Вопросы вирусологии. 2020; 65: 243-258
Формирование популяционного генофонда потенциально угрожающих биобезопасности зоонозных вирусов
Львов Д. К., Гулюкин М. И., Забережный А. Д., Гулюкин А. М.
https://doi.org/10.36233/0507-4088-2020-65-5-1Аннотация
Коронавирусы начали формировать генофонд, взаимодействуя с земноводными (подсемейство Letovirinae), но в основном с рукокрылыми (Chiroptera) в третичном периоде (110–85 млн лет назад), образуя также переход на парнопалых (эоцен, 70–60 млн лет назад) и лишь 10–2 тыс. лет до н.э. приобретя способность к респираторной передаче (в первую очередь, вероятно, представителями рода Alphacoronavirus), обособились в сезонную инфекцию людей. Подобная ситуация возможна в ближайшем будущем с SARS-CoV-2. Эпидемические катаклизмы, более серьезные, чем COVID-19, связанные с зоонозными вирусами, вероятно, возникнут и в будущем. Необходим постоянный мониторинг популяционных генофондов зоонозных вирусов.
Список литературы
1. Львов Д.К. Рождение и развитие вирусологии – история изучения новых и возвращающихся инфекций. Вопросы вирусологии. 2012; (S1): 5–20.
2. Жданов В.М., Львов Д.К. Эволюция возбудителей инфекционных болезней. М.: Медицина; 1984.
3. Львов Д.К. Экология вирусов. Вестник Академии медицинских наук СССР. 1983; (12): 71–82.
4. Бухарин О.В., Литвин В.Ю. Патогенные бактерии в природных экосистемах. Екатеринбург; 1997.
5. Suarez D.L. Influenza A Virus. In: Avian Influenza. Oxford, UK: Blackwell Publishing Ltd.; 2009: 1–22. https://doi.org/10.1002/9780813818634.ch1
6. Shchelkunov S.N. How long ago did smallpox virus emerge? Arch. Virol. 2009; 154(12): 1885–71. https://doi.org/10.1007/s00705-009-0536-0
7. Щелкунов С.Н. Возможен ли возврат оспы. Молекулярная медицина. 2011; (4): 36–41.
8. Зверев В.В., Гинцбург А.Л., Пальцев А.М., Львов Д.К., Маренникова С.С. Натуральная оспа – дремлющий вулкан. Вопросы вирусологии. 2008; 53(4): 1–9.
9. Львов Д.К., Борисевич С.В., Альховский С.В., Бурцева Е.И. Актуальные подходы анализа вирусных геномов в интересах биобезопасности. Инфекционные болезни: Новости. Мнения. Обучение. 2019; (8): 96–101. https://doi.org/10.24411/2305-3496-2019-0000
10. Щелкунов С.Н., Щелкунова Г.А. Нужно быть готовыми к возврату оспы. Вопросы вирусологии. 2019; 64(5): 206–14. https://doi.org/10.36233/0507-4088-2019-64-5-206-214
11. Meltzer M., Damon I., LeDuc J.W., Millar J.D. Modeling potential responses to smallpox as a bioterrorist weapon. Emerg. Infect. Dis. 2001; 7(6): 959–69. https://doi.org/10.3201/eid0706.010607
12. Борисевич С.В., Маренникова С.С., Стовба Л.Ф., Петров А.А., Кратков В.Т., Мехлай А.А. Оспа буйволов. Вопросы вирусологии. 2016; 61(5): 200–4. https://doi.org/10.18821/0507-4088-2016-61-5-200-204
13. Di Giulio D.B., Eckburg P.B. Human monkeypox: an emerging zoonosis. Lancet Infect. Dis. 2004; 4(4): 15–25. https://doi.org/10.1016/s1473-3099(03)00856-9
14. Formenty P., Muntasir M.O., Damon I., Chowdhary V., Opoka M.L., Monimart C., et al. Human monkeypox outbreak caused by novel virus belonging to Congo Basin clade, Sudan, 2005. Emerg. Infect. Dis. 2010; 16(10): 1539–45. https://doi.org/10.3201/eid1610.100713
15. Rimoin A.W., Mulembakani P.M., Johnston S.C., Lloyd Smith J.O., Kisalu N.K., Kinkela T.L., et al. Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc. Natl. Acad. Sci. USA. 2010; 107(37): 16262–7. https://doi.org/10.1073/pnas.1005769107
16. Khodakevich L., Szczeniowski M., Manbu-ma-Disu, Jezek Z., Marennikova S., Nakano J., et al. The role of squirrels in sustaining monkeypox virus transmission. Trop. Geogr. Med. 1987; 39(2): 115–22.
