Журналов:     Статей:        

Вопросы вирусологии. 2021; 66: 112-122

Летучие мыши субтропической зоны Краснодарского края России как возможный резервуар зоонозных вирусных инфекций

Леншин С. В., Ромашин А. В., Вышемирский О. И., Львов Д. К., Альховский С. В.

https://doi.org/10.36233/0507-4088-41

Аннотация

Новые и возвращающиеся инфекции представляют серьёзную угрозу для мирового здравоохранения. Появление вируса SARS-CoV-2 и вызванная им пандемия COVID-19 продемонстрировали важность изучения и контроля зоонозных вирусных агентов непосредственно в природных очагах. Для SARS-подобных коронавирусов, а также множества других возбудителей зоонозов, включая геморрагические лихорадки и бешенство, основным резервуаром являются подковоносые летучие мыши (ЛМ) (Rhinolophus spp.), широко распространённые в Евразии и Африке. Ареал их захватывает также южные регионы России, включая Северный Кавказ и Крым. Большие колонии этих животных располагаются на территории Сочинского национального парка (СНП; субтропическая зона Краснодарского края, район Большого Сочи, Северный Кавказ). Всего по данным многолетних наблюдений здесь насчитывается до 23 видов ЛМ, включая большого (Rh. ferrumequinum), малого (Rh. hipposideros) и южного (Rh. euryale) подковоносов.
В настоящем обзоре приведены сведения о зоонозных вирусах, которые ассоциированы с видами ЛМ, обитающих на территории субтропической зоны Краснодарского края Российской Федерации, и проведён анализ возможной роли представителей семейства рукокрылых (Chiroptera) как природного резервуара новых и возвращающихся инфекций. Изучение циркуляции зоонозных вирусов в популяциях ЛМ служит важным элементом мониторинга вирусных популяций в естественных очагах.

Список литературы

1. Simmons N.B. Order Chiroptera. In: Wilson D.E., Reeder D.M., eds. Mammal Species World a Taxon and Geographic Reference. Baltimore: Johns Hopkins University Press; 2005: 312–529. https://doi.org/10.1093/acprof:osobl/9780199207114.003.0001.

2. Racey P.A. The prolonged storage and survival of spermatozoa in Chiroptera. J. Reprod. Fertil. 1979; 56(1): 391–402. https://doi.org/10.1530/jrf.0.0560391.

3. Cowled C., Stewart C.R., Likic V.A., Friedländer M.R., Tachedjian M., Jenkins K.A., et al. Characterization of novel microRNAs in the Black flying fox (Pteropus alecto) by deep sequencing. BMC Genomics. 2014; 15(1): 682. https://doi.org/10.1186/1471-2164-15-682.

4. Banerjee A., Baker M.L., Kulcsar K., Misra V., Plowright R., Mossman K. Novel insights into immune systems of bats. Front. Immunol. 2020; 11: 26. https://doi.org/10.3389/fimmu.2020.00026.

5. Lagunas-Rangel F.A. Why do bats live so long? Possible molecular mechanisms. Biogerontology. 2020; 21(1): 1–11. https://doi.org/10.1007/s10522-019-09840-3.

6. Крускоп С.В. Отряд Chiroptera. В кн.: Павлинов И.Я., Лисовский А.А., ред. Млекопитающие России: Систематико-географический справочник. Сборник трудов Зоологического музея МГУ. Выпуск 52. Москва: КМК; 2012: 73–126.

7. Baloun D.E., Guglielmo C.G. Energetics of migratory bats during stopover: a test of the torpor-assisted migration hypothesis. J. Exp. Biol. 2019; 222: jeb196691. https://doi.org/10.1242/jeb.196691.

8. Khan M.S., Hossain J., Gurley E.S., Nahar N., Sultana R., Luby S.P. Use of infrared camera to understand bats’ access to date palm sap: implications for preventing Nipah virus transmission. Ecohealth. 2010; 7(4): 517–25. https://doi.org/10.1007/s10393-010-0366-2.

