Журналов:     Статей:        

Вопросы вирусологии. 2020; 65: 317-325

Роль герпесвирусов в развитии заболеваний урогенитального тракта и бесплодия у женщин

Кущ А. А., Кистенёва Л. Б., Климова Р. Р., Чешик С. Г.

https://doi.org/10.36233/0507-4088-2020-65-6-2

Аннотация

В обзоре представлены данные о распространении всех известных герпесвирусов человека (ГВ) в урогенитальном тракте женщин. Согласно ВОЗ почти у 500 млн людей во всём мире выявлена генитальная инфекция, вызванная ГВ. Эти возбудители обнаруживаются при различных воспалительных заболеваниях в нижних и верхних отделах женского генитального тракта: при вагините, цервиците; у имеющих внематочную беременность – в фаллопиевых трубах; у страдающих бесплодием – в цервикальном канале, эндометрии, яичниках. Вирус простого герпеса 1 типа (ВПГ-1) впервые обнаружен в ооцитах женщин с неудачными по- пытками экстракорпорального оплодотворения (ЭКО). ГВ-инфекции (ГВИ) негативно влияют на все стадии репродуктивного процесса от зачатия до рождения ребёнка. Доказано, что ВПГ и цитомегаловирус (ЦМВ), а также вирус герпеса человека 6 типа (ВГЧ-6) в период беременности значительно увеличивают риск спонтанных абортов, преждевременных родов и мертворождений. Внутриутробная ГВИ – одна из ведущих причин врождённых пороков развития. В работе рассмотрены особенности гуморального и клеточного иммунитета при генитальных инфекциях герпесвирусной этиологии. Интравагинальное заражение ВПГ‑2 вызывает изменение клеточного состава слизистой оболочки влагалища; наряду с клетками, мобилизуемыми из крови, защитную роль играют резидентные Т-клетки памяти (TRM), натуральные киллеры (NK-клетки), а также регуляторные Т-клетки (Treg), функция которых – поддержание баланса активности лимфоцитов. Продолжающееся распространение ГВИ в значительной степени объясняется переходом первичной инфекции в латентную форму с последующей возможностью реактивации, так как латентный возбудитель недоступен для иммунного распознавания и действия лечебных препаратов. В последние годы разработана новая биотехнологическая система редактирования генома CRISPR/Cas9, которая в принципе способна распознавать не только активные, но и латентные вирусы и действовать на них. Первые обнадёживающие результаты открывают возможность разработки в будущем эффективных технологий элиминации ГВ и эрадикации вызываемых ими инфекций.

Список литературы

1. Тютюнник В.Л., Орджоникидзе Н.В., Зыряева Н.А. Перинатальные аспекты цитомегаловирусной инфекции. Акушерство и гинекология. 2002; (1): 9–11.

2. Gabrielli L., Losi L., Varani S.L., Lazzarotto T., Eusebi V., Landini M.P. Complete replication of human cytomegalovirus in explants of first trimester human placenta. J. Med. Virol. 2001; 64(4): 499–504. https://doi.org/10.1002/jmv.1077.

3. Arav-Boger R., Pass R. Viral load in congenital cytomegalovirus infection. Herpes. 2007; 14(1): 17–22.

4. Marci R., Gentili V., Bortolotti D., Lo Monte G., Caselli E., Bolzani S., et al. Presence of HHV-6A in Endometrial Epithelial Cells from Women with Primary Unexplained Infertility. PLoS One. 2016; 11(7):e0158304. https://doi.org/10.1371/journal.pone.0158304.

5. Groves M.J. Genital herpes: a review. Am. Fam. Physician. 2016; 93(11): 928–34.

6. Knipe D.M., Howley P.M., eds. Fields Virology. Philadelphia: Williams & Wilkins; 2013.

7. Tronstein E., Johnston C., Huang M.L., Selke S., Magaret A., Warren T., et al. Genital shedding of herpes simplex virus among symptomatic and asymptomatic persons with HSV-2 infection. JAMA. 2011; 305(14): 1441–9. https://doi.org/10.1001/jama.2011.420.

8. Барамзина С.В. Комплексный подход к терапии генитального герпеса. Поликлиника. 2017; (1-3): 38–40.

9. Ayoub H.H., Chemaitelly H., Abu-Raddad L. Characterizing the transitioning epidemiology of herpes simplex virus type 1 in the USA: model-based predictions. BMC Med. 2019; 17(1): 57. https://doi.org/10.1186/s12916-019-1285-x.

