Журналов:     Статей:        

Вопросы вирусологии. 2020; 65: 212-217

Разработка инактивированной культуральной вакцины против жёлтой лихорадки

Иванов А. П., Клеблеева Т. Д., Рогова Ю. В., Иванова О. Е.

https://doi.org/10.36233/0507-4088-2020-65-4-212-217

Аннотация

Введение. Жёлтая лихорадка (ЖЛ) - одно из самых распространённых вирусных заболеваний человека. Единственная на сегодняшний день доступная живая вакцина против ЖЛ на основе куриных эмбрионов, инфицированных аттенуированным штаммом 17D вируса ЖЛ, относится к наиболее эффективным вакцинным препаратам. Однако живая вакцина ассоциирована с тяжёлыми поствакцинальными осложнениями, в том числе с висцеротропным синдромом (примерно 0,4 случая на 100 тыс. вакцинированных). В связи с этим разработка и внедрение высокоочищенной инактивированной вакцины против ЖЛ призвана обеспечить максимальную безопасность вакцинации.

Цель исследования - разработка и оценка иммуногенности культуральной инактивированной вакцины против ЖЛ на уровне лабораторной модели.

Материал и методы. В ходе исследования проведены адаптация штамма 17D вируса ЖЛ к культуре клеток Vero, культивирование, удаление клеточной ДНК, инактивация β-пропиолактоном, концентрирование, хроматографическая очистка, определение белка и антигена вируса ЖЛ, оценка иммуногенности на мышах параллельно с коммерческой живой вакциной.

Результаты и обсуждение. Определение специфических антител класса G (IgG) и вируснейтрализующих антител в сыворотках крови иммунизированных мышей показало высокий уровень антител, превышающий таковой при иммунизации коммерческой живой вакциной. Оптимальная доза антигена в вакцине по общему белку составила 50 мкг/мл (5 мкг/0,1 мл - доза и объём на 1 вакцинацию мышей). Таким образом, лабораторный вариант культуральной инактивированной вакцины против ЖЛ по эффективности не уступает коммерческой живой вакцине и даже превосходит её.

Заключение. Разработан лабораторный вариант культуральной инактивированной вакцины против ЖЛ, не уступающий по иммуногенности (на модели животных) коммерческой живой вакцине.

Список литературы

1. Monath T.P., Lee C.K., Julander J.G., Brown A., Beasley D.W., Watts D.M., et al. Inactivated yellow fever 17D vaccine: Development and nonclinical safety, immunogenicity and protective activity. Vaccine. 2010; 28(22): 3827-40. DOI: http://doi.Org/10.1016/j.vaccine.2010.03.023

2. Theiler M., Smith H.H. The use of yellow fever virus modified by in vitro cultivation for human immunization. J. Exp. Med. 1937; 65(6): 787-800. DOI: http://doi.org/10.1084/jem.65.6.787

3. Yellow fever vaccine - current supply outlook. UNICEF Supply Division; 2016. Available at: https://www.unicef.org/supply/sites/unicef. org.supply/files/2019-06/yellow-fever-vaccine-supply-outlook.pdf

4. Whittembury A., Ramirez G., Hernandes H., Ropero A.M., Waterman S., Ticona M., et al. Viscerotropic disease following yellow fever vaccination in Peru. Vaccine. 2009; 27(43): 5974-81. DOI: http://doi.org/10.1016/j.vaccine.2009.07.082

5. Hayes N.B. Is it time for a new yellow fever vaccine? Vaccine. 2010; 28(51): 8073-6. DOI: http://doi.org/10.1016/j.vaccine.2010.10.015

6. Pereira R.C., Silva A.N., Souza M.C., Silva M.V., Neves P.P., Silva A.A., et al. An inactivated yellow fever 17DD vaccine cultivated in Vero cell culture. Vaccine. 2015; 33(35): 4261-8. DOI: http://doi.org/10.1016/j.vaccine.2015.03.077

7. Иванов А.П., Клеблеева Т.Д., Иванова О.Е. Опыт применения IgY-технологии для лабораторной диагностики вирусных инфекций. Вопросы вирусологии. 2020; 65(1): 21-6. DOI: http://doi.org/10.36233/0507-4088-2020-65-1-21-26.

8. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976; 72(1-2): 248-54. DOI: http://doi.org/10.1006/abio.1976.9999

9. Ivanov A.P., Bashkirtsev V.N., Tkachenko E.A. Enzyme-linked immunosorbent assay for detection of arenaviruses. Arch. Virol. 1981; 67(1): 71-4. DOI: http://doi.org/10.1007/BF01314603

10. Mercier-Delarue S., Durier C., Colin de Verdiere N., Poveda JD., Meiffredy V., Garcia MDF., et al. Screening test for neutralizing antibodies against yellow fever virus, based on flavivirus pseudotype. PLoS One. 2017; 12(5): e0177882. DOI: http://doi.org/10.1371/journal.pone.0177882

11. Lindsey N.P., Schroeder B.A., Miller E.R., Braun M.M., Hinkley A.F., Marano N., et al. Adverse event reports following yellow fever vaccination. Vaccine. 2008; 26(48): 6077-82. DOI: http://doi.org/10.1016/j.vaccine.2008.09.009