9. Calisher C.H., Childs J.E., Field H.E., Holmes K.V., Schountz T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006; 19(3): 531–45. https://doi.org/10.1128/CMR.00017-06.

10. Wang L., Cowled C. Bats and Viruses: A New Frontier of Emerging Infectious Diseases. New York: John Wiley & Sons, Inc; 2015: 23–45. https://doi.org/10.1002/9781118818824.

11. Ang B.S.P., Lim T.C.C., Wang L. Nipah Virus Infection. J. Clin. Microbiol. 2018; 56: e01875-17. https://doi.org/10.1128/jcm.01875-17.

12. Selvey L., Sheridan J. Outbreak of severe respiratory disease in humans and horses due to a previously unrecognized paramyxovirus. J. Travel. Med. 1995; 2(4): 275. https://doi.org/10.1111/j.1708-8305.1995.tb00679.x.

13. Hasan S., Ahmad S.A., Masood R., Saeed S. Ebola virus: A global public health menace: A narrative review. J. Family Med. Prim. Care. 2019; 8(7): 2189–201. https://doi.org/10.4103/jfmpc.jfmpc_297_19.

14. Singh R.K., Dhama K., Chakraborty S., Tiwari R., Natesan S., Khandia R., et al. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies – a comprehensive review. Vet. Q. 2019; 39(1): 26–55. https://doi.org/10.1080/01652176.2019.1580827.

15. L’vov D.K., Tsyrkin Y.M., Karas F.R., Timopheev E.M., Gromashevski V.L., Veselovskaya O.V., et al. “Sokuluk” virus, a new group B arbovirus isolated from Vespertilio pipistrellus Schreber, 1775, bat in the Kirghiz S.S.R. Arch. Gesamte Virusforsch. 1973; 41(3): 170–4. https://doi.org/10.1007/bf01252762.

16. Альховский С.В., Львов Д.К., Щелканов М.Ю., Дерябин П.Г., Щетинин А.М., Самохвалов Е.И., и др. Генетическая характеристика вируса Узун-Агач (UZAV – Uzun-Agach virus) (Bunyaviridae, Nairovirus), изолированного в Казахстане от остроухой ночницы Myotis blythii oxygnathus Monticelli, 1885 (Chiroptera; Vespertilionidae). Вопросы вирусологии. 2014; 59(5): 23–6.

17. Альховский С.В., Львов Д.К., Щелканов М.Ю., Щетинин А.М., Дерябин П.Г., Самохвалов Е.И., и др. Таксономия вируса Иссык-Куль (Issyk-Kul virus, ISKV; Bunyaviridae, Nairovirus), возбудителя Иссык-Кульской лихорадки, изолированного от летучих мышей (Vespertilionidae) и клещей Argas (Carios) vespertilionis (Latreille, 1796). Вопросы вирусологии. 2013; 58(5): 11–5.

18. Kuz’min V., Botvinkin A.D., Poleschuk E.M., Orciari L.A., Rupprecht C.E. Bat rabies surveillance in the former Soviet Union. Dev. Biol. (Basel). 2006; 125: 273–82.

19. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J. H. et al. Bats Are Natural Reservoirs of SARS-like Coronaviruses. Science. 2005; 310(5748):676–79. doi: 10.1126/science.1118391.

20. Drexler J.F., Corman V.M., Drosten C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Res. 2014; 101: 45–56. https://doi.org/10.1016/j.antiviral.2013.10.013.

21. Groot R.J., Baker S.C., Baric R., Enjuanes L., Gorbalenya A.E., Holmes K.V., et al. «Family Coronaviridae». In: King A.M., Adams M.J., Carstens E.B., Lefkowitz E.J., eds. Virus Taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses. London: Elsevier; 2012: 806–28.

22. Woo P.C., Huang Y., Lau S.K., Yuen K.Y. Coronavirus genomics and bioinformatics analysis. Viruses. 2010; 2(8): 1804–20. https://doi.org/10.3390/v2081803.