10. Durukan D., Fairley C.K., Bradshaw C.S., Read T.H., Druce J., Catton M., et al. Increasing proportion of herpes simplex virus type 1 among women and men diagnosed with first-episode anogenital herpes: a retrospective observational study over 14 years in Melbourne, Australia. Sex. Transm. Infect. 2019; 95(4): 307–13. https://doi.org/10.1136/sextrans-2018-053830.

11. Sukik L., Alyafei M., Harfouche M., Abu-Raddadet L. Herpes simplex virus type 1 epidemiology in Latin America and the Caribbean: Systematic review and meta-analytics. PLoS One. 2019; 14(4):e0215487. https://doi.org/10.1371/journal.pone.0215487.

12. Silver M.I., Proma P., Sowjanya P. Shedding of Epstein-Barr virus and cytomegalovirus from the genital tract of women in a periurban community in Andhra Pradesh, India. J. Clin. Microbiol. 2011; 49(7): 2435–9. https://doi.org/10.1128/JCM.02206-10.

13. Thomas R., Macsween K.F., McAulay K., Clutterbuck D., Anderson R., Reid S., et al. Evidence of shared Epstein–Barr viral isolates between sexual partners, and low level EBV in genital secretions. J. Med. Virol. 2006; 78(9): 1204–9. https://doi.org/10.1002/jmv.20682.

14. Al-Rawahi G.N., Dobson S.R., Scheifele D.W., Rassekh S.R., Murphy D.J. Severe genital ulceration in an acute Epstein–Barr virus infection. Pediatr. Infect. Dis. J. 2011; 30(2): 176–8. https://doi.org/10.1097/INF.0b013e3181f41b2e.

15. Batwa S.A., Ashshi A.M., Kamfar F.F. Prevalence of cytomegalovirus, and its effect on the expression of inducible and endothelial nitric oxide synthases in Fallopian tubes collected from women with and without ectopic pregnancy. Eur. J. Clin. Microbiol. Infect. Dis. 2016; 35(1): 103–10. https://doi.org/10.1007/s10096-015-2514-7.

16. Uenaka M., Morizane M., Tanimura K., Deguchi M., Deguchi M., Kanzawa M., et al. Histopathological analysis of placentas with congenital cytomegalovirus infection. Placenta. 2019; 75: 62–7. https://doi.org/10.1016/j.placenta.2019.01.003.

17. Slyker J., Farquhar C., Atkinson C. Compartmentalized cytomegalovirus replication and transmission in the setting of maternal HIV-1 infection. Clin. Infect. Dis. 2014; 58(4): 564–72. https://doi.org/10.1093/cid/cit727.

18. Baillargeon J., Piper J., Leach C.T. Epidemiology of human herpesvirus 6 (HHV-6) infection in pregnant and nonpregnant women. J. Clin. Virol. 2000; 16(3): 149–57. https://doi.org/10.1016/s1386-6532(99)00086-4.

19. Ohashi M., Yoshikawa T., Ihira M. Reactivation of human herpesvirus 6 and 7 in pregnant women. J. Med. Virol. 2002; 67(3): 354–8. https://doi.org/10.1002/jmv.10083.

20. Coulam C.B., Bilal M., Salazar Garcia M.D. Prevalence of HHV-6 in endometrium from women with recurrent implantation failure. Am. J. Reprod. Immunol. 2018; 80(1): e12862. https://doi.org/10.1111/aji.12862.

21. Maeda T., Okuno T., Hayashi K., Miyamoto H., Utsunomiya A., Yamada Y., et al. Abortion in human herpesvirus 6 DNA-positive pregnant women. Pediatr. Infect. Dis. J. 1997; 16(12): 1176–7. https://doi.org/10.1097/00006454-199712000-00014.

22. Cone R.W., Huang M.L., Ashley R., Corey L. Human herpesvirus 6 DNA in peripheral blood cells and saliva from immunocompetent individuals. J. Clin. Microbiol. 1993; 31(5): 1262–7. https://doi.org/10.1128/JCM.31.5.1262-1267.1993.

23. Мелехина Е.В., Черкасова С.В., Домонова Э.А., Сильвей- строва О.Ю., Кулешов К.В., Гоптарь И.А. и др. Наследуемая хромосомная интеграция Human betaherpesvirus 6B у недоношенных новорождённых. Педиатрия. Журнал им. Г.Н. Сперанского. 2019; 98(2): 28–34. https://doi.org/10.24110/0031-403X-2019-98-2-28-34.

24. Цинзерлинг В.А., Мельникова В.Ф. Перинатальные инфекции. Практическое руководство. СПб.: Элби-СПб; 2002.

