Журналов:     Статей:        

Вопросы вирусологии. 2021; 66: 241-251

Потенциал применения явления РНК-интерференции в терапии новой коронавирусной инфекции COVID-1

Пашков Е. А., Корчевая Е. Р., Файзулоев Е. Б., Свитич О. А., Пашков Е. П., Нечаев Д. Н., Зверев В. В.

https://doi.org/10.36233/0507-4088-61

Аннотация

Новая коронавирусная инфекция на сегодняшний день привела к гибели свыше 4 млн человек и представляет собой наиболее значимую проблему мирового здравоохранения. Первый зафиксированный случай COVID-19 отмечен в Китайской Народной Республике (КНР) (г. Ухань) в декабре 2019 г., а уже 11 марта 2020 г. Всемирная организация здравоохранения (ВОЗ) объявила пандемию в связи с быстрым распространением этой инфекции. Помимо поражения органов дыхания её возбудитель SARS-CoV-2 способен вызывать тяжёлые осложнения, которые могут затронуть практически все системы организма. В связи с недостаточной эффективностью терапии COVID-19 сохраняется острая необходимость в разработке эффективных специфических лекарственных средств. Среди известных подходов к созданию противовирусных препаратов весьма перспективным направлением является получение соединений, действие которых опосредовано механизмом РНК-интерференции. РНК-интерференция – регуляторный путь, при котором молекула малой интерферирующей РНК (миРНК; small interfering RNA, siRNA) подавляет экспрессию гена-мишени. Это явление позволяет быстро создать целую серию высокоэффективных противовирусных веществ при условии, что известна только последовательность матричной РНК (мРНК, mRNA) целевого вирусного бел[1]ка. В настоящем обзоре рассматривается возможность клинического применения миРНК, направленных 
на подавление репродукции нового коронавируса SARS-CoV-2, с учётом опыта подобных исследований на моделях инфицирования SARS-CoV и MERS-CoV. Важно помнить, что эффективность использования молекул миРНК, нацеленных на вирусные гены, может снизиться из-за формирования к ним устойчивости патогена. В связи с этим особого внимания заслуживает дизайн миРНК, нацеленных на клеточные факторы, необходимые для репродукции SARS-CoV-2.

Список литературы

1. WHO. Coronavirus (COVID-19) Dashboard. Coronavirus Disease (COVID-19) Dashboard. Available at: https://covid19.who.int/ (accessed July 29, 2021).

2. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020; 5(4): 536–44. https://doi. org/10.1038/s41564-020-0695-z

3. WHO Director-General’s opening remarks at the media briefing on COVID-19 – 11 March 2020. Available at: https://www.who.int/ru/dg/ speeches/detail/who-director-general-s-opening-remarks-at-the-me dia-briefing-on-covid-19---11-march-2020 (accessed July 29, 2021).

4. Hanff T.C., Harhay M.O., Brown T.S., Cohen J.B., Mohareb A.M. Is there an association between COVID-19 mortality and the renin angiotensin system? A call for epidemiologic investigations. Clin. Infect. Dis. 2020; 71(15): 870–4. https://doi.org/10.1093/cid/ciaa329

5. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497–506. https://doi.org/10.1016/ s0140-6736(20)30183-5

6. Wu J., Li J., Zhu G., Zhang Y., Bi Z., Yu Y., et al. Clinical features of maintenance Hemodialysis patients with 2019 novel Coronavi rus-infected pneumonia in Wuhan, China. Clin. J. Am. Soc. Nephrol. 2020; 15(8): 1139–45. https://doi.org/10.2215/cjn.04160320

7. Mao L., Jin H., Wang M., Hu Y., Chen S., He Q., et al. Neurologic manifestations of hospitalized patients with Coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020; 77(6): 683–90. https:// doi.org/10.1001/jamaneurol.2020.1127

8. Perico L., Benigni A., Remuzzi G. Should COVID-19 concern nephrologists? Why and to what extent? The emerging impasse of angiotensin blockade. Nephron. 2020; 144(5): 213–21. https://doi. org/10.1159/000507305

9. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020; 8(4): 420–2. https://doi. org/10.1016/s2213-2600(20)30076-x

10. Jordan R.E., Adab P., Cheng K.K. Covid-19: risk factors for severe disease and death. BMJ. 2020; 368: m1198. https://doi.org/10.1136/ bmj.m1198

11. Coronavirus disease 2019 (COVID-19). Complications. Available at: https://bestpractice.bmj.com/topics/en-gb/3000201/complications (accessed July 29, 2021).