23. Львов Д.К., Гулюкин М.И., Забережный А.Д., Гулюкин А.М. Формирование популяционного генофонда потенциально угрожающих биобезопасности зоонозных вирусов. Вопросы вирусологии. 2020; 65(5): 243–58. https://doi.org/10.36233/0507-4088-2020-65-5-1.

24. Haake C., Cook S., Pusterla N., Murphy B. Coronavirus Infections in companion animals: virology, epidemiology, clinical and pathologic features. Viruses. 2020; 12(9): 1023. https://doi.org/10.3390/v12091023.

25. Schulz L.L., Tonsor G.T. Assessment of the economic impacts of porcine epidemic diarrhea virus in the United States. J. Anim. Sci. 2015; 93(11): 5111–8. https://doi.org/10.2527/jas.2015-9136.

26. Colvero L.P., Villarreal L.Y., Torres C.A., Brañdo P.E. Assessing the economic burden of avian infectious bronchitis on poultry farms in Brazil. Rev. Sci. Tech. 2015; 34(3): 993–9. https://doi.org/10.20506/rst.34.3.2411.

27. Яцышина С.Б., Мамошина М.В., Шипулина О.Ю., Подколзин А.Т., Акимкин В.Г. Анализ циркуляции коронавирусов человека. Вопросы вирусологии. 2020; 65(5): 267–76. https://doi.org/10.36233/0507-4088-2020-65-5-3.

28. Львов Д.К., Бурцева Е.И., Колобухина Л.В., Федякина И.Т., Бовин Н.В., Игнатьева А.В. и др. Особенности циркуляции вирусов гриппа и ОРВИ в эпидемическом сезоне 2019–2020 гг. в отдельных регионах России. Вопросы вирусологии. 2020; 65(6): 335–49. https://doi.org/10.36233/0507-4088-2020-65-6-4.

29. Rabaan A.A., Al-Ahmed S.H., Haque S., Sah R., Tiwari R., Malik Y.S., et al. SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview. Infez. Med. 2020; 28(2): 174–84.

30. Fehr A.R., Perlman S. Coronaviruses: An Overview of Their Replication and Pathogenesis. Methods Mol. Biol. 2015; 1282: 1–23. https://doi.org/10.1007/978-1-4939-2438-7_1.

31. Guan Y., Zheng B.J., He Y.Q., Liu X.L., Zhuang Z.X., Cheung C.L., et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern China. Science. 2003; 302: 276–8. https://doi.org/10.1126/science.1087139.

32. Banerjee A., Kulcsar K., Misra V., Frieman M., Mossman K. Bats and coronaviruses. Viruses. 2019; 11(1): 41. https://doi.org/10.3390/v11010041.

33. European Centre for Disease Prevention and Control. Distribution of confirmed cases of MERS-CoV by place of infection and month of onset. Available at: https://www.ecdc.europa.eu/en/publications-data/distribution-confirmed-cases-mers-cov-place-infectionand-month-onset-march-2012 (accessed January 14, 2021).

34. Middle East respiratory syndrome coronavirus (MERS-CoV) – Republic of Korea. Available at: https://www.who.int/csr/don/01-june2015-mers-korea/en/ (accessed January 14, 2021).

35. Falzarano D., Kamissoko B., de Wit E., Maïga O., Cronin J., Samaké K., et al. Dromedary camels in northern Mali have high seropositivity to MERS-CoV. One Health. 2017; 3: 41–3. https://doi.org/10.1016/j.onehlt.2017.03.003.

36. Alexandersen S., Kobinger G.P., Soule G., Wernery U. Middle East respiratory syndrome coronavirus antibody reactors among camels in Dubai, United Arab Emirates, in 2005. Transbound. Emerg. Dis. 2014; 61(2): 105–108. https://doi.org/10.1111/tbed.12212.