25. Макаров О.В., Ковальчук Л.В., Ганковская Л.В., Бахарева И.В., Ганковская О.А. Невынашивание беременности, инфекция, врождённый иммунитет. М.: ГЭОТАР-Медиа; 2007.

26. Weisblum Y., Panet A., Zakay-Rones Z., Vitenshtein A., Haimov-Kochman R., Goldman-Wohlet D. et al. Human cytomegalovirus induces a distinct innate immune response in the maternal-fetal interface. Virology. 2015; 485: 289–96. https://doi.org/10.1016/j.virol.2015.06.023.

27. Oliveira G.M., Pascoal-Xavier M.A., Moreira D.R., Guimarães V.S., Aguiar R.A., Miranda D.M., et al. Detection of cytomegalovirus, herpes virus simplex, and parvovirus b19 in spontaneous abortion placentas. J. Matern. Fetal Neonatal Med. 2019; 32(5): 768–75. https://doi.org/10.1080/14767058.2017.1391778.

28. Giakoumelou S., Wheelhouse N., Cuschieri K., Entrican G., Howie S.E., Horne A. The role of infection in miscarriage. Hum. Reprod. Update. 2016; 22(1): 116–33. https://doi.org/10.1093/humupd/dmv041.

29. Володин Н.Н. Перинатология. Исторические вехи, перспективы развития. Вопросы практической педиатрии. 2006; 1(3): 5–24.

30. Haahr T., Humaidan P., Elbaek H.O. Vaginal microbiota and in vitro fertilization outcomes: development of a simple diagnostic tool to predict patients at risk of a poor reproductive outcome. J. Infect. Dis. 2019; 219(11): 1809–17. https://doi.org/10.1093/infdis/jiy744.

31. Чешик С.Г., Кистенева Л.Б. Цитомегаловирусная инфекция и спонтанные аборты у женщин I и II триместров беременности. Вопросы вирусологии. 2016; 61(2): 74–8. https://doi.org/10.18821/0507-4088-2016-61-2-74-78.

32. Сидельникова В.М., Ходжаева З.С., Агаджанова А.А. Актуальные вопросы невынашивания беременности. М.: 2001.

33. Shi T.L., Huang L.J., Xiong Y.Q., Zhong Y.Y., Yang J.J., Fu T., et al. The risk of herpes simplex virus and human cytomegalovirus infection during pregnancy upon adverse pregnancy outcomes: A meta-analysis. J. Clin. Virol. 2018; 104: 48–55. https://doi.org/10.1016/j.jcv.2018.04.016.

34. Wylie K.M., Wylie T.N., Cahill A.G. The vaginal eukaryotic DNA virome and preterm birth. Am. J. Obstet. Gynecol. 2018; 219(2):189.e1-12. https://doi.org/10.1016/j.ajog.2018.04.048.

35. Eskew A.M., Stout M.J., Bedrick B.S., Riley J.K., Omurtag K.R., Jimenez P.T., et al. Association of the eukaryotic vaginal virome with prophylactic antibiotic exposure and reproductive outcomes in a subfertile population undergoing in vitro fertilisation: a prospective exploratory study. BJOG. 2020; 127(2): 208–16. https://doi.org/10.1111/1471-0528.15951.

36. Mascarenhas M.N., Cheung H., Mathers C.D., Stevens G.A. Measuring infertility in populations: constructing a standard definition for use with demographic and reproductive health surveys. Popul. Health Metr. 2012; 10(1): 17. https://doi.org/10.1186/1478-7954-10-17.

37. Медведев Б.И., Зайнетдинова Л.Ф., Теплова С.Н. Микрофлора органов репродуктивной системы у женщин с трубно-перитонеальным бесплодием. Журнал микробиологии, эпидемиологии и иммунобиологии. 2008; 85(3): 58–61.

38. Wylie K.M., Mihindukulasuriya K.A., Zhou Y., Sodergren E., Storch G.A., Weinstock G.M. Metagenomic analysis of doublestranded DNA viruses in healthy adults. BMC Biol. 2014; 12: 71. https://doi.org/10.1186/s12915-014-0071-7.

39. Eskew A.M., Stout M.J., Bedrick B.S., Riley J.K., Omurtag K.R., Jimenez P.T., et al. Association of the eukaryotic vaginal virome with prophylactic antibiotic exposure and reproductive outcomes in a subfertile population undergoing in vitro fertilisation: a prospective exploratory study. BJOG. 2020; 127(2): 208–16. https://doi.org/10.1111/1471-0528.15951.