12. Yasuhara J., Kuno T., Takagi H., Sumitomo N. Clinical characteristics of COVID-19 in children: A systematic review. Pediatr. Pulmonol. 2020; 55(10): 2565–75. https://doi.org/10.1002/ppul.24991

13. Panigrahy N., Policarpio J., Ramanathan R. Multisystem inflammatory syndrome in children and SARS-CoV-2: A scoping re view. J. Pediatr. Rehabil. Med. 2020; 13(3): 301–16. https://doi. org/10.3233/prm-200794

14. García-Salido A., de Carlos Vicente J.C., Belda Hofheinz S., Balcells Ramírez J., Slöcker Barrio M., Leóz Gordillo I., et al. Spanish Pediatric Intensive Care Society working group on SARS-CoV-2 infection. Severe manifestations of SARS-CoV-2 in children and adolescents: from COVID-19 pneumonia to multisystem inflammatory syndrome: a multicentre study in pediatric intensive care units in Spain. Crit. Care. 2020; 24(1): 666. https://doi.org/10.1186/ s13054-020-03332-4

15. Cao B., Wang Y., Wen D., Liu W., Wang J., Fan G., et al. A trial of Lopinavir–Ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med. 2020; 382(19): 1787–99. https://doi.org/10.1056/ nejmoa2001282

16. Joshi S., Parkar J., Ansari A., Vora A., Talwar D., Tiwaskar M., et al. Role of favipiravir in the treatment of COVID-19. Int. J. Infect. Dis. 2021; 102: 501–8. https://doi.org/10.1016/j.ijid.2020.10.069

17. Cavalcanti A.B., Zampieri F.G., Rosa R.G., Azevedo L.C.P., Veiga V.C., Avezum A., et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate Covid-19. N. Engl. J. Med. 2020; 383(21): 2041–52. https://doi.org/10.1056/NEJMoa2019014

18. Sa Ribero M., Jouvenet N., Dreux M., Nisole S. Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathog. 2020; 16(7): e1008737. https://doi.org/10.1371/journal.ppat.1008737

19. Онищенко Г.Г., Сизикова Т.Е., Лебедев В.Н., Борисевич С.В. Анализ перспективных направлений создания вакцин против COVID-19. БИОпрепараты. Профилактика, диагностика, лечение. 2020; 20(4): 216–27. https://doi.org/10.30895/2221- 996X-2020-20-4-216-227

20. Glover R.E., Urquhart R., Lukawska J., Blumenthal K.G. Vaccinating against covid-19 in people who report allergies. BMJ. 2021; 372: n120. https://doi.org/10.1136/bmj.n120

21. Smith M. Vaccine safety: medical contraindications, myths, and risk communication. Pediatr. Rev. 2015; 36(6): 227–38. https://doi. org/10.1542/pir.36-6-227

22. Gallup. One in Three Americans Would Not Get COVID-19 Vaccine. Available at: https://news.gallup.com/poll/317018/one three-americans-not-covid-vaccine.aspx (accessed July 29, 2021).

23. da Costa C.B.P., Martins F.J., da Cunha L.E.R., Ratcliffe N.A., Cisne de Paula R., Castro H.C. COVID-19 and Hyperimmune sera: A feasible plan B to fight against coronavirus. Int. Immunopharmacol. 2021; 90: 107220. https://doi.org/10.1016/j.intimp.2020.107220

24. Weng Y., Xiao H., Zhang J., Liang X.J., Huang Y. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol. Adv. 2019; 37(5): 801–25. https://doi.org/10.1016/j.biotechadv.2019.04.012

25. Janssen H.L., Reesink H.W., Lawitz E.J., Zeuzem S., Rodriguez Torres M., Patel K., et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 2013; 368(18): 1685–94. https://doi. org/10.1056/nejmoa1209026

26. Qureshi A., Tantray V.G., Kirmani A.R., Ahangar A.G. A review on current status of antiviral siRNA. Rev. Med. Virol. 2018; 28(4): e1976. https://doi.org/10.1002/rmv.1976

27. Hoy S.M. Patisiran: first global approval. Drugs. 2018; 78(15): 1625–31. https://doi.org/10.1007/s40265-018-0983-6

28. Center for drug evaluation and research. Multi-discipline review. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/ nda/2019/212194Orig1s000MultidisciplineR.pdf (accessed July 29, 2021).