37. Alshukairi A.N., Zheng J., Zhao J., Nehdi A., Baharoon S.A., Layqah L., et al. High prevalence of MERS-CoV infection in camel workers in Saudi Arabia. mBio. 2018; 9(5): e01985-18. https://doi.org/10.1128/mbio.01985-18.

38. Anthony S.J., Gilardi K., Menachery V.D., Goldstein T., Ssebide B., Mbabazi R., et al. Further evidence for bats as the evolutionary source of middle east respiratory syndrome coronavirus. mBio. 2017; 8(2): e00373-17. https://doi.org/10.1128/mbio.00373-17.

39. Reusken C.B., Messadi L., Feyisa A., Ularamu H., Godeke G.J., Danmarwa A., et al. Geographic distribution of MERS coronavirus among dromedary camels, Africa. Emerg. Infect. Dis. 2014; 20(8): 1370–4. https://doi.org/10.3201/eid2008.140590.

40. Corman V.M., Jores J., Meyer B., Younan M., Liljander A., Said M.Y., et al. Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013. Emerg. Infect. Dis. 2014; 20(8): 1319–22. https://doi.org/10.3201/eid2008.140596.

41. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020; 382(8): 727–33. https://doi.org/10.1056/nejmoa2001017.

42. Li X., Wang W., Zhao X., Zai J., Zhao Q., Li Y., et al. Transmission dynamics and evolutionary history of 2019-nCoV. J. Med. Virol. 2020; 92(5): 501–11. https://doi.org/10.1002/jmv.25701.

43. World Health Organization. Coronavirus disease (COVID-19) Situation Report – 146. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200614-covid-19-sitrep-146.pdf?sfvrsn=5b89bdad_4 (accessed January 14, 2021).

44. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798): 270–3. https://doi.org/10.1038/s41586-020-2012-7.

45. Львов Д.К., Альховский С.В., Колобухина Л.В., Бурцева Е.И. Этиология эпидемической вспышки COVID-19 в г. Ухань (провинция Хубэй, Китайская Народная Республика), ассоциированной с вирусом 2019-nCoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, подрод Sarbecovirus): уроки эпидемии SARS-CoV. Вопросы вирусологии. 2020; 65(1): 6–15. https://doi.org/10.36233/0507-4088-2020-65-1-6-15.

46. Львов Д.К., Альховский С.В. Истоки пандемии COVID-19: экология и генетика коронавирусов (Betacoronavirus: Coronaviridae) SARS-CoV, SARS-CoV-2 (подрод Sarbecovirus), MERS-CoV (подрод Merbecovirus). Вопросы вирусологии. 2020; 65(2): 62–70. https://doi.org/10.36233/0507-4088-2020-65-2-62-70.

47. Газарян С.В. Эколого-фаунистический анализ населения рукокрылых (Chiroptera) Западного Кавказа: Автореф. дис. … канд. биол. наук. Москва; 2002.

48. Иванов С.П., Фатерыга А.В., ред. Красная книга Республики Крым. Животные. Симферополь: Ариал; 2015.

49. Drexler J.F., Gloza-Rausch F., Glende J., Corman V.M., Muth D., Goettsche M., et al. Genomic characterization of severe acute respiratory syndrome-related coronavirus in european bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J. Virol. 2010; 84(21): 11336–49. https://doi.org/10.1128/jvi.00650-10.

50. Rihtaric D., Hostnik P., Steyer A., Grom J., Toplak I. Identification of SARS-like coronaviruses in horseshoe bats (Rhinolophus hipposideros) in Slovenia. Arch. Virol. 2010; 155(4): 507–14. https://doi.org/10.1007/s00705-010-0612-5.

51. Monchatre-Leroy E., Boué F., Boucher J.M., Renault C., Moutou F., Ar Gouilh M., et al. Identification of alpha and beta Coronavirus in wildlife species in France: bats, rodents, rabbits, and hedgehogs. Viruses. 2017; 9(12): 364. https://doi.org/10.3390/v9120364.