40. Абдулмеджидова А.Г., Рог К.В., Завалишина Л.Э., Кущ А.А. Интрафолликулярное инфицирование вирусом простого герпеса ооцитов млекопитающих и человека. Вопросы вирусологии. 2014; 59(1): 42–6.

41. Harwani S.C., Lurain N.S., Zariffard M.R., Spear G.T. Differential inhibition of human cytomegalovirus (HCMV) by toll-like receptor ligands mediated by interferon-beta in human foreskin fibroblasts and cervical tissue. Virol. J. 2007; 4: 133. https://doi.org/10.1186/1743-422X-4-133.

42. Ross S.A., Boppana S.B. Congenital cytomegalovirus infection: outcome and diagnosis. Semin. Pediatr. Infect. Dis. 2005; 16(1):44–9. https://doi.org/10.1053/j.spid.2004.09.011.

43. Zariffard M.R., Harwani S.C., Novak R.M., Graham P.J., Ji X., Spear G.T. Trichomonas vaginalis infection activates cells through toll-like receptor 4. Clin. Immunol. 2004; 111(1): 103–7. https://doi.org/10.1016/j.clim.2003.12.008.

44. Shin H., Kumamoto Y., Gopinath S., Iwasaki A. CD301b+ dendritic cells stimulate tissue-resident memory CD8+ T cells to protect against genital HSV-2. Nat. Commun. 2016; 7: 13346. https://doi.org/10.1038/ncomms13346.

45. Patel C.D., Backes I.M., Taylor S.A., Jiang Y., Marchant A., Pesola J.M., et al. Maternal immunization confers protection against neonatal herpes simplex mortality and behavioral morbidity. Sci. Transl. Med. 2019; 11(487): eaau6039. https://doi.org/10.1126/scitranslmed.aau6039.

46. Jenks J.A., Goodwin M.L., Permar S.R. The roles of host and viral antibody Fc receptors in herpes simplex virus (HSV) and human cytomegalovirus (HCMV) infections and immunity. Front. Immunol. 2019; 10: 2110. https://doi.org/10.3389/fimmu.2019.02110.

47. Posavad C.M., Zhao L., Mueller D.E., Stevens C.E., Huang M.L., Wald A., et al. Persistence of mucosal T-cell responses to herpes simplex virus type 2 in the female genital tract. Mucosal Immunol. 2015; 8(1): 115–26. https://doi.org/10.1038/mi.2014.47.

48. Schiffer J.T., Abu-Raddad L., Mark K.E. Mucosal host immune response predicts the severity and duration of herpes simplex virus-2 genital tract shedding episodes. Proc. Natl. Acad. Sci. USA. 2010; 107(44): 18973–8. https://doi.org/10.1073/pnas.1006614107.

49. Oh J.E., Iijima N., Song E., Lu P., Klein J., Jiang R., et al. Migrant memory B cells secrete luminal antibody in the vagina. Nature. 2019; 571(7763): 122–6. https://doi.org/10.1038/s41586-019-1285-1.

50. Truong N.R., Smith J.B., Sandgren K.J., Cunningham A.L. Mechanisms of immune control of mucosal HSV infection: a guide to rational vaccine design. Front. Immunol. 2019; 10: 373. https://doi.org/10.3389/fimmu.2019.00373.

51. Оспельникова Т.П., Носеикина Е.М., Гайдерова Л.А., Ершов Ф.И. Терапевтический потенциал препаратов альфа-интерферонов при социально значимых заболеваниях человека вирусной этиологии. Журнал микробиологии, эпидемиологии и иммунобиологии. 2016; 93(5): 109–21.

52. Srivastava R., Roy S., Coulon P.G., Vahed H., Prakash S., Dhanushkodi N., et al. Therapeutic mucosal vaccination of herpes simplex virus 2-infected guinea pigs with ribonucleotide reductase 2 (RR2) protein boosts antiviral neutralizing antibodies and local tissue-resident CD4+ and CD8+ TRM cells associated with protection against recurrent genital herpes. J. Virol. 2019; 93(9): e02309-18. https://doi.org/10.1128/JVI.02309-18.

53. Hsu P.D., Lander E.S., Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014; 157(6): 1262–78. https://doi.org/10.1016/j.cell.2014.05.010.

54. Bi Y., Sun L., Gao D., Ding C., Li Z., Li Y., et al. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases. PLoS Pathog. 2014; 10(5): e1004090. https://doi.org/10.1371/journal.ppat.1004090.