29. Agrawal N., Dasaradhi P.V., Mohmmed A., Malhotra P., Bhatnagar R.K., Mukherjee S.K. RNA interference: biology, mechanism, and applications. Microbiol. Mol. Biol. Rev. 2003; 67(4): 657

30. Fire A., Xu S.Q., Montgomery M.K., Kostas S.A., Driver S.E., Mel lo C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998; 391(6669): 806–11. https://doi.org/10.1038/35888

31. Пашков Е.А., Файзулоев Е.Б., Свитич О.А., Сергеев О.В., Зверев В.В. Перспектива создания специфических противогриппозных препаратов на основе синтетических малых интерферирующих РНК. Вопросы вирусологии. 2020; 65(4): 182–90. https://doi.org/10.36233/0507-4088-2020-65-4-182-190

32. Kannan S., Shaik Syed Ali P., Sheeza A., Hemalatha K. COVID-19 (Novel Coronavirus 2019) – recent trends. Eur. Rev. Med. Pharmacol. Sci. 2020; 24(4): 2006–11. https://doi.org/10.26355/ eurrev_202002_20378

33. Nur S.M., Hasan M.A., Amin M.A., Hossain M., Sharmin T. Design of potential RNAi (miRNA and siRNA) molecules for Middle East respiratory syndrome coronavirus (MERS-CoV) gene silencing by computational method. Interdiscip. Sci. 2015; 7(3): 257–65. https:// doi.org/10.1007/s12539-015-0266-9

34. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798): 270–3. https://doi. org/10.1038/s41586-020-2012-7

35. Meng B., Lui Y.W., Meng S., Cao C., Hu Y. Identification of effective siRNA blocking the expression of SARS viral envelope E and RDRP genes. Mol. Biotechnol. 2006; 33(2): 141–8. https://doi. org/10.1385/mb:33:2:141

36. Wang Y., Cao Y.L., Yang F., Zhang Y., Wang S.H., Liu L. Small interfering RNA effectively inhibits the expression of SARS corona virus membrane gene at two novel targeting sites. Molecules. 2010; 15(10): 7197–207. https://doi.org/10.3390/molecules15107197

37. Zhao P., Qin Z.L., Ke J.S., Lu Y., Liu M., Pan W., et al. Small interfering RNA inhibits SARS-CoV nucleocapsid gene expression in cultured cells and mouse muscles. FEBS Lett. 2005; 579(11): 2404–10. https://doi.org/10.1016/j.febslet.2005.02.080

38. Wang Z., Ren L., Zhao X., Hung T., Meng A., Wang J., et al. Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs in mammalian cells. J. Virol. 2004; 78(14): 7523–7. https://doi.org/10.1128/jvi.78.14.7523-7527.2004

39. Shi Y., Yang D.H., Xiong J., Jia J., Huang B., Jin Y.X. Inhibition of genes expression of SARS coronavirus by synthetic small interfer ing RNAs. Cell Res. 2005; 15(3): 193–200. https://doi.org/10.1038/ sj.cr.7290286

40. Xiao X., Dimitrov D.S. The SARS-CoV S glycoprotein. Cell Mol. Life Sci. 2004; 61(19-20): 2428–30. https://doi.org/10.1007/ s00018-004-4257-y

41. Wu C.J., Huang H.W., Liu C.Y., Hong C.F., Chan Y.L. Inhibition of SARS-CoV replication by siRNA. Antiviral. Res. 2005; 65(1): 45–8. https://doi.org/10.1016/j.antiviral.2004.09.005

42. Qin Z.L., Zhao P., Zhang X.L., Yu J.G., Cao M.M., Zhao L.J., et al. Silencing of SARS-CoV spike gene by small interfering RNA in HEK 293T cells. Biochem. Biophys. Res. Commun. 2004; 324(4): 1186–93. https://doi.org/10.1016/j.bbrc.2004.09.180

43. Chen Z., Zhang L., Qin C., Ba L., Yi C.E., Zhang F., et al. Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region. J. Virol. 2005; 79(5): 2678–88. https://doi.org/10.1128/ jvi.79.5.2678-2688.2005