Problems of Virology. 2021; 66: 112-122

Bats of the subtropical climate zone of the Krasnodar Territory of Russia as a possible reservoir of zoonotic viral infections

Lenshin S. V., Romashin A. V., Vyshemirsky O. I., Lvov D. K., Alkhovsky S. V.

https://doi.org/10.36233/0507-4088-41

Abstract

Emerging and reemerging infections pose a grave global health threat. The emergence of the SARS-CoV-2 virus and the resulting COVID-19 pandemic have demonstrated the importance of studying of zoonotic viruses directly in natural foci. For SARS-like coronaviruses, as well as for many other zoonotic pathogens (including hemorrhagic fevers and rabies agents), the main reservoir are horseshoe bats (Rhinolophus spp.), which are widely distributed in Eurasia and Africa. Their range also covers the southern regions of Russia, including the North Caucasus and Crimea. Large colonies of these animals are located on the territory of Sochi National Park (SNP; subtropical zone of Krasnodar Territory, Greater Sochi region, North Caucasus). In total, according to long-term observations, up to 23 species of bats were registered here, including the great (Rh. ferrumequinum), the lesser (Rh. hipposideros), and the Mediterranean (Rh. euryale) horseshoe bats.
This review provides information on zoonotic viruses associated with species of bats distributed in the subtropical zone of Krasnodar Territory of Russia, and analyzes their possible role as a natural reservoir of emerging and reemerging infections. Studying the circulation of zoonotic viruses in bats is an important element of monitoring viral populations in natural foci.

References

1. Simmons N.B. Order Chiroptera. In: Wilson D.E., Reeder D.M., eds. Mammal Species World a Taxon and Geographic Reference. Baltimore: Johns Hopkins University Press; 2005: 312–529. https://doi.org/10.1093/acprof:osobl/9780199207114.003.0001.

2. Racey P.A. The prolonged storage and survival of spermatozoa in Chiroptera. J. Reprod. Fertil. 1979; 56(1): 391–402. https://doi.org/10.1530/jrf.0.0560391.

3. Cowled C., Stewart C.R., Likic V.A., Friedländer M.R., Tachedjian M., Jenkins K.A., et al. Characterization of novel microRNAs in the Black flying fox (Pteropus alecto) by deep sequencing. BMC Genomics. 2014; 15(1): 682. https://doi.org/10.1186/1471-2164-15-682.

4. Banerjee A., Baker M.L., Kulcsar K., Misra V., Plowright R., Mossman K. Novel insights into immune systems of bats. Front. Immunol. 2020; 11: 26. https://doi.org/10.3389/fimmu.2020.00026.

5. Lagunas-Rangel F.A. Why do bats live so long? Possible molecular mechanisms. Biogerontology. 2020; 21(1): 1–11. https://doi.org/10.1007/s10522-019-09840-3.

6. Kruskop S.V. Otryad Chiroptera. V kn.: Pavlinov I.Ya., Lisovskii A.A., red. Mlekopitayushchie Rossii: Sistematiko-geograficheskii spravochnik. Sbornik trudov Zoologicheskogo muzeya MGU. Vypusk 52. Moskva: KMK; 2012: 73–126.

7. Baloun D.E., Guglielmo C.G. Energetics of migratory bats during stopover: a test of the torpor-assisted migration hypothesis. J. Exp. Biol. 2019; 222: jeb196691. https://doi.org/10.1242/jeb.196691.

8. Khan M.S., Hossain J., Gurley E.S., Nahar N., Sultana R., Luby S.P. Use of infrared camera to understand bats’ access to date palm sap: implications for preventing Nipah virus transmission. Ecohealth. 2010; 7(4): 517–25. https://doi.org/10.1007/s10393-010-0366-2.

9. Calisher C.H., Childs J.E., Field H.E., Holmes K.V., Schountz T. Bats: Important reservoir hosts of emerging viruses. Clin. Microbiol. Rev. 2006; 19(3): 531–45. https://doi.org/10.1128/CMR.00017-06.