17. Ladnyj I.D., Ziegler P., Kima E. A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull. World Health Organ. 1972; 46(5): 593–7.
18. Levine R.S., Peterson A.T., Yorita K.L., Carroll D., Damon I.K., Reynolds M.G. Ecological niche and geographic distribution of human monkeypox in Africa. PLoS One. 2007; 2(1): e176. https://doi.org/10.1371/journal.pone.0000176
19. Nakazawa Y., Emerson G.L., Carroll D.S., Zhao H., Li Y., Reynolds M.G., et al. Phylogenetic and ecologic perspectives of a monkeypox outbreak, southern Sudan, 2005. Emerg. Infect. Dis. 2013; 19(2): 237–45. https://doi.org/10.3201/eid1902.121220
20. Tesh R.B., Watts D.M., Sbrana E., Siirin M., Popov V.L., Xiao S.Y. Experimental infection of ground squirrels (Spermophilus tridecemlineatus) with monkeypox virus. Emerg. Infect. Dis. 2004; 10(9): 1563–7. https://doi.org/10.3201/eid1009.040310
21. Guarner J., Johnson B.J., Paddock C.D., Shieh W.J., Goldsmith C.S., Reynolds M.G., et al. Monkeypox transmission and pathogenesis in prairie dogs. Emerg. Infect. Dis. 2004; 10(3): 426–31. https://doi.org/10.3201/eid1003.030878
22. Львов Д.К., Громашевский В.Л., Маренникова С.С. и др. Изоляция поксвируса (Poxviridae, Poxvirus) от полевки-экономки Microtus (M.) oeconomus Pall., 1778 в лесотундре Кольского полуострова. Вопросы вирусологии. 1998; 43(1): 24–92.
23. Emerson G.L., Li Y., Frace M.A., Olsen-Rasmussen M.A., Khristova M.L., Govil D., et al. The phylogenetics and ecology of the orthopoxviruses endemic to North America. PLoS One. 2009; 4(10): e7666. https://doi.org/10.1371/journal.pone.0007666
24. Foege W.H. House on fire: the fight to eradicate smallpox. Volume 21. California; 2011: 1–218.
25. Львов Д.К. Грипп и другие новые и возвращающиеся инфекции Северной Евразии: глобальные последствия. Федеральный справочник здравоохранения России. 2010; (11): 209–19.
26. Klenk K.D., Matrosovich M.H., Stech J., eds. Avian Influenza. Volume 27. Basel: Karger Medical and Scientific Publishers; 2008.
27. Lvov D.K., Shchelkanov M.Y., Alkhovsky S.V., Deryabin P.G. Zoonotic viruses of Northern Eurasia: Taxonomy and ecology. London: Academic Press Elsevier; 2015.
28. Lvov D.K., Shchelkanov M.Y., Prilipov A.G., Vlasov N.A., Fedyakina I.T., Deryabin P.G., et al. Evolution of highly pathogenic avian influenza H5N1 virus in natural ecosystems of northern Eurasia (2005-08). Avian Dis. 2010; 54(1 Suppl.): 483–95. https://doi.org/10.1637/8893-042509-review.1
29. Herfst S., Schrauwen E.J., Linster M., Chutinimitkul S., de Wit E., Munster V.J., et al. Airborne transmission of influenza A/H5N1 virus between ferrets. Science. 2012; 336(6088): 1534–41. https://doi.org/10.1126/science.1213362
30. Imai M., Watanabe T., Hatta M., Das S.C., Ozawa M., Shinya K., et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature. 2012; 486(7403): 420–8. https://doi.org/10.1038/nature10831
31. WHO. Antigenic and genetic characteristics of zoonotic influenza viruses and development of candidate vaccine viruses for pandemic preparedness 28 Available at: https://www.who.int/influenza/vaccines/virus/characteristics_virus_vaccines/en/
32. Львов Д.К., Алипер Т.И., Дерябин П.Г., Забережный А.Д., Гребенникова Т.В., Сергеев В.А. Вакцина против гриппа птиц инактивированная эмульгированная ФЛУ ПРОТЕКТ Н5 и способ профилактики гриппа птиц. Патент РФ №23503350; 2009.