44. Qin C., Wang J., Wei Q., She M., Marasco W.A., Jiang H., et al. An animal model of SARS produced by infection of Macaca mulatta with SARS coronavirus. J. Pathol. 2005; 206(3): 251-9. https://doi. org/10.1002/path.1769

45. Haasnoot P.C., Cupac D., Berkhout B. Inhibition of virus replica tion by RNA interference. J. Biomed. Sci. 2003; 10(6 Pt. 1): 607–16. https://doi.org/10.1159/000073526

46. Zheng B.J., Guan Y., Tang Q., Du C., Xie F.Y., He M.L., et al. Prophylactic and therapeutic effects of small interfering RNA targeting SARS-coronavirus. Antivir. Ther. 2004; 9(3): 365–74.

47. Ghanayem N.S., Yee L., Nelson T., Wong S., Gordon J.B., Marcdante K., et al. Stability of dopamine and epinephrine solutions up to 84 hours. Pediatr. Crit. Care. Med. 2001; 2(4): 315–7. https://doi. org/10.1097/00130478-200110000-00005

48. Thomas N.J., Hollenbeak C.S., Lucking S.E., Willson D.F. Cost-effectiveness of exogenous surfactant therapy in pediat ric patients with acute hypoxemic respiratory failure. Pediatr. Crit. Care Med. 2005; 6(2): 160–5. https://doi.org/10.1097/01. pcc.0000154965.08432.16

49. Li B.J., Tang Q., Cheng D., Qin C., Xie F.Y., Wei Q., et al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat. Med. 2005; 11(9): 944–51. https://doi.org/10.1038/nm1280

50. Åkerström S., Mirazimi A., Tan Y.J. Inhibition of SARS-CoV rep lication cycle by small interference RNAs silencing specific SARS proteins, 7a/7b, 3a/3b and S. Antiviral Res. 2007; 73(3): 219–27. https://doi.org/10.1016/j.antiviral.2006.10.008

51. Gallicano G.I., Casey J.L., Fu J., Mahapatra S. Molecular targeting of vulnerable RNA sequences in SARS CoV-2: identifying clinical feasibility. Gene Ther. 2020; 1–8. https://doi.org/10.1038/s41434- 020-00210-0

52. Sohrab S.S. et al. Antiviral Activity Evaluation of siRNAs Against MERS-CoV in Vero Cell Culture. Applied Microbiology. London; 2020.

53. Millet J.K., Whittaker G.R. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activa tion of the spike protein. Proc. Natl. Acad. Sci. USA. 2014; 111(42): 15214–9. https://doi.org/10.1073/pnas.1407087111

54. Li W., Moore M.J., Vasilieva N., Sui J., Wong S.K., Berne M.A., et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426(6965): 450–4. https://doi. org/10.1038/nature02145

55. Lu C.Y., Huang H.Y., Yang T.H., Chang L.Y., Lee C.Y., Huang L.M. siRNA silencing of angiotensin-converting enzyme 2 reduced severe acute respiratory syndrome-associated coronavirus replications in Vero E6 cells. Eur. J. Clin. Microbiol. Infect. Dis. 2008; 27(8): 709–15. https://doi.org/10.1007/s10096-008-0495-5

56. Hanff T.C., Harhay M.O., Brown T.S., Cohen J.B., Mohareb A.M. Is There an Association Between COVID-19 Mortality and the Re nin-Angiotensin System? A Call for Epidemiologic Investigations. Clin. Infect. Dis. 2020; 71(15): 870–4. https://doi.org/10.1093/cid/ ciaa329

57. Cheng H., Wang Y., Wang G.Q. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J. Med. Virol. 2020; 92(7): 726–30. https://doi. org/10.1002/jmv.25785

58. de Wilde A.H., Wannee K.F., Scholte F.E., Goeman J.J., Ten Dijke P., Snijder E.J., et al. A kinome-wide small interfering RNA screen identifies proviral and antiviral host factors in severe acute respiratory syndrome coronavirus replication, including double-stranded RNA-activated protein kinase and early secretory pathway proteins. J. Virol. 2015; 89(16): 8318–33. https://doi.org/10.1128/jvi.01029-15

59. de Wilde A.H., Snijder E.J., Kikkert M., van Hemert M.J. Host factors in coronavirus replication. Curr. Top. Microbiol. Immunol. 2018; 419: 1–42. https://doi.org/10.1007/82_2017_25