12. Alexander L.N., Seward J.F., Santibanez T.A., Pallansch M.A., Kew O.M., Prevots D.R., et al. Vaccine policy changes and epidemiology of poliomyelitis in the United States. JAMA. 2004; 292(14): 1696-701. DOI: http://doi.org/10.1001/jama.292.14.1696

Problems of Virology. 2020; 65: 212-217

Development of inactivated cultural yellow fever vaccine

Ivanov A. P., Klebleeva T. D., Rogova Y. V., Ivanova O. E.

https://doi.org/10.36233/0507-4088-2020-65-4-212-217

Abstract

Introduction. The only currently available live vaccine against yellow fever (YF) based on chicken embryos infected with an attenuated 17D strain of the YF virus is one of the most effective vaccine preparations. However, the live vaccine is associated with “viscerotropic syndrome” (approximately 0.4 cases per 100 000 vaccinated). Therefore, the development and introduction of highly purified inactivated vaccine against YF is intended to ensure the maximum safety of vaccination against one of the most common human viral diseases.

Goals and objectives. Development and evaluation of immunogenicity of the cultural inactivated vaccine against YF at the laboratory model level.

Material and methods. Adaptation of 17D strain of YF virus to Vero cell culture, cultivation, removal of cellular DNA, inactivation with β-propiolactone, concentration, chromatographic purification, determination of protein and antigen of YF virus, assessment of immunogenicity in mice in parallel with commercial live vaccine.

Results and discussion. Immunogenicity: the determination of specific antibodies of class G (IgG) and virus neutralizing antibodies in the sera of immunized mice showed high level of antibodies exceeding that of immunized with commercial live vaccine. The optimal dose of antigen in the vaccine (total protein) was 50 μg/ml (5 μg/0.1 ml -dose and volume per 1 vaccination of mice). Thus, the laboratory version of cultural inactivated vaccine against YF is as effective (and even superior) as the commercial live vaccine.

Conclusion. Laboratory version of cultural inactivated vaccine against YF, which is not inferior in immunogenicity (in animal model) to commercial live vaccine, has been developed.

References

1. Monath T.P., Lee C.K., Julander J.G., Brown A., Beasley D.W., Watts D.M., et al. Inactivated yellow fever 17D vaccine: Development and nonclinical safety, immunogenicity and protective activity. Vaccine. 2010; 28(22): 3827-40. DOI: http://doi.Org/10.1016/j.vaccine.2010.03.023

2. Theiler M., Smith H.H. The use of yellow fever virus modified by in vitro cultivation for human immunization. J. Exp. Med. 1937; 65(6): 787-800. DOI: http://doi.org/10.1084/jem.65.6.787

3. Yellow fever vaccine - current supply outlook. UNICEF Supply Division; 2016. Available at: https://www.unicef.org/supply/sites/unicef. org.supply/files/2019-06/yellow-fever-vaccine-supply-outlook.pdf

4. Whittembury A., Ramirez G., Hernandes H., Ropero A.M., Waterman S., Ticona M., et al. Viscerotropic disease following yellow fever vaccination in Peru. Vaccine. 2009; 27(43): 5974-81. DOI: http://doi.org/10.1016/j.vaccine.2009.07.082

5. Hayes N.B. Is it time for a new yellow fever vaccine? Vaccine. 2010; 28(51): 8073-6. DOI: http://doi.org/10.1016/j.vaccine.2010.10.015

6. Pereira R.C., Silva A.N., Souza M.C., Silva M.V., Neves P.P., Silva A.A., et al. An inactivated yellow fever 17DD vaccine cultivated in Vero cell culture. Vaccine. 2015; 33(35): 4261-8. DOI: http://doi.org/10.1016/j.vaccine.2015.03.077

7. Ivanov A.P., Klebleeva T.D., Ivanova O.E. Opyt primeneniya IgY-tekhnologii dlya laboratornoi diagnostiki virusnykh infektsii. Voprosy virusologii. 2020; 65(1): 21-6. DOI: http://doi.org/10.36233/0507-4088-2020-65-1-21-26.

8. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976; 72(1-2): 248-54. DOI: http://doi.org/10.1006/abio.1976.9999

9. Ivanov A.P., Bashkirtsev V.N., Tkachenko E.A. Enzyme-linked immunosorbent assay for detection of arenaviruses. Arch. Virol. 1981; 67(1): 71-4. DOI: http://doi.org/10.1007/BF01314603

10. Mercier-Delarue S., Durier C., Colin de Verdiere N., Poveda JD., Meiffredy V., Garcia MDF., et al. Screening test for neutralizing antibodies against yellow fever virus, based on flavivirus pseudotype. PLoS One. 2017; 12(5): e0177882. DOI: http://doi.org/10.1371/journal.pone.0177882

11. Lindsey N.P., Schroeder B.A., Miller E.R., Braun M.M., Hinkley A.F., Marano N., et al. Adverse event reports following yellow fever vaccination. Vaccine. 2008; 26(48): 6077-82. DOI: http://doi.org/10.1016/j.vaccine.2008.09.009

12. Alexander L.N., Seward J.F., Santibanez T.A., Pallansch M.A., Kew O.M., Prevots D.R., et al. Vaccine policy changes and epidemiology of poliomyelitis in the United States. JAMA. 2004; 292(14): 1696-701. DOI: http://doi.org/10.1001/jama.292.14.1696