10. Wang L., Cowled C. Bats and Viruses: A New Frontier of Emerging Infectious Diseases. New York: John Wiley & Sons, Inc; 2015: 23–45. https://doi.org/10.1002/9781118818824.

11. Ang B.S.P., Lim T.C.C., Wang L. Nipah Virus Infection. J. Clin. Microbiol. 2018; 56: e01875-17. https://doi.org/10.1128/jcm.01875-17.

12. Selvey L., Sheridan J. Outbreak of severe respiratory disease in humans and horses due to a previously unrecognized paramyxovirus. J. Travel. Med. 1995; 2(4): 275. https://doi.org/10.1111/j.1708-8305.1995.tb00679.x.

13. Hasan S., Ahmad S.A., Masood R., Saeed S. Ebola virus: A global public health menace: A narrative review. J. Family Med. Prim. Care. 2019; 8(7): 2189–201. https://doi.org/10.4103/jfmpc.jfmpc_297_19.

14. Singh R.K., Dhama K., Chakraborty S., Tiwari R., Natesan S., Khandia R., et al. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies – a comprehensive review. Vet. Q. 2019; 39(1): 26–55. https://doi.org/10.1080/01652176.2019.1580827.

15. L’vov D.K., Tsyrkin Y.M., Karas F.R., Timopheev E.M., Gromashevski V.L., Veselovskaya O.V., et al. “Sokuluk” virus, a new group B arbovirus isolated from Vespertilio pipistrellus Schreber, 1775, bat in the Kirghiz S.S.R. Arch. Gesamte Virusforsch. 1973; 41(3): 170–4. https://doi.org/10.1007/bf01252762.

16. Al'khovskii S.V., L'vov D.K., Shchelkanov M.Yu., Deryabin P.G., Shchetinin A.M., Samokhvalov E.I., i dr. Geneticheskaya kharakteristika virusa Uzun-Agach (UZAV – Uzun-Agach virus) (Bunyaviridae, Nairovirus), izolirovannogo v Kazakhstane ot ostroukhoi nochnitsy Myotis blythii oxygnathus Monticelli, 1885 (Chiroptera; Vespertilionidae). Voprosy virusologii. 2014; 59(5): 23–6.

17. Al'khovskii S.V., L'vov D.K., Shchelkanov M.Yu., Shchetinin A.M., Deryabin P.G., Samokhvalov E.I., i dr. Taksonomiya virusa Issyk-Kul' (Issyk-Kul virus, ISKV; Bunyaviridae, Nairovirus), vozbuditelya Issyk-Kul'skoi likhoradki, izolirovannogo ot letuchikh myshei (Vespertilionidae) i kleshchei Argas (Carios) vespertilionis (Latreille, 1796). Voprosy virusologii. 2013; 58(5): 11–5.

18. Kuz’min V., Botvinkin A.D., Poleschuk E.M., Orciari L.A., Rupprecht C.E. Bat rabies surveillance in the former Soviet Union. Dev. Biol. (Basel). 2006; 125: 273–82.

19. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J. H. et al. Bats Are Natural Reservoirs of SARS-like Coronaviruses. Science. 2005; 310(5748):676–79. doi: 10.1126/science.1118391.

20. Drexler J.F., Corman V.M., Drosten C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Res. 2014; 101: 45–56. https://doi.org/10.1016/j.antiviral.2013.10.013.

21. Groot R.J., Baker S.C., Baric R., Enjuanes L., Gorbalenya A.E., Holmes K.V., et al. «Family Coronaviridae». In: King A.M., Adams M.J., Carstens E.B., Lefkowitz E.J., eds. Virus Taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses. London: Elsevier; 2012: 806–28.

22. Woo P.C., Huang Y., Lau S.K., Yuen K.Y. Coronavirus genomics and bioinformatics analysis. Viruses. 2010; 2(8): 1804–20. https://doi.org/10.3390/v2081803.