33. Львов Д.К., Альховский С.В., Колобухина Л.В., Бурцева Е.И. Этиология эпидемической вспышки COVID-19 в г. Ухань (провинция Хубэй, Китайская Народная Республика), ассоциированной с вирусом 2019-nCoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, подрод Sarbecovirus): уроки эпидемии SARS-CoV. Вопросы вирусологии. 2020; 65(1): 6–16. https://doi.org/10.36233/0507-4088-2020-65-1-6-15
34. Львов Д.К., Альховский С.В. Истоки пандемии COVID-19: экология и генетика коронавирусов (Betacoronavirus: Coronaviridae) SARS-CoV, SARS-CoV-2 (подрод Sarbecovirus), MERSCoV (подрод Merbecovirus). Вопросы вирусологии. 2020; 65(2): 62–70. https://doi.org/10.36233/0507-4088-2020-65-2-62-70
35. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J.H., et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005; 310(5748): 676–9. https://doi.org/10.1126/science.1118391
36. Fan Y., Zhao K., Shi Z.L., Zhou P. Bat coronaviruses in China. Viruses. 2019; 11(3): 210. https://doi.org/10.3390/v11030210
37. Wang L.F., Shi Z., Zhang S., Field H., Daszak P., Eaton B.T. Review of bats and SARS. Emerg. Infect. Dis. 2006; 12(12): 1834–40. https://doi.org/10.3201/eid1212.060401
38. Hu B., Zeng L.P., Lou Y.X., Ge X.Y., Zhang W., Li B., et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 2017; 13(11): e1006698. https://doi.org/10.1371/journal.ppat.1006698
39. Ge X.Y., Wang N., Zhang W., Hu B., Li B., Zhang Y.Z., et al. Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft. Virol. Sin. 2016; 31(1): 31–40. https://doi.org/10.1007/s12250-016-3713-9
40. Corman V.M., Ithete N.L., Richards L.R., Schoeman M.C., Preiser W., Drosten C., et al. Rooting the phylogenetic tree of middle east respiratory syndrome coronavirus by characterization of a conspecific virus from an african bat. J. Virol. 2014; 88(19): 11297–303. https://doi.org/10.1128/jvi.01498-14
41. Yang L., Wu Z., Ren X., Yang F., Zhang J., He G., et al. MERS–Related Betacoronavirus in Vespertilio superans Bats, China. Emerg. Infect. Dis. 2014; 20(7): 1260–2. https://doi.org/10.3201/eid2007.140318
42. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798): 270–3. https://doi.org/10.1038/s41586-020-2012-7
43. Rihtarič D., Hostnik P., Steyer A., Grom J., Toplak I. Identification of SARS-like coronaviruses in horseshoe bats (Rhinolophus hipposideros) in Slovenia. Arch. Virol. 2010; 155(7798): 507–14. https://doi.org/10.1038/s41586-020-2012-7
44. Ar Gouilh M., Puechmaille S.J., Diancourt L., Vandenbogaert M., Serra-Cobo J., Lopez Roïg M., et al. SARS-CoV related Betacoronavirus and diverse Alphacoronavirus members found in western old-world. Virology. 2018; 517: 88–97. https://doi.org/10.1016/j.virol.2018.01.014
45. Balboni A., Palladini A., Bogliani G., Battilani M. Detection of a virus related to betacoronaviruses in Italian greater horseshoe bats. Epidemiol. Infect. 2011; 139(2): 216–9. https://doi.org/10.1017/s0950268810001147
46. Donaldson E.F., Haskew A.N., Gates J.E., Huynh J., Moore C.J., Frieman M.B. Metagenomic analysis of the viromes of three North American bat species: viral diversity among different bat species that share a common habitat. J. Virol. 2010; 84(24): 13004–18. https://doi.org/10.1128/jvi.01255-10
47. Dominguez S.R., O’Shea T.J., Oko L.M., Holmes K.V. Detection of group 1 coronaviruses in bats in North America. Emerg. Infect. Dis. 2007; 13(9): 1295–300. https://doi.org/10.3201/eid1309.070491
48. Tong S., Conrardy C., Ruone S., Kuzmin I.V., Guo X., Tao Y., et al. Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emerg. Infect. Dis. 2009; 15(3): 482–5. https://doi.org/10.3201/eid1503.081013
49. Annan A., Baldwin H.J., Corman V.M., Klose S.M., Owusu M., Nkrumah E.E., et al. Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg. Infect. Dis. 2013; 19(3): 456–9. https://doi.org/10.3201/eid1903.121503
50. Львов Д.К., ред. Методические рекомендации. Организация эколого-эпидемиологического мониторинга территорий Российской Федерации с целью противоэпидемической защиты населения и войск. М.; 1993.
