Журналов:     Статей:        

Вопросы вирусологии. 2021; 66: 399-408

Мукозальный иммунитет и вакцины против вирусных инфекций

Зайнутдинов С. С., Сиволобова Г. Ф., Локтев В. Б., Кочнева Г. В.

https://doi.org/10.36233/0507-4088-82

Аннотация

Иммунитет слизистых оболочек (СО) реализуется через структурно-функциональную систему, называемую мукозо-ассоциированной лимфоидной тканью (МАЛТ; mucosa-associated lymphoid tissue, MALT). МАЛТ подразделяется на части (кластеры) в зависимости от их анатомического расположения, однако все они имеют идентичное строение: слой слизи, эпителиальная ткань, собственная пластинка СО и лимфоидные фолликулы. Плазматические клетки МАЛТ вырабатывают уникальный тип иммуноглобулинов (Ig) – IgA, обладающий способностью к полимеризации. При мукозальной иммунизации преобладающей формой этих антител (АТ) является секреторный димер (sIgA), в больших количествах концентрирующийся в СО. Мукозальные IgA действуют как первая линия защиты и эффективно нейтрализуют вирусные агенты на уровне входных ворот инфекции, предотвращая поражение эпителиальных клеток и генерализацию инфекционного процесса. На сегодняшний день лицензированы несколько мукозальных противовирусных вакцин, в состав которых входят аттенуированные штаммы соответствующих вирусов: полиомиелита, гриппа, ротавируса. Несмотря на огромные успехи, достигнутые с применением этих вакцинных препаратов, в частности по ликвидации полиомиелита, существенными недостатками использования аттенуированных вирусных штаммов, входящих в их состав, являются риск реактогенности и возможность реверсии к вирулентному штамму в процессе вакцинации. Тем не менее именно мукозальная вакцинация, имитируя естественное инфицирование, способна индуцировать быстрый и эффективный иммунный ответ и таким образом способствовать предотвращению, а возможно, и остановке вспышек многих вирусных инфекций. В настоящее время клинические испытания успешно проходит целый ряд интраназальных вакцин, основанных на новом векторном подходе, при котором для доставки протективно значимых иммуногенов патогенных вирусов используются безопасные вирусные векторы. Самым тестируемым вектором для интраназальных вакцинных препаратов является аденовирус, а наиболее значимым иммуногеном – S-белок SARSCoV-2. Исследуются также мукозальные векторные вакцины против респираторно-синцитиального вируса человека и вируса иммунодефицита человека 1 типа на основе вируса Сендай, способного бессимптомно реплицироваться в клетках бронхиального эпителия.

Список литературы

1. Terauchi Y., Sano K., Ainai A., Saito S., Taga Y., Ogawa-Goto K., et al. IgA polymerization contributes to efficient virus neutralization on human upper respiratory mucosa after intranasal inactivated influenza vaccine administration. Hum. Vaccin. Immunother. 2018; 14(6): 1351–61. https://doi.org/10.1080/21645515.2018.1438791

2. Russell M.W., Moldoveanu Z., Ogra P.L., Mestecky J. Mucosal Immunity in COVID-19: A Neglected but Critical Aspect of SARSCoV-2 Infection. Front. Immunol. 2020; 11: 611337. https://doi.org/10.3389/fmmu.2020.611337

3. Miquel-Clopes E.G., Bentley J.P., Stewart S.R., Carding S.R. Mucosal vaccines and technology. Clin. Exp. Immunol. 2019; 196(2):205–14. https://doi.org/10.1111/cei.13285

4. Travis C.R. As plain as the nose on your face: The case for a nasal (mucosal) route of vaccine administration for Covid-19 disease prevention. Front. Immunol. 2020; 11: 591897. https://doi.org/10.3389/fmmu.2020.591897

5. Лусс Л.В., Шартанова Н.В., Назарова Е.В. Аллергический и неаллергический ринит: эффективность барьерных методов. Эффективная фармакотерапия. 2018; (17): 10–6.

6. Козлов И.Г. Микробиота, мукозальный иммунитет и антибиотики: тонкости взаимодействия. Русский медицинский журнал. 2018; 26(8-1): 19–27.