Problems of Virology. 2021; 66: 241-251

Potential of application of the RNA interference phenomenon in the treatment of new coronavirus infection COVID-19

Pashkov E. A., Korchevaya E. R., Faizuloev E. B., Svitich O. A., Pashkov E. P., Nechaev D. N., Zverev V. V.

https://doi.org/10.36233/0507-4088-61

Abstract

COVID-19 has killed more than 4 million people to date and is the most significant global health problem. The first recorded case of COVID-19 had been noted in Wuhan, China in December 2019, and already on March 11, 2020, World Health Organization declared a pandemic due to the rapid spread of this infection. In addition to the damage to the respiratory system, SARS-CoV-2 is capable of causing severe complications that can affect almost all organ systems. Due to the insufficient effectiveness of the COVID-19 therapy, there is an urgent need to develop effective specific medicines. Among the known approaches to the creation of antiviral drugs, a very promising direction is the development of drugs whose action is mediated by the mechanism of RNA interference (RNAi). A small interfering RNA (siRNA) molecule suppresses the expression of a target gene in this regulatory pathway. The phenomenon of RNAi makes it possible to quickly create a whole series of highly effective antiviral drugs, if the matrix RNA (mRNA) sequence of the target viral protein is known. This review examines the possibility of clinical application of siRNAs aimed at suppressing reproduction of the SARS-CoV-2, taking into account the experience of similar studies using SARS-CoV and MERS-CoV infection models. It is important to remember that the effectiveness of siRNA molecules targeting viral genes may decrease due to the formation of viral resistance. In this regard, the design of siRNAs targeting the cellular factors necessary for the reproduction of SARS-CoV-2 deserves special attention.

References

1. WHO. Coronavirus (COVID-19) Dashboard. Coronavirus Disease (COVID-19) Dashboard. Available at: https://covid19.who.int/ (accessed July 29, 2021).

2. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 2020; 5(4): 536–44. https://doi. org/10.1038/s41564-020-0695-z

3. WHO Director-General’s opening remarks at the media briefing on COVID-19 – 11 March 2020. Available at: https://www.who.int/ru/dg/ speeches/detail/who-director-general-s-opening-remarks-at-the-me dia-briefing-on-covid-19---11-march-2020 (accessed July 29, 2021).

4. Hanff T.C., Harhay M.O., Brown T.S., Cohen J.B., Mohareb A.M. Is there an association between COVID-19 mortality and the renin angiotensin system? A call for epidemiologic investigations. Clin. Infect. Dis. 2020; 71(15): 870–4. https://doi.org/10.1093/cid/ciaa329

5. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497–506. https://doi.org/10.1016/ s0140-6736(20)30183-5

6. Wu J., Li J., Zhu G., Zhang Y., Bi Z., Yu Y., et al. Clinical features of maintenance Hemodialysis patients with 2019 novel Coronavi rus-infected pneumonia in Wuhan, China. Clin. J. Am. Soc. Nephrol. 2020; 15(8): 1139–45. https://doi.org/10.2215/cjn.04160320

7. Mao L., Jin H., Wang M., Hu Y., Chen S., He Q., et al. Neurologic manifestations of hospitalized patients with Coronavirus disease 2019 in Wuhan, China. JAMA Neurol. 2020; 77(6): 683–90. https:// doi.org/10.1001/jamaneurol.2020.1127

8. Perico L., Benigni A., Remuzzi G. Should COVID-19 concern nephrologists? Why and to what extent? The emerging impasse of angiotensin blockade. Nephron. 2020; 144(5): 213–21. https://doi. org/10.1159/000507305

9. Xu Z., Shi L., Wang Y., Zhang J., Huang L., Zhang C., et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020; 8(4): 420–2. https://doi. org/10.1016/s2213-2600(20)30076-x

10. Jordan R.E., Adab P., Cheng K.K. Covid-19: risk factors for severe disease and death. BMJ. 2020; 368: m1198. https://doi.org/10.1136/ bmj.m1198

11. Coronavirus disease 2019 (COVID-19). Complications. Available at: https://bestpractice.bmj.com/topics/en-gb/3000201/complications (accessed July 29, 2021).