51. Goodman R.A., Bauman C.F., Gregg M.B., Videtto J.F., Stroup D.F., Chalmers N.P. Epidemiologic field investigations by the Centers for Disease control and Epidemic Intelligence Service, 1946-87. Public Heal. Rep. 1990; 105(6): 604–10.
52. Langmuir A.D. The epidemic intelligence service of the center for disease control. Public Heal. Rep. 1980; 95(5): 470–7.
53. Langmuir A.D., Andrews J.M. Biological warfare defense. 2. The epidemic intelligence service of the communicable disease center. Am. J. Public Heal. Nations Heal. 1952; 42(3): 235–8. https://doi.org/10.2105/ajph.42.3.235
54. Львов Д.К., Дерябин П.Г., Аристова В.А., Бутенко А.М., Галкина И.В., Громашевский В.Л. и др. Атлас распространения возбудителей природно-очаговых вирусных инфекций на территории Российской Федерации. М.; 2001.
55. Lvov D.K. Ecological sounding of the USSR territory for natural foci of arboviruses. Sov. Med. Rev. Ser. E Virol. Rev. 1993; 3(5): 1–47.
56. Львов Д.К., Ильичев В.Д. Миграция птиц и перенос возбудителей инфекции. М.: Наука; 1979.
57. McClure H.E. Migration and survival of the birds of Asia. Bangkok; 1974.
58. Lvov S.D. Natural virus foci in high latitudes of Eurasia. Sov. Med. Rev. Ser. E Virol. Rev. 1993; 3(5): 137–85.
59. King A.M.Q., Adams M., Carsters E.B., Lefkowitz E., eds. Virus taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses. London-Waltham, MA: Academic Press; 2012.
60. Daszak P., Cunningham A.A., Hyatt A.D. Emerging infectious diseases of wildlife – threats to biodiversity and human health. Science. 2000; 287(5452): 443–9. https://doi.org/10.1126/science.287.5452.443
61. Sanfaçon H., Gorbalenya A.E., Knowles N.J., Chen Y.P. Order Picornavirales. In: King A.M.Q., Adams M., Carsters E.B., Lefkowitz E., eds. Virus taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses. London-Waltham, MA: Academic Press; 2012: 835–9.
62. Lang A.S., Culley A.I., Suttle C.A. Genome sequence and characterization of a virus (HaRNAV) related to picorna-like viruses that infects the marine toxic bloom-forming alga Heterosigma akashiwo. Virology. 2003; 310: 359–71. https://doi.org/10.1016/j.virol.2003.10.015
63. Easton A.J., Pringle C.R. Order mononegavirales. In: King A.M.Q., Adams M., Carsters E.B., Lefkowitz E., eds. Virus taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses. LondonWaltham, MA: Academic Press; 2012: 653–7.
Problems of Virology. 2020; 65: 243-258
Formation of population gene pools of zoonotic viruses, potentially threatening biosafety
Lvov D. K., Gulyukin M. I., Zaberezhniy A. D., Gulyukin A. M.
https://doi.org/10.36233/0507-4088-2020-65-5-1Abstract
Coronaviruses formed a gene pool by interaction with Amphibia (subfamily Letovirinae) and then with Chiroptera in Tertiary (110–75 million years ago) with transformation to Artiodactyla (Eocene – 70–60 million years ago), and only 10–2 thousand years BC acquired the ability to a respiratory transmission and became Alphaviruses, a seasonal infection of humans. A similar situation is possible in the near future with SARS-CoV-2. Pandemics associated with zoonoses even more serious than COVID-19 are likely. Constant monitoring of populational gene pools of zoonotic viruses is necessary.