7. Ye L., Schnepf D., Staeheli P. Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat. Rev. Immunol. 2019; 19(10): 614–25. https://doi.org/10.1038/s41577-019-0182-z

8. Broggi A., Tan Y., Granucci F., Zanoni I. IFN-λ suppresses intestinal inflammation by non-translational regulation of neutrophil function. Nat. Immunol. 2017; 18(10): 1084–93. https://doi.org/10.1038/ni.3821

9. Fruitwala S., El-Naccache D.W., Chang T.L. Multifaceted immune functions of human defensins and underlying mechanisms. Semin. Cell Dev. Biol. 2019; 88: 163–72. https://doi.org/10.1016/j.semcdb.2018.02.023

10. Щубелко Р.В., Зуйкова И.Н., Шульженко А.Е. Мукозальный иммунитет верхних дыхательных путей. Иммунология. 2018; 39(1): 81–8. https://doi.org/10.18821/0206-4952-2018-39-1-81-88

11. Хаитов М.Р., Ильина Н.И., Лусс Л.В., Бабахин А.А. Мукозальный иммунитет респираторного тракта и его роль при профессиональных патологиях. Медицина экстремальных ситуаций. 2017; 61(3): 8–24.

12. Coffey J.W., Gaiha G.D., Traverso G. Oral biologic delivery: advances towards oral subunit, DNA and mRNA vaccines and the potential for mass vaccination during pandemics. Annu. Rev. Pharmacol. Toxicol. 2021; 61: 517–40. https://doi.org/10.1146/annurev-pharmtox-030320-092348

13. Kumar N., Arthur C.P., Ciferri C., Matsumoto M.L. Structure of the secretory immunoglobulin A core. Science. 2020; 367(6481):1008–14. https://doi.org/10.1126/science.aaz5807

14. Hickey A.J., Garmise R.J. Dry powder nasal vaccines as an alternative to needle-based delivery. Crit. Rev. Ther. Drug Carr. Syst. 2009; 26(1): 1–27. https://doi.org/10.1615/critrevtherdrugcarriersyst.v26.i1.10

15. Bennett J.V., De Castro J.F., Valdespino-Gomez J.L., Garcia-Garcia M. de. L., Islas-Romero R., Echaniz-Aviles G., et al. Aerosolized measles and measles-rubella vaccines induce better measles antibody booster responses than injected vaccines: Randomized trials in Mexican schoolchildren. Bull. World Health Organ. 2002; 80(10):806–12. https://apps.who.int/iris/handle/10665/268635 (accessed November 14, 2021).

16. Hellfritzsc M., Scherlie R. Mucosal vaccination via the respiratory tract. Pharmaceutics. 2019; 11(8): 375. https://doi.org/10.3390/pharmaceutics11080375

17. Kozlowski P.A., Aldovini A. Mucosal vaccine approaches for prevention of HIV and SIV transmission. Curr. Immunol. Rev. 2019; 15(1): 102–22. https://doi.org/10.2174/1573395514666180605092054

18. Nyombayire J., Anzala O., Gazzard B., Karita E., Bergin F., Hayes P., et al. First-in-human evaluation of the safety and immunogenicity of an intranasally administered replication-competent Sendai virus-vectored HIV type 1 gag vaccine: Induction of potent T-cell or antibody responses in prime-boost regimens. J. Infect. Dis. 2017; 215(1): 95–104. https://doi.org/10.1093/infdis/jiw500

19. Jorba J., Diop O.M., Iber J., Henderson E., Zhao K., Sutter R.W., et al. Update on vaccine-derived polioviruses – worldwide, January 2017 – June 2018. MMWR Morb. Mortal. Wkly Rep. 2018; 67(42):1189–94. https://doi.org/10.15585/mmwr.mm6742a5

20. Dhere R., Yeolekar L., Kulkarni P., Menon R., Vaidya V., Ganguly M., et al. A pandemic influenza vaccine in India: From strain to sale within 12 months. Vaccine. 2011; 29(Suppl. 1): A16–21. https://doi.org/10.1016/j.vaccine.2011.04.119