23. L'vov D.K., Gulyukin M.I., Zaberezhnyi A.D., Gulyukin A.M. Formirovanie populyatsionnogo genofonda potentsial'no ugrozhayushchikh biobezopasnosti zoonoznykh virusov. Voprosy virusologii. 2020; 65(5): 243–58. https://doi.org/10.36233/0507-4088-2020-65-5-1.

24. Haake C., Cook S., Pusterla N., Murphy B. Coronavirus Infections in companion animals: virology, epidemiology, clinical and pathologic features. Viruses. 2020; 12(9): 1023. https://doi.org/10.3390/v12091023.

25. Schulz L.L., Tonsor G.T. Assessment of the economic impacts of porcine epidemic diarrhea virus in the United States. J. Anim. Sci. 2015; 93(11): 5111–8. https://doi.org/10.2527/jas.2015-9136.

26. Colvero L.P., Villarreal L.Y., Torres C.A., Brañdo P.E. Assessing the economic burden of avian infectious bronchitis on poultry farms in Brazil. Rev. Sci. Tech. 2015; 34(3): 993–9. https://doi.org/10.20506/rst.34.3.2411.

27. Yatsyshina S.B., Mamoshina M.V., Shipulina O.Yu., Podkolzin A.T., Akimkin V.G. Analiz tsirkulyatsii koronavirusov cheloveka. Voprosy virusologii. 2020; 65(5): 267–76. https://doi.org/10.36233/0507-4088-2020-65-5-3.

28. L'vov D.K., Burtseva E.I., Kolobukhina L.V., Fedyakina I.T., Bovin N.V., Ignat'eva A.V. i dr. Osobennosti tsirkulyatsii virusov grippa i ORVI v epidemicheskom sezone 2019–2020 gg. v otdel'nykh regionakh Rossii. Voprosy virusologii. 2020; 65(6): 335–49. https://doi.org/10.36233/0507-4088-2020-65-6-4.

29. Rabaan A.A., Al-Ahmed S.H., Haque S., Sah R., Tiwari R., Malik Y.S., et al. SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview. Infez. Med. 2020; 28(2): 174–84.

30. Fehr A.R., Perlman S. Coronaviruses: An Overview of Their Replication and Pathogenesis. Methods Mol. Biol. 2015; 1282: 1–23. https://doi.org/10.1007/978-1-4939-2438-7_1.

31. Guan Y., Zheng B.J., He Y.Q., Liu X.L., Zhuang Z.X., Cheung C.L., et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in Southern China. Science. 2003; 302: 276–8. https://doi.org/10.1126/science.1087139.

32. Banerjee A., Kulcsar K., Misra V., Frieman M., Mossman K. Bats and coronaviruses. Viruses. 2019; 11(1): 41. https://doi.org/10.3390/v11010041.

33. European Centre for Disease Prevention and Control. Distribution of confirmed cases of MERS-CoV by place of infection and month of onset. Available at: https://www.ecdc.europa.eu/en/publications-data/distribution-confirmed-cases-mers-cov-place-infectionand-month-onset-march-2012 (accessed January 14, 2021).

34. Middle East respiratory syndrome coronavirus (MERS-CoV) – Republic of Korea. Available at: https://www.who.int/csr/don/01-june2015-mers-korea/en/ (accessed January 14, 2021).

35. Falzarano D., Kamissoko B., de Wit E., Maïga O., Cronin J., Samaké K., et al. Dromedary camels in northern Mali have high seropositivity to MERS-CoV. One Health. 2017; 3: 41–3. https://doi.org/10.1016/j.onehlt.2017.03.003.

36. Alexandersen S., Kobinger G.P., Soule G., Wernery U. Middle East respiratory syndrome coronavirus antibody reactors among camels in Dubai, United Arab Emirates, in 2005. Transbound. Emerg. Dis. 2014; 61(2): 105–108. https://doi.org/10.1111/tbed.12212.

37. Alshukairi A.N., Zheng J., Zhao J., Nehdi A., Baharoon S.A., Layqah L., et al. High prevalence of MERS-CoV infection in camel workers in Saudi Arabia. mBio. 2018; 9(5): e01985-18. https://doi.org/10.1128/mbio.01985-18.