References
1. L'vov D.K. Rozhdenie i razvitie virusologii – istoriya izucheniya novykh i vozvrashchayushchikhsya infektsii. Voprosy virusologii. 2012; (S1): 5–20.
2. Zhdanov V.M., L'vov D.K. Evolyutsiya vozbuditelei infektsionnykh boleznei. M.: Meditsina; 1984.
3. L'vov D.K. Ekologiya virusov. Vestnik Akademii meditsinskikh nauk SSSR. 1983; (12): 71–82.
4. Bukharin O.V., Litvin V.Yu. Patogennye bakterii v prirodnykh ekosistemakh. Ekaterinburg; 1997.
5. Suarez D.L. Influenza A Virus. In: Avian Influenza. Oxford, UK: Blackwell Publishing Ltd.; 2009: 1–22. https://doi.org/10.1002/9780813818634.ch1
6. Shchelkunov S.N. How long ago did smallpox virus emerge? Arch. Virol. 2009; 154(12): 1885–71. https://doi.org/10.1007/s00705-009-0536-0
7. Shchelkunov S.N. Vozmozhen li vozvrat ospy. Molekulyarnaya meditsina. 2011; (4): 36–41.
8. Zverev V.V., Gintsburg A.L., Pal'tsev A.M., L'vov D.K., Marennikova S.S. Natural'naya ospa – dremlyushchii vulkan. Voprosy virusologii. 2008; 53(4): 1–9.
9. L'vov D.K., Borisevich S.V., Al'khovskii S.V., Burtseva E.I. Aktual'nye podkhody analiza virusnykh genomov v interesakh biobezopasnosti. Infektsionnye bolezni: Novosti. Mneniya. Obuchenie. 2019; (8): 96–101. https://doi.org/10.24411/2305-3496-2019-0000
10. Shchelkunov S.N., Shchelkunova G.A. Nuzhno byt' gotovymi k vozvratu ospy. Voprosy virusologii. 2019; 64(5): 206–14. https://doi.org/10.36233/0507-4088-2019-64-5-206-214
11. Meltzer M., Damon I., LeDuc J.W., Millar J.D. Modeling potential responses to smallpox as a bioterrorist weapon. Emerg. Infect. Dis. 2001; 7(6): 959–69. https://doi.org/10.3201/eid0706.010607
12. Borisevich S.V., Marennikova S.S., Stovba L.F., Petrov A.A., Kratkov V.T., Mekhlai A.A. Ospa buivolov. Voprosy virusologii. 2016; 61(5): 200–4. https://doi.org/10.18821/0507-4088-2016-61-5-200-204
13. Di Giulio D.B., Eckburg P.B. Human monkeypox: an emerging zoonosis. Lancet Infect. Dis. 2004; 4(4): 15–25. https://doi.org/10.1016/s1473-3099(03)00856-9
14. Formenty P., Muntasir M.O., Damon I., Chowdhary V., Opoka M.L., Monimart C., et al. Human monkeypox outbreak caused by novel virus belonging to Congo Basin clade, Sudan, 2005. Emerg. Infect. Dis. 2010; 16(10): 1539–45. https://doi.org/10.3201/eid1610.100713
15. Rimoin A.W., Mulembakani P.M., Johnston S.C., Lloyd Smith J.O., Kisalu N.K., Kinkela T.L., et al. Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo. Proc. Natl. Acad. Sci. USA. 2010; 107(37): 16262–7. https://doi.org/10.1073/pnas.1005769107
16. Khodakevich L., Szczeniowski M., Manbu-ma-Disu, Jezek Z., Marennikova S., Nakano J., et al. The role of squirrels in sustaining monkeypox virus transmission. Trop. Geogr. Med. 1987; 39(2): 115–22.