21. Belshe R.B., Edwards K.M., Vesikari T., Black S.V., Walker R.E., Hultquist M., et al. Attenuated versus inactivated influenza vaccine in infants and young children. N. Engl. J. Med. 2007; 356(7): 685–96. https://doi.org/10.1056/NEJMoa065368

22. Murphy T.V., Gargiullo P.M., Massoudi M.S., Nelson D.B., Jumaan A.O., Okoro C.A., et al. Intussusception among infants given an oral rotavirus vaccine. N. Engl. J. Med. 2001; 344(8): 564–72. https://doi.org/10.1056/NEJM200102223440804

23. Rotavirus vaccines WHO position paper: January 2013 – Recommendations. Vaccine. 2013; 31(52): 6170–1. https://doi.org/10.1016/j.vaccine.2013.05.037

24. Adderson E., Branum K., Sealy R.E., Jones B.G., Surman S.L., Penkert R. Safety and immunogenicity of an intranasal Sendai virus-based human parainfluenza virus type 1 vaccine in 3- to 6-yearold children. Clin. Vaccine Immunol. 2015; 22(3): 298–303. https://doi.org/10.1128/CVI.00618-14

25. Huang F.S., Bernstein D.I., Slobod K.S., Portner A., Takimoto T., Russell S.J., et al. Safety and immunogenicity of an intranasal Sendai virus-based vaccine for human parainfluenza virus type I and respiratory syncytial virus (SeVRSV) in adults. Hum. Vaccin. Immunother. 2021; 17(2): 554–9. https://doi.org/10.1080/21645515.2020.1779517

26. Tasker S., O’Rourke A.N., Suyundikov A., Booth P.-G.J., Bart S., Krishnan V., et al. Safety and immunogenicity of a novel intranasal influenza vaccine (NasoVAX): A phase 2 randomized, controlled trial. Vaccines. 2021; 9(3): 224. https://doi.org/10.3390/vaccines9030224

27. Lund F.E., Randall T.D. Scent of a vaccine. Science. 2021; 373(6553): 397–9. https://doi.org/10.1126/science.abg9857

28. King R.G., Silva-Sanchez A., Peel J.N., Botta D., Dickson A.M., Pinto A.K., et al. Single-dose intranasal administration of AdCOVID elicits systemic and mucosal immunity against SARS-CoV-2 and fully protects mice from lethal challenge. Vaccines (Basel). 2021; 9(8): 881. https://doi.org/10.3390/vaccines9080881

29. Hassan A.O., Kafai N.M., Dmitriev I.P., Fox J.M., Smith B.K., Harvey I.B., et al. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell. 2020; 183(1): 169–84.E13. https://doi.org/10.1016/j.cell.2020.08.026

30. Hassan A.O., Shrihari S., Gorman M.J., Ying B., Yuan D., Raju S., et al. An intranasal vaccine durably protects against SARSCoV-2 variants in mice. Cell Rep. 2021; 36(4): 109452. https://doi.org/10.1016/j.celrep.2021.109452

31. Hassan A.O., Feldmann F., Zhao H., Curiel D.T., Okumura A., Tang-Huau T.L., et al. A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2 infection in rhesus macaques. Cell Rep. Med. 2021; 2(4): 100230. https://doi.org/10.1016/j.xcrm.2021.100230

32. Doremalen N., Purushotham J.N., Schulz J.E., Holbrook M.G., Bushmaker T., Carmody F., et al. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARSCoV-2 D614G challenge in preclinical models. Sci. Transl. Med. 2021; 13(607): eabh0755. https://doi.org/10.1126/scitranslmed.abh0755

33. Gallo O., Locatello L.G., Mazzoni A., Novelli L., Annunziato F. The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunol. 2020; 14(2): 305–16. https://doi.org/10.1038/s41385-020-00359-2

34. Moreno-Fierros L., García-Silva I., Rosales-Mendoza S. Development of SARS-CoV-2 vaccines: should we focus on mucosal immunity? Expert. Opin. Biol. Ther. 2020; 20(8): 831–6. https://doi.org/10.1080/14712598.2020.1767062

35. Mudgal R., Nehul S., Tomar S. Prospects for mucosal vaccine: shutting the door on SARS-CoV-2. Hum. Vaccin. Immunother. 2020; 16(12): 2921–31. https://doi.org/10.1080/21645515.2020.1805992