55. Карпов Д.С., Карпов В.Л., Климова Р.Р., Демидова Н.А., Кущ А.А. Система CRISPR/Cas9, экспрессируемая с плазмиды, подавляет репликацию вируса простого герпеса 1 типа в культуре клеток Vero. Молекулярная биология. 2019; 53(1): 91–100. https://doi.org/10.1134/S0026898419010051.

Problems of Virology. 2020; 65: 317-325

The role of herpesviruses in development of diseases of the urogenital tract and infertility in women

Kushch A. A., Kisteneva L. B., Klimova R. R., Cheshik S. G.

https://doi.org/10.36233/0507-4088-2020-65-6-2

Abstract

This review presents the data on the spreading of all known human herpesviruses (НHVs) in female urogenital tract. According to the WHO almost 500 million people worldwide suffer from genital infection caused by НHVs. НHVs were detected in various inflammatory diseases of female upper and lower genital tract (vaginitis and cervicitis), in extrauterine pregnancy (in fallopian tubes), in infertility (cervical channel, endometrium and ovaries). Herpes simplex virus 1 (HSV‑1) was identified for the first time in oocytes after failed in vitro fertilization (IVF). НHVs produce negative effect on the entire reproductive process from conception to childbirth. It was established that HSV, cytomegalovirus (CMV) and human herpesvirus 6 (HHV-6) markedly increase the risk of spontaneous abortion, preterm birth and stillbirth. Intrauterine НHV infection is a major cause of congenital malformations. Data on humoral and cell immunity in genital herpesvirus infections (НHVI) are also reviewed. Intravaginal HSV‑2 infection changes cell composition of vaginal mucosa, i.e., together with cells mobilized from the blood, protective role is performed by resident memory T‑cells (TRM), natural killer cells (NK‑cells) and regulatory T‑cells (Treg) whose function consists in maintaining the balance of the activities of lymphocytes. Constant НHVI spreading is largely explained by transition of primary infection to potentially reactivating latent form, since latent virus is unavailable to immune recognition and medicines. The genome editing system CRISPR/Cas9 can recognize and modify not only active but also latent viruses. The promising pilot results with the use of this system offer the possibility of developing innovative technologies for НHV elimination and НHVI eradication.

References

1. Tyutyunnik V.L., Ordzhonikidze N.V., Zyryaeva N.A. Perinatal'nye aspekty tsitomegalovirusnoi infektsii. Akusherstvo i ginekologiya. 2002; (1): 9–11.

2. Gabrielli L., Losi L., Varani S.L., Lazzarotto T., Eusebi V., Landini M.P. Complete replication of human cytomegalovirus in explants of first trimester human placenta. J. Med. Virol. 2001; 64(4): 499–504. https://doi.org/10.1002/jmv.1077.

3. Arav-Boger R., Pass R. Viral load in congenital cytomegalovirus infection. Herpes. 2007; 14(1): 17–22.

4. Marci R., Gentili V., Bortolotti D., Lo Monte G., Caselli E., Bolzani S., et al. Presence of HHV-6A in Endometrial Epithelial Cells from Women with Primary Unexplained Infertility. PLoS One. 2016; 11(7):e0158304. https://doi.org/10.1371/journal.pone.0158304.

5. Groves M.J. Genital herpes: a review. Am. Fam. Physician. 2016; 93(11): 928–34.

6. Knipe D.M., Howley P.M., eds. Fields Virology. Philadelphia: Williams & Wilkins; 2013.

7. Tronstein E., Johnston C., Huang M.L., Selke S., Magaret A., Warren T., et al. Genital shedding of herpes simplex virus among symptomatic and asymptomatic persons with HSV-2 infection. JAMA. 2011; 305(14): 1441–9. https://doi.org/10.1001/jama.2011.420.

8. Baramzina S.V. Kompleksnyi podkhod k terapii genital'nogo gerpesa. Poliklinika. 2017; (1-3): 38–40.

9. Ayoub H.H., Chemaitelly H., Abu-Raddad L. Characterizing the transitioning epidemiology of herpes simplex virus type 1 in the USA: model-based predictions. BMC Med. 2019; 17(1): 57. https://doi.org/10.1186/s12916-019-1285-x.

10. Durukan D., Fairley C.K., Bradshaw C.S., Read T.H., Druce J., Catton M., et al. Increasing proportion of herpes simplex virus type 1 among women and men diagnosed with first-episode anogenital herpes: a retrospective observational study over 14 years in Melbourne, Australia. Sex. Transm. Infect. 2019; 95(4): 307–13. https://doi.org/10.1136/sextrans-2018-053830.