17. Ladnyj I.D., Ziegler P., Kima E. A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull. World Health Organ. 1972; 46(5): 593–7.
18. Levine R.S., Peterson A.T., Yorita K.L., Carroll D., Damon I.K., Reynolds M.G. Ecological niche and geographic distribution of human monkeypox in Africa. PLoS One. 2007; 2(1): e176. https://doi.org/10.1371/journal.pone.0000176
19. Nakazawa Y., Emerson G.L., Carroll D.S., Zhao H., Li Y., Reynolds M.G., et al. Phylogenetic and ecologic perspectives of a monkeypox outbreak, southern Sudan, 2005. Emerg. Infect. Dis. 2013; 19(2): 237–45. https://doi.org/10.3201/eid1902.121220
20. Tesh R.B., Watts D.M., Sbrana E., Siirin M., Popov V.L., Xiao S.Y. Experimental infection of ground squirrels (Spermophilus tridecemlineatus) with monkeypox virus. Emerg. Infect. Dis. 2004; 10(9): 1563–7. https://doi.org/10.3201/eid1009.040310
21. Guarner J., Johnson B.J., Paddock C.D., Shieh W.J., Goldsmith C.S., Reynolds M.G., et al. Monkeypox transmission and pathogenesis in prairie dogs. Emerg. Infect. Dis. 2004; 10(3): 426–31. https://doi.org/10.3201/eid1003.030878
22. L'vov D.K., Gromashevskii V.L., Marennikova S.S. i dr. Izolyatsiya poksvirusa (Poxviridae, Poxvirus) ot polevki-ekonomki Microtus (M.) oeconomus Pall., 1778 v lesotundre Kol'skogo poluostrova. Voprosy virusologii. 1998; 43(1): 24–92.
23. Emerson G.L., Li Y., Frace M.A., Olsen-Rasmussen M.A., Khristova M.L., Govil D., et al. The phylogenetics and ecology of the orthopoxviruses endemic to North America. PLoS One. 2009; 4(10): e7666. https://doi.org/10.1371/journal.pone.0007666
24. Foege W.H. House on fire: the fight to eradicate smallpox. Volume 21. California; 2011: 1–218.
25. L'vov D.K. Gripp i drugie novye i vozvrashchayushchiesya infektsii Severnoi Evrazii: global'nye posledstviya. Federal'nyi spravochnik zdravookhraneniya Rossii. 2010; (11): 209–19.
26. Klenk K.D., Matrosovich M.H., Stech J., eds. Avian Influenza. Volume 27. Basel: Karger Medical and Scientific Publishers; 2008.
27. Lvov D.K., Shchelkanov M.Y., Alkhovsky S.V., Deryabin P.G. Zoonotic viruses of Northern Eurasia: Taxonomy and ecology. London: Academic Press Elsevier; 2015.
28. Lvov D.K., Shchelkanov M.Y., Prilipov A.G., Vlasov N.A., Fedyakina I.T., Deryabin P.G., et al. Evolution of highly pathogenic avian influenza H5N1 virus in natural ecosystems of northern Eurasia (2005-08). Avian Dis. 2010; 54(1 Suppl.): 483–95. https://doi.org/10.1637/8893-042509-review.1
29. Herfst S., Schrauwen E.J., Linster M., Chutinimitkul S., de Wit E., Munster V.J., et al. Airborne transmission of influenza A/H5N1 virus between ferrets. Science. 2012; 336(6088): 1534–41. https://doi.org/10.1126/science.1213362
30. Imai M., Watanabe T., Hatta M., Das S.C., Ozawa M., Shinya K., et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature. 2012; 486(7403): 420–8. https://doi.org/10.1038/nature10831
31. WHO. Antigenic and genetic characteristics of zoonotic influenza viruses and development of candidate vaccine viruses for pandemic preparedness 28 Available at: https://www.who.int/influenza/vaccines/virus/characteristics_virus_vaccines/en/
32. L'vov D.K., Aliper T.I., Deryabin P.G., Zaberezhnyi A.D., Grebennikova T.V., Sergeev V.A. Vaktsina protiv grippa ptits inaktivirovannaya emul'girovannaya FLU PROTEKT N5 i sposob profilaktiki grippa ptits. Patent RF №23503350; 2009.