Problems of Virology. 2021; 66: 399-408

Mucosal immunity and vaccines against viral infections

Zainutdinov S. S., Sivolobova G. F., Loktev V. B., Kochneva G. V.

https://doi.org/10.36233/0507-4088-82

Abstract

Mucosal immunity is realized through a structural and functional system called mucose-associated lymphoid tissue (MALT). MALT is subdivided into parts (clusters) depending on their anatomical location, but they all have a similar structure: mucus layer, epithelial tissue, lamina propria and lymphoid follicles. Plasma cells of MALT produce a unique type of immunoglobulins, IgA, which have the ability to polymerize. In mucosal immunization, the predominant form of IgA is a secretory dimer, sIgA, which is concentrated in large quantities in the mucosa. Mucosal IgA acts as a first line of defense and neutralizes viruses efficiently at the portal of entry, preventing infection of epithelial cells and generalization of infection. To date, several mucosal antiviral vaccines have been licensed, which include attenuated strains of the corresponding viruses: poliomyelitis, influenza, and rotavirus. Despite the tremendous success of these vaccines, in particular, in the eradication of poliomyelitis, significant disadvantages of using attenuated viral strains in their composition are the risk of reactogenicity and the possibility of reversion to a virulent strain during vaccination. Nevertheless, it is mucosal vaccination, which mimics a natural infection, is able to induce a fast and effective immune response and thus help prevent and possibly stop outbreaks of many viral infections. Currently, a number of intranasal vaccines based on a new vector approach are successfully undergoing clinical trials. In these vaccines, the safe viral vectors are used to deliver protectively significant immunogens of pathogenic viruses. The most tested vector for intranasal vaccines is adenovirus, and the most significant immunogen is SARSCoV-2 S protein. Mucosal vector vaccines against human respiratory syncytial virus and human immunodeficiency virus type 1 based on Sendai virus, which is able to replicate asymptomatically in cells of bronchial epithelium, are also being investigated.

References

1. Terauchi Y., Sano K., Ainai A., Saito S., Taga Y., Ogawa-Goto K., et al. IgA polymerization contributes to efficient virus neutralization on human upper respiratory mucosa after intranasal inactivated influenza vaccine administration. Hum. Vaccin. Immunother. 2018; 14(6): 1351–61. https://doi.org/10.1080/21645515.2018.1438791

2. Russell M.W., Moldoveanu Z., Ogra P.L., Mestecky J. Mucosal Immunity in COVID-19: A Neglected but Critical Aspect of SARSCoV-2 Infection. Front. Immunol. 2020; 11: 611337. https://doi.org/10.3389/fmmu.2020.611337

3. Miquel-Clopes E.G., Bentley J.P., Stewart S.R., Carding S.R. Mucosal vaccines and technology. Clin. Exp. Immunol. 2019; 196(2):205–14. https://doi.org/10.1111/cei.13285

4. Travis C.R. As plain as the nose on your face: The case for a nasal (mucosal) route of vaccine administration for Covid-19 disease prevention. Front. Immunol. 2020; 11: 591897. https://doi.org/10.3389/fmmu.2020.591897

5. Luss L.V., Shartanova N.V., Nazarova E.V. Allergicheskii i neallergicheskii rinit: effektivnost' bar'ernykh metodov. Effektivnaya farmakoterapiya. 2018; (17): 10–6.

6. Kozlov I.G. Mikrobiota, mukozal'nyi immunitet i antibiotiki: tonkosti vzaimodeistviya. Russkii meditsinskii zhurnal. 2018; 26(8-1): 19–27.