11. Sukik L., Alyafei M., Harfouche M., Abu-Raddadet L. Herpes simplex virus type 1 epidemiology in Latin America and the Caribbean: Systematic review and meta-analytics. PLoS One. 2019; 14(4):e0215487. https://doi.org/10.1371/journal.pone.0215487.

12. Silver M.I., Proma P., Sowjanya P. Shedding of Epstein-Barr virus and cytomegalovirus from the genital tract of women in a periurban community in Andhra Pradesh, India. J. Clin. Microbiol. 2011; 49(7): 2435–9. https://doi.org/10.1128/JCM.02206-10.

13. Thomas R., Macsween K.F., McAulay K., Clutterbuck D., Anderson R., Reid S., et al. Evidence of shared Epstein–Barr viral isolates between sexual partners, and low level EBV in genital secretions. J. Med. Virol. 2006; 78(9): 1204–9. https://doi.org/10.1002/jmv.20682.

14. Al-Rawahi G.N., Dobson S.R., Scheifele D.W., Rassekh S.R., Murphy D.J. Severe genital ulceration in an acute Epstein–Barr virus infection. Pediatr. Infect. Dis. J. 2011; 30(2): 176–8. https://doi.org/10.1097/INF.0b013e3181f41b2e.

15. Batwa S.A., Ashshi A.M., Kamfar F.F. Prevalence of cytomegalovirus, and its effect on the expression of inducible and endothelial nitric oxide synthases in Fallopian tubes collected from women with and without ectopic pregnancy. Eur. J. Clin. Microbiol. Infect. Dis. 2016; 35(1): 103–10. https://doi.org/10.1007/s10096-015-2514-7.

16. Uenaka M., Morizane M., Tanimura K., Deguchi M., Deguchi M., Kanzawa M., et al. Histopathological analysis of placentas with congenital cytomegalovirus infection. Placenta. 2019; 75: 62–7. https://doi.org/10.1016/j.placenta.2019.01.003.

17. Slyker J., Farquhar C., Atkinson C. Compartmentalized cytomegalovirus replication and transmission in the setting of maternal HIV-1 infection. Clin. Infect. Dis. 2014; 58(4): 564–72. https://doi.org/10.1093/cid/cit727.

18. Baillargeon J., Piper J., Leach C.T. Epidemiology of human herpesvirus 6 (HHV-6) infection in pregnant and nonpregnant women. J. Clin. Virol. 2000; 16(3): 149–57. https://doi.org/10.1016/s1386-6532(99)00086-4.

19. Ohashi M., Yoshikawa T., Ihira M. Reactivation of human herpesvirus 6 and 7 in pregnant women. J. Med. Virol. 2002; 67(3): 354–8. https://doi.org/10.1002/jmv.10083.

20. Coulam C.B., Bilal M., Salazar Garcia M.D. Prevalence of HHV-6 in endometrium from women with recurrent implantation failure. Am. J. Reprod. Immunol. 2018; 80(1): e12862. https://doi.org/10.1111/aji.12862.

21. Maeda T., Okuno T., Hayashi K., Miyamoto H., Utsunomiya A., Yamada Y., et al. Abortion in human herpesvirus 6 DNA-positive pregnant women. Pediatr. Infect. Dis. J. 1997; 16(12): 1176–7. https://doi.org/10.1097/00006454-199712000-00014.

22. Cone R.W., Huang M.L., Ashley R., Corey L. Human herpesvirus 6 DNA in peripheral blood cells and saliva from immunocompetent individuals. J. Clin. Microbiol. 1993; 31(5): 1262–7. https://doi.org/10.1128/JCM.31.5.1262-1267.1993.

23. Melekhina E.V., Cherkasova S.V., Domonova E.A., Sil'vei- strova O.Yu., Kuleshov K.V., Goptar' I.A. i dr. Nasleduemaya khromosomnaya integratsiya Human betaherpesvirus 6B u nedonoshennykh novorozhdennykh. Pediatriya. Zhurnal im. G.N. Speranskogo. 2019; 98(2): 28–34. https://doi.org/10.24110/0031-403X-2019-98-2-28-34.

24. Tsinzerling V.A., Mel'nikova V.F. Perinatal'nye infektsii. Prakticheskoe rukovodstvo. SPb.: Elbi-SPb; 2002.

25. Makarov O.V., Koval'chuk L.V., Gankovskaya L.V., Bakhareva I.V., Gankovskaya O.A. Nevynashivanie beremennosti, infektsiya, vrozhdennyi immunitet. M.: GEOTAR-Media; 2007.