12. Yasuhara J., Kuno T., Takagi H., Sumitomo N. Clinical characteristics of COVID-19 in children: A systematic review. Pediatr. Pulmonol. 2020; 55(10): 2565–75. https://doi.org/10.1002/ppul.24991

13. Panigrahy N., Policarpio J., Ramanathan R. Multisystem inflammatory syndrome in children and SARS-CoV-2: A scoping re view. J. Pediatr. Rehabil. Med. 2020; 13(3): 301–16. https://doi. org/10.3233/prm-200794

14. García-Salido A., de Carlos Vicente J.C., Belda Hofheinz S., Balcells Ramírez J., Slöcker Barrio M., Leóz Gordillo I., et al. Spanish Pediatric Intensive Care Society working group on SARS-CoV-2 infection. Severe manifestations of SARS-CoV-2 in children and adolescents: from COVID-19 pneumonia to multisystem inflammatory syndrome: a multicentre study in pediatric intensive care units in Spain. Crit. Care. 2020; 24(1): 666. https://doi.org/10.1186/ s13054-020-03332-4

15. Cao B., Wang Y., Wen D., Liu W., Wang J., Fan G., et al. A trial of Lopinavir–Ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med. 2020; 382(19): 1787–99. https://doi.org/10.1056/ nejmoa2001282

16. Joshi S., Parkar J., Ansari A., Vora A., Talwar D., Tiwaskar M., et al. Role of favipiravir in the treatment of COVID-19. Int. J. Infect. Dis. 2021; 102: 501–8. https://doi.org/10.1016/j.ijid.2020.10.069

17. Cavalcanti A.B., Zampieri F.G., Rosa R.G., Azevedo L.C.P., Veiga V.C., Avezum A., et al. Hydroxychloroquine with or without azithromycin in mild-to-moderate Covid-19. N. Engl. J. Med. 2020; 383(21): 2041–52. https://doi.org/10.1056/NEJMoa2019014

18. Sa Ribero M., Jouvenet N., Dreux M., Nisole S. Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathog. 2020; 16(7): e1008737. https://doi.org/10.1371/journal.ppat.1008737

19. Onishchenko G.G., Sizikova T.E., Lebedev V.N., Borisevich S.V. Analiz perspektivnykh napravlenii sozdaniya vaktsin protiv COVID-19. BIOpreparaty. Profilaktika, diagnostika, lechenie. 2020; 20(4): 216–27. https://doi.org/10.30895/2221- 996X-2020-20-4-216-227

20. Glover R.E., Urquhart R., Lukawska J., Blumenthal K.G. Vaccinating against covid-19 in people who report allergies. BMJ. 2021; 372: n120. https://doi.org/10.1136/bmj.n120

21. Smith M. Vaccine safety: medical contraindications, myths, and risk communication. Pediatr. Rev. 2015; 36(6): 227–38. https://doi. org/10.1542/pir.36-6-227

22. Gallup. One in Three Americans Would Not Get COVID-19 Vaccine. Available at: https://news.gallup.com/poll/317018/one three-americans-not-covid-vaccine.aspx (accessed July 29, 2021).

23. da Costa C.B.P., Martins F.J., da Cunha L.E.R., Ratcliffe N.A., Cisne de Paula R., Castro H.C. COVID-19 and Hyperimmune sera: A feasible plan B to fight against coronavirus. Int. Immunopharmacol. 2021; 90: 107220. https://doi.org/10.1016/j.intimp.2020.107220

24. Weng Y., Xiao H., Zhang J., Liang X.J., Huang Y. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol. Adv. 2019; 37(5): 801–25. https://doi.org/10.1016/j.biotechadv.2019.04.012

25. Janssen H.L., Reesink H.W., Lawitz E.J., Zeuzem S., Rodriguez Torres M., Patel K., et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 2013; 368(18): 1685–94. https://doi. org/10.1056/nejmoa1209026

26. Qureshi A., Tantray V.G., Kirmani A.R., Ahangar A.G. A review on current status of antiviral siRNA. Rev. Med. Virol. 2018; 28(4): e1976. https://doi.org/10.1002/rmv.1976

27. Hoy S.M. Patisiran: first global approval. Drugs. 2018; 78(15): 1625–31. https://doi.org/10.1007/s40265-018-0983-6

28. Center for drug evaluation and research. Multi-discipline review. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/ nda/2019/212194Orig1s000MultidisciplineR.pdf (accessed July 29, 2021).