7. Ye L., Schnepf D., Staeheli P. Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat. Rev. Immunol. 2019; 19(10): 614–25. https://doi.org/10.1038/s41577-019-0182-z

8. Broggi A., Tan Y., Granucci F., Zanoni I. IFN-λ suppresses intestinal inflammation by non-translational regulation of neutrophil function. Nat. Immunol. 2017; 18(10): 1084–93. https://doi.org/10.1038/ni.3821

9. Fruitwala S., El-Naccache D.W., Chang T.L. Multifaceted immune functions of human defensins and underlying mechanisms. Semin. Cell Dev. Biol. 2019; 88: 163–72. https://doi.org/10.1016/j.semcdb.2018.02.023

10. Shchubelko R.V., Zuikova I.N., Shul'zhenko A.E. Mukozal'nyi immunitet verkhnikh dykhatel'nykh putei. Immunologiya. 2018; 39(1): 81–8. https://doi.org/10.18821/0206-4952-2018-39-1-81-88

11. Khaitov M.R., Il'ina N.I., Luss L.V., Babakhin A.A. Mukozal'nyi immunitet respiratornogo trakta i ego rol' pri professional'nykh patologiyakh. Meditsina ekstremal'nykh situatsii. 2017; 61(3): 8–24.

12. Coffey J.W., Gaiha G.D., Traverso G. Oral biologic delivery: advances towards oral subunit, DNA and mRNA vaccines and the potential for mass vaccination during pandemics. Annu. Rev. Pharmacol. Toxicol. 2021; 61: 517–40. https://doi.org/10.1146/annurev-pharmtox-030320-092348

13. Kumar N., Arthur C.P., Ciferri C., Matsumoto M.L. Structure of the secretory immunoglobulin A core. Science. 2020; 367(6481):1008–14. https://doi.org/10.1126/science.aaz5807

14. Hickey A.J., Garmise R.J. Dry powder nasal vaccines as an alternative to needle-based delivery. Crit. Rev. Ther. Drug Carr. Syst. 2009; 26(1): 1–27. https://doi.org/10.1615/critrevtherdrugcarriersyst.v26.i1.10

15. Bennett J.V., De Castro J.F., Valdespino-Gomez J.L., Garcia-Garcia M. de. L., Islas-Romero R., Echaniz-Aviles G., et al. Aerosolized measles and measles-rubella vaccines induce better measles antibody booster responses than injected vaccines: Randomized trials in Mexican schoolchildren. Bull. World Health Organ. 2002; 80(10):806–12. https://apps.who.int/iris/handle/10665/268635 (accessed November 14, 2021).

16. Hellfritzsc M., Scherlie R. Mucosal vaccination via the respiratory tract. Pharmaceutics. 2019; 11(8): 375. https://doi.org/10.3390/pharmaceutics11080375

17. Kozlowski P.A., Aldovini A. Mucosal vaccine approaches for prevention of HIV and SIV transmission. Curr. Immunol. Rev. 2019; 15(1): 102–22. https://doi.org/10.2174/1573395514666180605092054

18. Nyombayire J., Anzala O., Gazzard B., Karita E., Bergin F., Hayes P., et al. First-in-human evaluation of the safety and immunogenicity of an intranasally administered replication-competent Sendai virus-vectored HIV type 1 gag vaccine: Induction of potent T-cell or antibody responses in prime-boost regimens. J. Infect. Dis. 2017; 215(1): 95–104. https://doi.org/10.1093/infdis/jiw500

19. Jorba J., Diop O.M., Iber J., Henderson E., Zhao K., Sutter R.W., et al. Update on vaccine-derived polioviruses – worldwide, January 2017 – June 2018. MMWR Morb. Mortal. Wkly Rep. 2018; 67(42):1189–94. https://doi.org/10.15585/mmwr.mm6742a5

20. Dhere R., Yeolekar L., Kulkarni P., Menon R., Vaidya V., Ganguly M., et al. A pandemic influenza vaccine in India: From strain to sale within 12 months. Vaccine. 2011; 29(Suppl. 1): A16–21. https://doi.org/10.1016/j.vaccine.2011.04.119

21. Belshe R.B., Edwards K.M., Vesikari T., Black S.V., Walker R.E., Hultquist M., et al. Attenuated versus inactivated influenza vaccine in infants and young children. N. Engl. J. Med. 2007; 356(7): 685–96. https://doi.org/10.1056/NEJMoa065368

22. Murphy T.V., Gargiullo P.M., Massoudi M.S., Nelson D.B., Jumaan A.O., Okoro C.A., et al. Intussusception among infants given an oral rotavirus vaccine. N. Engl. J. Med. 2001; 344(8): 564–72. https://doi.org/10.1056/NEJM200102223440804