26. Weisblum Y., Panet A., Zakay-Rones Z., Vitenshtein A., Haimov-Kochman R., Goldman-Wohlet D. et al. Human cytomegalovirus induces a distinct innate immune response in the maternal-fetal interface. Virology. 2015; 485: 289–96. https://doi.org/10.1016/j.virol.2015.06.023.

27. Oliveira G.M., Pascoal-Xavier M.A., Moreira D.R., Guimarães V.S., Aguiar R.A., Miranda D.M., et al. Detection of cytomegalovirus, herpes virus simplex, and parvovirus b19 in spontaneous abortion placentas. J. Matern. Fetal Neonatal Med. 2019; 32(5): 768–75. https://doi.org/10.1080/14767058.2017.1391778.

28. Giakoumelou S., Wheelhouse N., Cuschieri K., Entrican G., Howie S.E., Horne A. The role of infection in miscarriage. Hum. Reprod. Update. 2016; 22(1): 116–33. https://doi.org/10.1093/humupd/dmv041.

29. Volodin N.N. Perinatologiya. Istoricheskie vekhi, perspektivy razvitiya. Voprosy prakticheskoi pediatrii. 2006; 1(3): 5–24.

30. Haahr T., Humaidan P., Elbaek H.O. Vaginal microbiota and in vitro fertilization outcomes: development of a simple diagnostic tool to predict patients at risk of a poor reproductive outcome. J. Infect. Dis. 2019; 219(11): 1809–17. https://doi.org/10.1093/infdis/jiy744.

31. Cheshik S.G., Kisteneva L.B. Tsitomegalovirusnaya infektsiya i spontannye aborty u zhenshchin I i II trimestrov beremennosti. Voprosy virusologii. 2016; 61(2): 74–8. https://doi.org/10.18821/0507-4088-2016-61-2-74-78.

32. Sidel'nikova V.M., Khodzhaeva Z.S., Agadzhanova A.A. Aktual'nye voprosy nevynashivaniya beremennosti. M.: 2001.

33. Shi T.L., Huang L.J., Xiong Y.Q., Zhong Y.Y., Yang J.J., Fu T., et al. The risk of herpes simplex virus and human cytomegalovirus infection during pregnancy upon adverse pregnancy outcomes: A meta-analysis. J. Clin. Virol. 2018; 104: 48–55. https://doi.org/10.1016/j.jcv.2018.04.016.

34. Wylie K.M., Wylie T.N., Cahill A.G. The vaginal eukaryotic DNA virome and preterm birth. Am. J. Obstet. Gynecol. 2018; 219(2):189.e1-12. https://doi.org/10.1016/j.ajog.2018.04.048.

35. Eskew A.M., Stout M.J., Bedrick B.S., Riley J.K., Omurtag K.R., Jimenez P.T., et al. Association of the eukaryotic vaginal virome with prophylactic antibiotic exposure and reproductive outcomes in a subfertile population undergoing in vitro fertilisation: a prospective exploratory study. BJOG. 2020; 127(2): 208–16. https://doi.org/10.1111/1471-0528.15951.

36. Mascarenhas M.N., Cheung H., Mathers C.D., Stevens G.A. Measuring infertility in populations: constructing a standard definition for use with demographic and reproductive health surveys. Popul. Health Metr. 2012; 10(1): 17. https://doi.org/10.1186/1478-7954-10-17.

37. Medvedev B.I., Zainetdinova L.F., Teplova S.N. Mikroflora organov reproduktivnoi sistemy u zhenshchin s trubno-peritoneal'nym besplodiem. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2008; 85(3): 58–61.

38. Wylie K.M., Mihindukulasuriya K.A., Zhou Y., Sodergren E., Storch G.A., Weinstock G.M. Metagenomic analysis of doublestranded DNA viruses in healthy adults. BMC Biol. 2014; 12: 71. https://doi.org/10.1186/s12915-014-0071-7.

39. Eskew A.M., Stout M.J., Bedrick B.S., Riley J.K., Omurtag K.R., Jimenez P.T., et al. Association of the eukaryotic vaginal virome with prophylactic antibiotic exposure and reproductive outcomes in a subfertile population undergoing in vitro fertilisation: a prospective exploratory study. BJOG. 2020; 127(2): 208–16. https://doi.org/10.1111/1471-0528.15951.

40. Abdulmedzhidova A.G., Rog K.V., Zavalishina L.E., Kushch A.A. Intrafollikulyarnoe infitsirovanie virusom prostogo gerpesa ootsitov mlekopitayushchikh i cheloveka. Voprosy virusologii. 2014; 59(1): 42–6.

