hTVZSwa7X5c (accessed October 14, 2021).
4. Becker R.C. COVID-19-associated vasculitis and vasculopathy. J. Thromb. Thrombolysis. 2020; 50(3): 499–511. https://doi.org/10.1007/s11239-020-02230-4
5. Calabrese F., Pezzuto F., Fortarezza F., Hofman P., Kern I., Panizo A., et al. Pulmonary pathology and COVID-19: lessons from autopsy. The experience of European Pulmonary Pathologists. Virchows Arch. 2020; 477(3): 359–72. https://doi.org/10.1007/s00428-020-02886-6
6. Tian S., Hu W., Niu L., Liu H., Xu H., Xiao S.Y. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J. Thorac. Oncol. 2020; 15(5):700–4. https://doi.org/10.1016/j.jtho.2020.02.010
7. Li M., Lei P., Zeng B., Li Z., Yu P., Fan B., et al. Coronavirus Disease (COVID-19): Spectrum of CT findings and temporal progression of the disease. Acad. Radiol. 2020; 27(5): 603–8. https://doi.org/10.1016/j.acra.2020.03.003
8. Bernheim A., Mei X., Huang M., Yang Y., Fayad Z.A., Zhang N., et al. Chest CT findings in Coronavirus Disease-19 (COVID-19):Relationship to duration of infection. Radiology. 2020; 295(3):685–91. https://doi.org/10.1148/radiol.2020200463
9. Pan F., Ye T., Sun P., Gui S., Liang B., Li L., et al. Time course of lung changes at chest CT during recovery from Coronavirus Disease 2019 (COVID-19). Radiology. 2020; 295(3): 715–21. https://doi.org/10.1148/radiol.2020200370
10. Liu H., Liu F., Li J., Zhang T., Wanga D., Lan W. Clinical and CT imaging features of the COVID-19 pneumonia: Focus on pregnant women and children. J. Infect. 2020; 80(5): e7–13. https://doi.org/10.1016/j.jinf.2020.03.007
11. Meng H., Xiong R., He R., Weichen L., Bo H., Lin Z., et al. CT imaging and clinical course of asymptomatic cases with COVID-19 pneumonia at admission in Wuhan, China. J. Infect. 2020; 81(1):e33–9. https://doi.org/10.1016/j.jinf.2020.04.004
12. Mohanty S.K., Satapathy A., Naidu M.M., Mukhopadhyay S., Sharma S., Barton L.M., et al. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19) – anatomic pathology perspective on current knowledge. Diagn. Pathol. 2020; 15(1): 103. https://doi.org/10.1186/s13000-020-01017-8
13. Iba T., Connors J.M., Levy J.H. The coagulopathy, endotheliopathy, and vasculitis of COVID-19. Inflamm. Res. 2020; 69(12): 1181–9. https://doi.org/10.1007/s00011-020-01401-6
14. Zhang H., Zhou P., Wei Y., Yue H., Wang Y., Hu M., et al. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann. Intern. Med. 2020; 172(9): 629–32. https://doi.org/10.7326/M20-0533
15. Varga Z., Flammer A.J., Steiger P., Haberecker M., Andermatt R., Zinkernagel A.S., et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395(10234): 1417–8. https://doi.org/10.1016/S0140-6736(20)30937-5
16. Jain A. COVID-19 and lung pathology. Indian J. Pathol. Microbiol. 2020; 63(2): 171–2. https://doi.org/10.4103/IJPM.IJPM_280_20
17. Rizzo P., Vieceli Dalla Sega F., Fortini F., Marracino L., Rapezzi C., Ferrari R., et al. COVID-19 in the heart and the lungs: could we «Notch» the inflammatory storm? Basic Res. Cardiol. 2020; 115(3):31. https://doi.org/10.1007/s00395-020-0791-5
18. Nicolai L., Leunig A., Brambs S., Kaiser R., Weinberger T., Weigand M., et al. Immunothrombotic dysregulation in COVID-19 pneumonia is associated with respiratory failure and coagulopathy. Circulation. 2020; 142(12): 1176–89. https://doi.org/10.1161/CIRCULATIONAHA.120.048488
19. Sun R., Liu H., Wang X. Mediastinal emphysema, giant bulla, and pneumothorax developed during the course of COVID-19 pneumonia. Korean J. Radiol. 2020; 21(5): 541–4. https://doi.org/10.3348/kjr.2020.0180
20. Rosenke K., Meade-White K., Letko M., Clancy C., Hansen F., Liu Y., et al. Defining the Syrian hamster as a highly susceptible preclinical model for SARS-CoV-2 infection. Emerg. Microbes Infect. 2020; 9(1): 2673–84. https://doi.org/10.1080/22221751.2020.1858177
21. Imai M., Iwatsuki-Horimoto K., Hatta M., Loeber S., Halfmann P.J., et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl. Acad. Sci. USA. 2020; 117(28): 16587–95. https://doi.org/10.1073/pnas.2009799117
Problems of Virology. 2021; 66: 442-451
Specific features of the pathology of the respiratory system in SARS-CoV-2 (Coronaviridae: Coronavirinae: Betacoronavirus: Sarbecovirus) infected Syrian hamsters (Mesocricetus auratus)
Chepur S. V., Alekseeva I. I., Vladimirova O. O., Myasnikov V. A., Tyunin M. A., Ilinskii N. S., Nikishin A. S., Shevchenko V. A., Smirnova A. V.