33. L'vov D.K., Al'khovskii S.V., Kolobukhina L.V., Burtseva E.I. Etiologiya epidemicheskoi vspyshki COVID-19 v g. Ukhan' (provintsiya Khubei, Kitaiskaya Narodnaya Respublika), assotsiirovannoi s virusom 2019-nCoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, podrod Sarbecovirus): uroki epidemii SARS-CoV. Voprosy virusologii. 2020; 65(1): 6–16. https://doi.org/10.36233/0507-4088-2020-65-1-6-15
34. L'vov D.K., Al'khovskii S.V. Istoki pandemii COVID-19: ekologiya i genetika koronavirusov (Betacoronavirus: Coronaviridae) SARS-CoV, SARS-CoV-2 (podrod Sarbecovirus), MERSCoV (podrod Merbecovirus). Voprosy virusologii. 2020; 65(2): 62–70. https://doi.org/10.36233/0507-4088-2020-65-2-62-70
35. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J.H., et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005; 310(5748): 676–9. https://doi.org/10.1126/science.1118391
36. Fan Y., Zhao K., Shi Z.L., Zhou P. Bat coronaviruses in China. Viruses. 2019; 11(3): 210. https://doi.org/10.3390/v11030210
37. Wang L.F., Shi Z., Zhang S., Field H., Daszak P., Eaton B.T. Review of bats and SARS. Emerg. Infect. Dis. 2006; 12(12): 1834–40. https://doi.org/10.3201/eid1212.060401
38. Hu B., Zeng L.P., Lou Y.X., Ge X.Y., Zhang W., Li B., et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog. 2017; 13(11): e1006698. https://doi.org/10.1371/journal.ppat.1006698
39. Ge X.Y., Wang N., Zhang W., Hu B., Li B., Zhang Y.Z., et al. Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft. Virol. Sin. 2016; 31(1): 31–40. https://doi.org/10.1007/s12250-016-3713-9
40. Corman V.M., Ithete N.L., Richards L.R., Schoeman M.C., Preiser W., Drosten C., et al. Rooting the phylogenetic tree of middle east respiratory syndrome coronavirus by characterization of a conspecific virus from an african bat. J. Virol. 2014; 88(19): 11297–303. https://doi.org/10.1128/jvi.01498-14
41. Yang L., Wu Z., Ren X., Yang F., Zhang J., He G., et al. MERS–Related Betacoronavirus in Vespertilio superans Bats, China. Emerg. Infect. Dis. 2014; 20(7): 1260–2. https://doi.org/10.3201/eid2007.140318
42. Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579(7798): 270–3. https://doi.org/10.1038/s41586-020-2012-7
43. Rihtarič D., Hostnik P., Steyer A., Grom J., Toplak I. Identification of SARS-like coronaviruses in horseshoe bats (Rhinolophus hipposideros) in Slovenia. Arch. Virol. 2010; 155(7798): 507–14. https://doi.org/10.1038/s41586-020-2012-7
44. Ar Gouilh M., Puechmaille S.J., Diancourt L., Vandenbogaert M., Serra-Cobo J., Lopez Roïg M., et al. SARS-CoV related Betacoronavirus and diverse Alphacoronavirus members found in western old-world. Virology. 2018; 517: 88–97. https://doi.org/10.1016/j.virol.2018.01.014
45. Balboni A., Palladini A., Bogliani G., Battilani M. Detection of a virus related to betacoronaviruses in Italian greater horseshoe bats. Epidemiol. Infect. 2011; 139(2): 216–9. https://doi.org/10.1017/s0950268810001147
46. Donaldson E.F., Haskew A.N., Gates J.E., Huynh J., Moore C.J., Frieman M.B. Metagenomic analysis of the viromes of three North American bat species: viral diversity among different bat species that share a common habitat. J. Virol. 2010; 84(24): 13004–18. https://doi.org/10.1128/jvi.01255-10
47. Dominguez S.R., O’Shea T.J., Oko L.M., Holmes K.V. Detection of group 1 coronaviruses in bats in North America. Emerg. Infect. Dis. 2007; 13(9): 1295–300. https://doi.org/10.3201/eid1309.070491
48. Tong S., Conrardy C., Ruone S., Kuzmin I.V., Guo X., Tao Y., et al. Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emerg. Infect. Dis. 2009; 15(3): 482–5. https://doi.org/10.3201/eid1503.081013
49. Annan A., Baldwin H.J., Corman V.M., Klose S.M., Owusu M., Nkrumah E.E., et al. Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg. Infect. Dis. 2013; 19(3): 456–9. https://doi.org/10.3201/eid1903.121503
50. L'vov D.K., red. Metodicheskie rekomendatsii. Organizatsiya ekologo-epidemiologicheskogo monitoringa territorii Rossiiskoi Federatsii s tsel'yu protivoepidemicheskoi zashchity naseleniya i voisk. M.; 1993.