41. Harwani S.C., Lurain N.S., Zariffard M.R., Spear G.T. Differential inhibition of human cytomegalovirus (HCMV) by toll-like receptor ligands mediated by interferon-beta in human foreskin fibroblasts and cervical tissue. Virol. J. 2007; 4: 133. https://doi.org/10.1186/1743-422X-4-133.

42. Ross S.A., Boppana S.B. Congenital cytomegalovirus infection: outcome and diagnosis. Semin. Pediatr. Infect. Dis. 2005; 16(1):44–9. https://doi.org/10.1053/j.spid.2004.09.011.

43. Zariffard M.R., Harwani S.C., Novak R.M., Graham P.J., Ji X., Spear G.T. Trichomonas vaginalis infection activates cells through toll-like receptor 4. Clin. Immunol. 2004; 111(1): 103–7. https://doi.org/10.1016/j.clim.2003.12.008.

44. Shin H., Kumamoto Y., Gopinath S., Iwasaki A. CD301b+ dendritic cells stimulate tissue-resident memory CD8+ T cells to protect against genital HSV-2. Nat. Commun. 2016; 7: 13346. https://doi.org/10.1038/ncomms13346.

45. Patel C.D., Backes I.M., Taylor S.A., Jiang Y., Marchant A., Pesola J.M., et al. Maternal immunization confers protection against neonatal herpes simplex mortality and behavioral morbidity. Sci. Transl. Med. 2019; 11(487): eaau6039. https://doi.org/10.1126/scitranslmed.aau6039.

46. Jenks J.A., Goodwin M.L., Permar S.R. The roles of host and viral antibody Fc receptors in herpes simplex virus (HSV) and human cytomegalovirus (HCMV) infections and immunity. Front. Immunol. 2019; 10: 2110. https://doi.org/10.3389/fimmu.2019.02110.

47. Posavad C.M., Zhao L., Mueller D.E., Stevens C.E., Huang M.L., Wald A., et al. Persistence of mucosal T-cell responses to herpes simplex virus type 2 in the female genital tract. Mucosal Immunol. 2015; 8(1): 115–26. https://doi.org/10.1038/mi.2014.47.

48. Schiffer J.T., Abu-Raddad L., Mark K.E. Mucosal host immune response predicts the severity and duration of herpes simplex virus-2 genital tract shedding episodes. Proc. Natl. Acad. Sci. USA. 2010; 107(44): 18973–8. https://doi.org/10.1073/pnas.1006614107.

49. Oh J.E., Iijima N., Song E., Lu P., Klein J., Jiang R., et al. Migrant memory B cells secrete luminal antibody in the vagina. Nature. 2019; 571(7763): 122–6. https://doi.org/10.1038/s41586-019-1285-1.

50. Truong N.R., Smith J.B., Sandgren K.J., Cunningham A.L. Mechanisms of immune control of mucosal HSV infection: a guide to rational vaccine design. Front. Immunol. 2019; 10: 373. https://doi.org/10.3389/fimmu.2019.00373.

51. Ospel'nikova T.P., Noseikina E.M., Gaiderova L.A., Ershov F.I. Terapevticheskii potentsial preparatov al'fa-interferonov pri sotsial'no znachimykh zabolevaniyakh cheloveka virusnoi etiologii. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2016; 93(5): 109–21.

52. Srivastava R., Roy S., Coulon P.G., Vahed H., Prakash S., Dhanushkodi N., et al. Therapeutic mucosal vaccination of herpes simplex virus 2-infected guinea pigs with ribonucleotide reductase 2 (RR2) protein boosts antiviral neutralizing antibodies and local tissue-resident CD4+ and CD8+ TRM cells associated with protection against recurrent genital herpes. J. Virol. 2019; 93(9): e02309-18. https://doi.org/10.1128/JVI.02309-18.

53. Hsu P.D., Lander E.S., Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014; 157(6): 1262–78. https://doi.org/10.1016/j.cell.2014.05.010.

54. Bi Y., Sun L., Gao D., Ding C., Li Z., Li Y., et al. High-efficiency targeted editing of large viral genomes by RNA-guided nucleases. PLoS Pathog. 2014; 10(5): e1004090. https://doi.org/10.1371/journal.ppat.1004090.

55. Karpov D.S., Karpov V.L., Klimova R.R., Demidova N.A., Kushch A.A. Sistema CRISPR/Cas9, ekspressiruemaya s plazmidy, podavlyaet replikatsiyu virusa prostogo gerpesa 1 tipa v kul'ture kletok Vero. Molekulyarnaya biologiya. 2019; 53(1): 91–100. https://doi.org/10.1134/S0026898419010051.