https://doi.org/10.36233/0507-4088-63Abstract
Introduction. Verification of histological changes in respiratory system using Syrian (golden) hamsters (Mesocricetus auratus) as experimental model is an important task for preclinical studies of drugs intended for prevention and treatment of the novel coronavirus infection COVID-19.
The aim of this work was to study pathological changes of pulmonary tissue in SARS-CoV-2 (Coronaviridae: Coronavirinae: Betacoronavirus; Sarbecovirus) experimental infection in Syrian hamsters. Material and methods. Male Syrian hamsters weighting 80–100 g were infected by intranasal administration of culture SARS-CoV-2 at dose 4 × 104 TCID50/ml (TCID is tissue culture infectious dose). Animals were euthanatized on 3, 7 and 14 days after infection, with gravimetric registration. The viral load in lungs was measured using the polymerase chain reaction (PCR). Right lung and trachea tissues were stained with hematoxylin-eosin and according to Mallory.
Results and discussion. The highest viral replicative activity in lungs was determined 3 days after the infection. After 7 days, on a background of the decrease of the viral load in lungs, a pathologically significant increase of the organ’s gravimetric parameters was observed. Within 3 to 14 days post-infection, the lung histologic pattern had been showing the development of inflammation with a succession of infiltrative-proliferative, edematousmacrophagal and fibroblastic changes. It was found that initial changes in respiratory epithelium can proceed without paranecrotic interstitial inflammation, while in the formation of multiple lung parenchyma lesions, damage to the epithelium of bronchioles and acinar ducts can be secondary. The appearance of epithelioid large-cell metaplastic epithelium, forming pseudoacinar structures, was noted as a pathomorphological feature specific to SARS-CoV-2 infection in Syrian hamsters.
Conclusion. As a result of the study, the specific features of the pathology of the respiratory system in SARSCoV-2 infected Syrian hamsters were described. These findings are of practical importance as reference data that can be used for preclinical studies to assess the effectiveness of vaccines and potential drugs.
References
1. Chepur S.V., Pluzhnikov N.N., Chubar' O.V., Bakulina L.S., Litvinenko I.V., Makarov V.A., i dr. Respiratornye RNK-virusy: kak podgotovit'sya k vstreche s novymi pandemicheskimi shtammami. Uspekhi sovrem. biologii. 2020; 140(4): 359–77. https://doi.org/10.31857/S0042132420040043
2. Bradley B.T., Maioli H., Johnston R., Chaudhry I., Fink S.L., Xu P.H., et al. Histopathology and ultrastructural findings of fatal COVID-19 infections in Washington State: a case series. Lancet. 2020; 396(10247): 320–32. https://doi.org/10.1016/S0140-6736(20)31305-2
3. Chuchalin A.G. COVID-19 pnevmoniya: lektsiya dlya studentov FGAOU VO «Rossiiskii natsional'nyi issledovatel'skii meditsinskii universitet im. N.I. Pirogova»; 2020. Available at: https://youtu.be/hTVZSwa7X5c (accessed October 14, 2021).