38. Anthony S.J., Gilardi K., Menachery V.D., Goldstein T., Ssebide B., Mbabazi R., et al. Further evidence for bats as the evolutionary source of middle east respiratory syndrome coronavirus. mBio. 2017; 8(2): e00373-17. https://doi.org/10.1128/mbio.00373-17.

39. Reusken C.B., Messadi L., Feyisa A., Ularamu H., Godeke G.J., Danmarwa A., et al. Geographic distribution of MERS coronavirus among dromedary camels, Africa. Emerg. Infect. Dis. 2014; 20(8): 1370–4. https://doi.org/10.3201/eid2008.140590.

40. Corman V.M., Jores J., Meyer B., Younan M., Liljander A., Said M.Y., et al. Antibodies against MERS coronavirus in dromedary camels, Kenya, 1992–2013. Emerg. Infect. Dis. 2014; 20(8): 1319–22. https://doi.org/10.3201/eid2008.140596.

41. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020; 382(8): 727–33. https://doi.org/10.1056/nejmoa2001017.

42. Li X., Wang W., Zhao X., Zai J., Zhao Q., Li Y., et al. Transmission dynamics and evolutionary history of 2019-nCoV. J. Med. Virol. 2020; 92(5): 501–11. https://doi.org/10.1002/jmv.25701.

43. World Health Organization. Coronavirus disease (COVID-19) Situation Report – 146. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200614-covid-19-sitrep-146.pdf?sfvrsn=5b89bdad_4 (accessed January 14, 2021).

44. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798): 270–3. https://doi.org/10.1038/s41586-020-2012-7.

45. L'vov D.K., Al'khovskii S.V., Kolobukhina L.V., Burtseva E.I. Etiologiya epidemicheskoi vspyshki COVID-19 v g. Ukhan' (provintsiya Khubei, Kitaiskaya Narodnaya Respublika), assotsiirovannoi s virusom 2019-nCoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, podrod Sarbecovirus): uroki epidemii SARS-CoV. Voprosy virusologii. 2020; 65(1): 6–15. https://doi.org/10.36233/0507-4088-2020-65-1-6-15.

46. L'vov D.K., Al'khovskii S.V. Istoki pandemii COVID-19: ekologiya i genetika koronavirusov (Betacoronavirus: Coronaviridae) SARS-CoV, SARS-CoV-2 (podrod Sarbecovirus), MERS-CoV (podrod Merbecovirus). Voprosy virusologii. 2020; 65(2): 62–70. https://doi.org/10.36233/0507-4088-2020-65-2-62-70.

47. Gazaryan S.V. Ekologo-faunisticheskii analiz naseleniya rukokrylykh (Chiroptera) Zapadnogo Kavkaza: Avtoref. dis. … kand. biol. nauk. Moskva; 2002.

48. Ivanov S.P., Fateryga A.V., red. Krasnaya kniga Respubliki Krym. Zhivotnye. Simferopol': Arial; 2015.

49. Drexler J.F., Gloza-Rausch F., Glende J., Corman V.M., Muth D., Goettsche M., et al. Genomic characterization of severe acute respiratory syndrome-related coronavirus in european bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J. Virol. 2010; 84(21): 11336–49. https://doi.org/10.1128/jvi.00650-10.

50. Rihtaric D., Hostnik P., Steyer A., Grom J., Toplak I. Identification of SARS-like coronaviruses in horseshoe bats (Rhinolophus hipposideros) in Slovenia. Arch. Virol. 2010; 155(4): 507–14. https://doi.org/10.1007/s00705-010-0612-5.

51. Monchatre-Leroy E., Boué F., Boucher J.M., Renault C., Moutou F., Ar Gouilh M., et al. Identification of alpha and beta Coronavirus in wildlife species in France: bats, rodents, rabbits, and hedgehogs. Viruses. 2017; 9(12): 364. https://doi.org/10.3390/v9120364.