23. Rotavirus vaccines WHO position paper: January 2013 – Recommendations. Vaccine. 2013; 31(52): 6170–1. https://doi.org/10.1016/j.vaccine.2013.05.037

24. Adderson E., Branum K., Sealy R.E., Jones B.G., Surman S.L., Penkert R. Safety and immunogenicity of an intranasal Sendai virus-based human parainfluenza virus type 1 vaccine in 3- to 6-yearold children. Clin. Vaccine Immunol. 2015; 22(3): 298–303. https://doi.org/10.1128/CVI.00618-14

25. Huang F.S., Bernstein D.I., Slobod K.S., Portner A., Takimoto T., Russell S.J., et al. Safety and immunogenicity of an intranasal Sendai virus-based vaccine for human parainfluenza virus type I and respiratory syncytial virus (SeVRSV) in adults. Hum. Vaccin. Immunother. 2021; 17(2): 554–9. https://doi.org/10.1080/21645515.2020.1779517

26. Tasker S., O’Rourke A.N., Suyundikov A., Booth P.-G.J., Bart S., Krishnan V., et al. Safety and immunogenicity of a novel intranasal influenza vaccine (NasoVAX): A phase 2 randomized, controlled trial. Vaccines. 2021; 9(3): 224. https://doi.org/10.3390/vaccines9030224

27. Lund F.E., Randall T.D. Scent of a vaccine. Science. 2021; 373(6553): 397–9. https://doi.org/10.1126/science.abg9857

28. King R.G., Silva-Sanchez A., Peel J.N., Botta D., Dickson A.M., Pinto A.K., et al. Single-dose intranasal administration of AdCOVID elicits systemic and mucosal immunity against SARS-CoV-2 and fully protects mice from lethal challenge. Vaccines (Basel). 2021; 9(8): 881. https://doi.org/10.3390/vaccines9080881

29. Hassan A.O., Kafai N.M., Dmitriev I.P., Fox J.M., Smith B.K., Harvey I.B., et al. A single-dose intranasal ChAd vaccine protects upper and lower respiratory tracts against SARS-CoV-2. Cell. 2020; 183(1): 169–84.E13. https://doi.org/10.1016/j.cell.2020.08.026

30. Hassan A.O., Shrihari S., Gorman M.J., Ying B., Yuan D., Raju S., et al. An intranasal vaccine durably protects against SARSCoV-2 variants in mice. Cell Rep. 2021; 36(4): 109452. https://doi.org/10.1016/j.celrep.2021.109452

31. Hassan A.O., Feldmann F., Zhao H., Curiel D.T., Okumura A., Tang-Huau T.L., et al. A single intranasal dose of chimpanzee adenovirus-vectored vaccine protects against SARS-CoV-2 infection in rhesus macaques. Cell Rep. Med. 2021; 2(4): 100230. https://doi.org/10.1016/j.xcrm.2021.100230

32. Doremalen N., Purushotham J.N., Schulz J.E., Holbrook M.G., Bushmaker T., Carmody F., et al. Intranasal ChAdOx1 nCoV-19/AZD1222 vaccination reduces viral shedding after SARSCoV-2 D614G challenge in preclinical models. Sci. Transl. Med. 2021; 13(607): eabh0755. https://doi.org/10.1126/scitranslmed.abh0755

33. Gallo O., Locatello L.G., Mazzoni A., Novelli L., Annunziato F. The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunol. 2020; 14(2): 305–16. https://doi.org/10.1038/s41385-020-00359-2

34. Moreno-Fierros L., García-Silva I., Rosales-Mendoza S. Development of SARS-CoV-2 vaccines: should we focus on mucosal immunity? Expert. Opin. Biol. Ther. 2020; 20(8): 831–6. https://doi.org/10.1080/14712598.2020.1767062

35. Mudgal R., Nehul S., Tomar S. Prospects for mucosal vaccine: shutting the door on SARS-CoV-2. Hum. Vaccin. Immunother. 2020; 16(12): 2921–31. https://doi.org/10.1080/21645515.2020.1805992