4. Becker R.C. COVID-19-associated vasculitis and vasculopathy. J. Thromb. Thrombolysis. 2020; 50(3): 499–511. https://doi.org/10.1007/s11239-020-02230-4
5. Calabrese F., Pezzuto F., Fortarezza F., Hofman P., Kern I., Panizo A., et al. Pulmonary pathology and COVID-19: lessons from autopsy. The experience of European Pulmonary Pathologists. Virchows Arch. 2020; 477(3): 359–72. https://doi.org/10.1007/s00428-020-02886-6
6. Tian S., Hu W., Niu L., Liu H., Xu H., Xiao S.Y. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. J. Thorac. Oncol. 2020; 15(5):700–4. https://doi.org/10.1016/j.jtho.2020.02.010
7. Li M., Lei P., Zeng B., Li Z., Yu P., Fan B., et al. Coronavirus Disease (COVID-19): Spectrum of CT findings and temporal progression of the disease. Acad. Radiol. 2020; 27(5): 603–8. https://doi.org/10.1016/j.acra.2020.03.003
8. Bernheim A., Mei X., Huang M., Yang Y., Fayad Z.A., Zhang N., et al. Chest CT findings in Coronavirus Disease-19 (COVID-19):Relationship to duration of infection. Radiology. 2020; 295(3):685–91. https://doi.org/10.1148/radiol.2020200463
9. Pan F., Ye T., Sun P., Gui S., Liang B., Li L., et al. Time course of lung changes at chest CT during recovery from Coronavirus Disease 2019 (COVID-19). Radiology. 2020; 295(3): 715–21. https://doi.org/10.1148/radiol.2020200370
10. Liu H., Liu F., Li J., Zhang T., Wanga D., Lan W. Clinical and CT imaging features of the COVID-19 pneumonia: Focus on pregnant women and children. J. Infect. 2020; 80(5): e7–13. https://doi.org/10.1016/j.jinf.2020.03.007
11. Meng H., Xiong R., He R., Weichen L., Bo H., Lin Z., et al. CT imaging and clinical course of asymptomatic cases with COVID-19 pneumonia at admission in Wuhan, China. J. Infect. 2020; 81(1):e33–9. https://doi.org/10.1016/j.jinf.2020.04.004
12. Mohanty S.K., Satapathy A., Naidu M.M., Mukhopadhyay S., Sharma S., Barton L.M., et al. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19) – anatomic pathology perspective on current knowledge. Diagn. Pathol. 2020; 15(1): 103. https://doi.org/10.1186/s13000-020-01017-8
13. Iba T., Connors J.M., Levy J.H. The coagulopathy, endotheliopathy, and vasculitis of COVID-19. Inflamm. Res. 2020; 69(12): 1181–9. https://doi.org/10.1007/s00011-020-01401-6
14. Zhang H., Zhou P., Wei Y., Yue H., Wang Y., Hu M., et al. Histopathologic changes and SARS-CoV-2 immunostaining in the lung of a patient with COVID-19. Ann. Intern. Med. 2020; 172(9): 629–32. https://doi.org/10.7326/M20-0533
15. Varga Z., Flammer A.J., Steiger P., Haberecker M., Andermatt R., Zinkernagel A.S., et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020; 395(10234): 1417–8. https://doi.org/10.1016/S0140-6736(20)30937-5
16. Jain A. COVID-19 and lung pathology. Indian J. Pathol. Microbiol. 2020; 63(2): 171–2. https://doi.org/10.4103/IJPM.IJPM_280_20
17. Rizzo P., Vieceli Dalla Sega F., Fortini F., Marracino L., Rapezzi C., Ferrari R., et al. COVID-19 in the heart and the lungs: could we «Notch» the inflammatory storm? Basic Res. Cardiol. 2020; 115(3):31. https://doi.org/10.1007/s00395-020-0791-5
18. Nicolai L., Leunig A., Brambs S., Kaiser R., Weinberger T., Weigand M., et al. Immunothrombotic dysregulation in COVID-19 pneumonia is associated with respiratory failure and coagulopathy. Circulation. 2020; 142(12): 1176–89. https://doi.org/10.1161/CIRCULATIONAHA.120.048488
19. Sun R., Liu H., Wang X. Mediastinal emphysema, giant bulla, and pneumothorax developed during the course of COVID-19 pneumonia. Korean J. Radiol. 2020; 21(5): 541–4. https://doi.org/10.3348/kjr.2020.0180
20. Rosenke K., Meade-White K., Letko M., Clancy C., Hansen F., Liu Y., et al. Defining the Syrian hamster as a highly susceptible preclinical model for SARS-CoV-2 infection. Emerg. Microbes Infect. 2020; 9(1): 2673–84. https://doi.org/10.1080/22221751.2020.1858177
21. Imai M., Iwatsuki-Horimoto K., Hatta M., Loeber S., Halfmann P.J., et al. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development. Proc. Natl. Acad. Sci. USA. 2020; 117(28): 16587–95. https://doi.org/10.1073/pnas.2009799117
События
-
Журнал «Успехи наук о животных» присоединился к Elpub! >>>
18 июл 2025 | 12:37 -
Журнал «Наука. Инновации. Технологии» принят в DOAJ >>>
17 июл 2025 | 12:17 -
К платформе Elpub присоединился журнал « Библиотечный мир» >>>
15 июл 2025 | 12:17 -
Журнал «Концепт: Философия, религия, культура» принят в Scopus >>>
9 июл 2025 | 13:25 -
К платформе Elpub присоединился журнал «The BRICS Health Journal» >>>
10 июн 2025 | 12:52