51. Goodman R.A., Bauman C.F., Gregg M.B., Videtto J.F., Stroup D.F., Chalmers N.P. Epidemiologic field investigations by the Centers for Disease control and Epidemic Intelligence Service, 1946-87. Public Heal. Rep. 1990; 105(6): 604–10.
52. Langmuir A.D. The epidemic intelligence service of the center for disease control. Public Heal. Rep. 1980; 95(5): 470–7.
53. Langmuir A.D., Andrews J.M. Biological warfare defense. 2. The epidemic intelligence service of the communicable disease center. Am. J. Public Heal. Nations Heal. 1952; 42(3): 235–8. https://doi.org/10.2105/ajph.42.3.235
54. L'vov D.K., Deryabin P.G., Aristova V.A., Butenko A.M., Galkina I.V., Gromashevskii V.L. i dr. Atlas rasprostraneniya vozbuditelei prirodno-ochagovykh virusnykh infektsii na territorii Rossiiskoi Federatsii. M.; 2001.
55. Lvov D.K. Ecological sounding of the USSR territory for natural foci of arboviruses. Sov. Med. Rev. Ser. E Virol. Rev. 1993; 3(5): 1–47.
56. L'vov D.K., Il'ichev V.D. Migratsiya ptits i perenos vozbuditelei infektsii. M.: Nauka; 1979.
57. McClure H.E. Migration and survival of the birds of Asia. Bangkok; 1974.
58. Lvov S.D. Natural virus foci in high latitudes of Eurasia. Sov. Med. Rev. Ser. E Virol. Rev. 1993; 3(5): 137–85.
59. King A.M.Q., Adams M., Carsters E.B., Lefkowitz E., eds. Virus taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses. London-Waltham, MA: Academic Press; 2012.
60. Daszak P., Cunningham A.A., Hyatt A.D. Emerging infectious diseases of wildlife – threats to biodiversity and human health. Science. 2000; 287(5452): 443–9. https://doi.org/10.1126/science.287.5452.443
61. Sanfaçon H., Gorbalenya A.E., Knowles N.J., Chen Y.P. Order Picornavirales. In: King A.M.Q., Adams M., Carsters E.B., Lefkowitz E., eds. Virus taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses. London-Waltham, MA: Academic Press; 2012: 835–9.
62. Lang A.S., Culley A.I., Suttle C.A. Genome sequence and characterization of a virus (HaRNAV) related to picorna-like viruses that infects the marine toxic bloom-forming alga Heterosigma akashiwo. Virology. 2003; 310: 359–71. https://doi.org/10.1016/j.virol.2003.10.015
63. Easton A.J., Pringle C.R. Order mononegavirales. In: King A.M.Q., Adams M., Carsters E.B., Lefkowitz E., eds. Virus taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses. LondonWaltham, MA: Academic Press; 2012: 653–7.
События
-
К платформе Elpub присоединился журнал «The BRICS Health Journal» >>>
10 июн 2025 | 12:52 -
Журнал «Неотложная кардиология и кардиоваскулярные риски» присоединился к Elpub >>>
6 июн 2025 | 09:45 -
К платформе Elpub присоединился «Медицинский журнал» >>>
5 июн 2025 | 09:41 -
НЭИКОН принял участие в конференции НИИ Организации здравоохранения и медицинского менеджмента >>>
30 мая 2025 | 10:32 -
Журнал «Творчество и современность» присоединился к Elpub! >>>
27 мая 2025 | 12:38