29. Agrawal N., Dasaradhi P.V., Mohmmed A., Malhotra P., Bhatnagar R.K., Mukherjee S.K. RNA interference: biology, mechanism, and applications. Microbiol. Mol. Biol. Rev. 2003; 67(4): 657

30. Fire A., Xu S.Q., Montgomery M.K., Kostas S.A., Driver S.E., Mel lo C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998; 391(6669): 806–11. https://doi.org/10.1038/35888

31. Pashkov E.A., Faizuloev E.B., Svitich O.A., Sergeev O.V., Zverev V.V. Perspektiva sozdaniya spetsificheskikh protivogrippoznykh preparatov na osnove sinteticheskikh malykh interferiruyushchikh RNK. Voprosy virusologii. 2020; 65(4): 182–90. https://doi.org/10.36233/0507-4088-2020-65-4-182-190

32. Kannan S., Shaik Syed Ali P., Sheeza A., Hemalatha K. COVID-19 (Novel Coronavirus 2019) – recent trends. Eur. Rev. Med. Pharmacol. Sci. 2020; 24(4): 2006–11. https://doi.org/10.26355/ eurrev_202002_20378

33. Nur S.M., Hasan M.A., Amin M.A., Hossain M., Sharmin T. Design of potential RNAi (miRNA and siRNA) molecules for Middle East respiratory syndrome coronavirus (MERS-CoV) gene silencing by computational method. Interdiscip. Sci. 2015; 7(3): 257–65. https:// doi.org/10.1007/s12539-015-0266-9

34. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798): 270–3. https://doi. org/10.1038/s41586-020-2012-7

35. Meng B., Lui Y.W., Meng S., Cao C., Hu Y. Identification of effective siRNA blocking the expression of SARS viral envelope E and RDRP genes. Mol. Biotechnol. 2006; 33(2): 141–8. https://doi. org/10.1385/mb:33:2:141

36. Wang Y., Cao Y.L., Yang F., Zhang Y., Wang S.H., Liu L. Small interfering RNA effectively inhibits the expression of SARS corona virus membrane gene at two novel targeting sites. Molecules. 2010; 15(10): 7197–207. https://doi.org/10.3390/molecules15107197

37. Zhao P., Qin Z.L., Ke J.S., Lu Y., Liu M., Pan W., et al. Small interfering RNA inhibits SARS-CoV nucleocapsid gene expression in cultured cells and mouse muscles. FEBS Lett. 2005; 579(11): 2404–10. https://doi.org/10.1016/j.febslet.2005.02.080

38. Wang Z., Ren L., Zhao X., Hung T., Meng A., Wang J., et al. Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs in mammalian cells. J. Virol. 2004; 78(14): 7523–7. https://doi.org/10.1128/jvi.78.14.7523-7527.2004

39. Shi Y., Yang D.H., Xiong J., Jia J., Huang B., Jin Y.X. Inhibition of genes expression of SARS coronavirus by synthetic small interfer ing RNAs. Cell Res. 2005; 15(3): 193–200. https://doi.org/10.1038/ sj.cr.7290286

40. Xiao X., Dimitrov D.S. The SARS-CoV S glycoprotein. Cell Mol. Life Sci. 2004; 61(19-20): 2428–30. https://doi.org/10.1007/ s00018-004-4257-y

41. Wu C.J., Huang H.W., Liu C.Y., Hong C.F., Chan Y.L. Inhibition of SARS-CoV replication by siRNA. Antiviral. Res. 2005; 65(1): 45–8. https://doi.org/10.1016/j.antiviral.2004.09.005

42. Qin Z.L., Zhao P., Zhang X.L., Yu J.G., Cao M.M., Zhao L.J., et al. Silencing of SARS-CoV spike gene by small interfering RNA in HEK 293T cells. Biochem. Biophys. Res. Commun. 2004; 324(4): 1186–93. https://doi.org/10.1016/j.bbrc.2004.09.180

43. Chen Z., Zhang L., Qin C., Ba L., Yi C.E., Zhang F., et al. Recombinant modified vaccinia virus Ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region. J. Virol. 2005; 79(5): 2678–88. https://doi.org/10.1128/ jvi.79.5.2678-2688.2005

44. Qin C., Wang J., Wei Q., She M., Marasco W.A., Jiang H., et al. An animal model of SARS produced by infection of Macaca mulatta with SARS coronavirus. J. Pathol. 2005; 206(3): 251-9. https://doi. org/10.1002/path.1769

45. Haasnoot P.C., Cupac D., Berkhout B. Inhibition of virus replica tion by RNA interference. J. Biomed. Sci. 2003; 10(6 Pt. 1): 607–16. https://doi.org/10.1159/000073526

46. Zheng B.J., Guan Y., Tang Q., Du C., Xie F.Y., He M.L., et al. Prophylactic and therapeutic effects of small interfering RNA targeting SARS-coronavirus. Antivir. Ther. 2004; 9(3): 365–74.

47. Ghanayem N.S., Yee L., Nelson T., Wong S., Gordon J.B., Marcdante K., et al. Stability of dopamine and epinephrine solutions up to 84 hours. Pediatr. Crit. Care. Med. 2001; 2(4): 315–7. https://doi. org/10.1097/00130478-200110000-00005

48. Thomas N.J., Hollenbeak C.S., Lucking S.E., Willson D.F. Cost-effectiveness of exogenous surfactant therapy in pediat ric patients with acute hypoxemic respiratory failure. Pediatr. Crit. Care Med. 2005; 6(2): 160–5. https://doi.org/10.1097/01. pcc.0000154965.08432.16

49. Li B.J., Tang Q., Cheng D., Qin C., Xie F.Y., Wei Q., et al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat. Med. 2005; 11(9): 944–51. https://doi.org/10.1038/nm1280

50. Åkerström S., Mirazimi A., Tan Y.J. Inhibition of SARS-CoV rep lication cycle by small interference RNAs silencing specific SARS proteins, 7a/7b, 3a/3b and S. Antiviral Res. 2007; 73(3): 219–27. https://doi.org/10.1016/j.antiviral.2006.10.008

51. Gallicano G.I., Casey J.L., Fu J., Mahapatra S. Molecular targeting of vulnerable RNA sequences in SARS CoV-2: identifying clinical feasibility. Gene Ther. 2020; 1–8. https://doi.org/10.1038/s41434- 020-00210-0

52. Sohrab S.S. et al. Antiviral Activity Evaluation of siRNAs Against MERS-CoV in Vero Cell Culture. Applied Microbiology. London; 2020.

53. Millet J.K., Whittaker G.R. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activa tion of the spike protein. Proc. Natl. Acad. Sci. USA. 2014; 111(42): 15214–9. https://doi.org/10.1073/pnas.1407087111

54. Li W., Moore M.J., Vasilieva N., Sui J., Wong S.K., Berne M.A., et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426(6965): 450–4. https://doi. org/10.1038/nature02145

55. Lu C.Y., Huang H.Y., Yang T.H., Chang L.Y., Lee C.Y., Huang L.M. siRNA silencing of angiotensin-converting enzyme 2 reduced severe acute respiratory syndrome-associated coronavirus replications in Vero E6 cells. Eur. J. Clin. Microbiol. Infect. Dis. 2008; 27(8): 709–15. https://doi.org/10.1007/s10096-008-0495-5

56. Hanff T.C., Harhay M.O., Brown T.S., Cohen J.B., Mohareb A.M. Is There an Association Between COVID-19 Mortality and the Re nin-Angiotensin System? A Call for Epidemiologic Investigations. Clin. Infect. Dis. 2020; 71(15): 870–4. https://doi.org/10.1093/cid/ ciaa329

57. Cheng H., Wang Y., Wang G.Q. Organ-protective effect of angiotensin-converting enzyme 2 and its effect on the prognosis of COVID-19. J. Med. Virol. 2020; 92(7): 726–30. https://doi. org/10.1002/jmv.25785

58. de Wilde A.H., Wannee K.F., Scholte F.E., Goeman J.J., Ten Dijke P., Snijder E.J., et al. A kinome-wide small interfering RNA screen identifies proviral and antiviral host factors in severe acute respiratory syndrome coronavirus replication, including double-stranded RNA-activated protein kinase and early secretory pathway proteins. J. Virol. 2015; 89(16): 8318–33. https://doi.org/10.1128/jvi.01029-15

59. de Wilde A.H., Snijder E.J., Kikkert M., van Hemert M.J. Host factors in coronavirus replication. Curr. Top. Microbiol. Immunol. 2018; 419: 1–42. https://doi.org/10.1007/82_2017_25