Журналов:     Статей:        

Вопросы вирусологии. 2020; 65: 182-190

Перспектива создания специфических противогриппозных препаратов на основе синтетических малых интерферирующих РНК

Пашков Е. А., Файзулоев Е. Б., Свитич О. А., Сергеев О. В., Зверев В. В.

https://doi.org/10.36233/0507-4088-2020-65-4-182-190

Аннотация

Грипп является одной из самых актуальных проблем здравоохранения во всём мире. Ежегодно гриппом болеют до 15% населения земли, из них около 500 тыс. человек умирают. Особую клиническую значимость представляют вирусы гриппа А и В, имеющие высокий эпидемический и пандемический потенциал. Помимо поражения дыхательных путей, грипп способен вызвать осложнения со стороны сердечно-сосудистой и центральной нервной системы. Несмотря на широкий спектр специфически направленных на различные стадии вирусной репродукции противогриппозных препаратов, наиболее остро стоит проблема формирования вирусной резистентности к традиционным лекарственным препаратам, что требует поиска новых технологий для её преодоления. Перспективным представляется создание лекарственных препаратов, действие которых основано на ингибировании активности вирусных или клеточных генов под влиянием механизмов РНК-интерференции. РНК-интерференция - это каскад регуляторных реакций в эукариотических клетках, вызванный чужеродной экзогенной двухцепочечной РНК, в результате чего происходит расщепление целевой матричной РНК. В настоящем обзоре рассматриваются использование механизма РНК-интер-ференции при разработке специфически направленных противогриппозных средств, а также перспективы, преимущества и недостатки данного подхода. Необходимо учитывать, что важным фактором, снижающим эффективность РНК-интерференции, является формирование резистентности вирусов к действию малых интерферирующих РНК, направленных к вирусным генам. Ввиду этого для преодоления лекарственной устойчивости вируса гриппа наиболее пристального внимания заслуживает исследование применения малых интерферирующих РНК, направленных непосредственно к факторам клетки-хозяина, которые необходимы для репродукции вируса гриппа.

Список литературы

1. Peteranderl C., Herold S., Schmoldt C. Human influenza virus infections. Semin. Respir. Crit. Care Med. 2016; 37(4): 487-500. DOI: http://doi.org/10.1055/s-0036-1584801

2. Cheng A.C., Holmes M., Dwyer D.E., Senanayake S., Cooley L., Irving L.B., et al. Influenza epidemiology in patients admitted to sentinel Australian hospitals in 2018: the Influenza Complications Alert Network (FluCAN). Commun. Dis. Intell. (2018). 2019; 43. DOI: http://doi/10.33321/cdi.2019.43.48

3. Chekkoth S.M., Supreeth R.N., Valsala N., Kumar P., Raja R.S. Spontaneous pneumomediastinum in H1N1 infection: uncommon complication of a common infection. J. R. Coll Physicians. Edinb. 2019; 49(4): 298-300. DOI: http://doi.org/10.4997/JRCPE.2019.409.

4. Mastrolia M.V., Rubino C., Resti M., Trapani S., Galli L. Characteristics and outcome of influenza-associated encephalopathy/ encephalitis among children in a tertiary pediatric hospital in Italy, 2017-2019. BMC Infect. Dis. 2019; 19(1): 1012. DOI: http://doi.org/10.1186/s12879-019-4636-5

5. Taubenberger J.K., Kash J.C. Influenza virus evolution, host adaptation, and pandemic form. Cell Host Microbe. 2010; 7(6): 440-51. DOI: http://doi.org/10.1016/j.chom.2010.05.009

6. Pinto L.H., Lamb R.A. The M2 proton channels of influenza A and B viruses. J. Biol. Chem. 2006; 281(14): 8997-9000. DOI: http://doi.org/10.1074/jbc.R500020200

7. Wang J., Wu Y., Ma C., Fiorin G., Wang J., Pinto L.H., et al. Structure and inhibition of the drug-resistant S31N mutant of the M2 ion channel of influenza A virus. Proc. Natl. Acad. Sci. USA. 2013; 110(4): 1315-20. DOI: http://doi.org/10.1073/pnas.1216526110

8. Hurt A.C., Ernest J., Deng Y.M., Iannello P., Besselaar T.G., Birch C., et al. The emergence and spread of resistant influenza A (H1N1) viruses in Oceania, Southeast Asia and South Asia. Antiviral Res. 2009; (1): 90-3. DOI: http://doi.org/10.1016/j.antiviral.2009.03.003

9. Hurt A.C. The epidemiology and spread of drug resistant human influenza viruses. Curr. Opin. Virol. 2014; (8): 22-9. DOI: http://doi.org/10.1016/j.coviro.2014.04.009

10. Lampejo T. Influenza and antiviral resistance: an overview. Eur. J. Clin. Microbiol. Infect. Dis. 2020; 39(7): 1201-8. DOI: http://doi.org/10.1007/s10096-020-03840-9

11. Киселев О.И., Малеев В.В., Деева Э.Г., Ленева И.А., Селькова Е.П., Осипова Е.А. и др. Клиническая эффективность препарата Арбидол (умифеновир) в терапии гриппа у взрослых: промежуточные результаты многоцентрового двойного слепого рандомизированного плацебо-контролируемого исследования АРБИТР. Терапевтический архив. 2015; 87(1): 88-96. DOI: http://doi.org/10.17116/terarkh201587188-96

12. Leneva I.A., Russell R.J., Boriskin Y.S., Hay A.J. Characteristics of arbidol-resistant mutants of influenza virus: Implications for the mechanism of anti-influenza action of arbidol. Antiviral Res. 2009; 81(2): 132-40. DOI: http://doi.org/10.1016/j.antiviral.2008.10.009

13. Furuta Y., Takahashi K., Kuno-Maekawa M., Sangawa H., Uehara S., Kozaki K., et al. Mechanism of action of T-705 against influenza virus. Antimicrob. Agents Chemother. 2005; 49(3): 981-6. DOI: http://doi.org/10.1128/AAC.49.3.981-986.2005

14. Sleeman K., Mishin V.P., Deyde V.M., Furuta Y., Klimov A.I., Gubareva L.V. In vitro antiviral activity of favipiravir (T-705) against drug-resistant influenza and 2009 A (H1N1) viruses. Antimicrob. Agents Chemother. 2010; 54(6): 2517-24. DOI: http://doi.org/10.1128/AAC.01739-0954

15. Goldhill D.H., Te Velthuis A.J.W., Fletcher R.A., Langat P, Zambon M., Lackenby A., et al. Barclayb. The mechanism of resistance to favipiravir in influenza. Proc. Natl. Acad. Sci. 2018; 115(45): 11613-8. DOI: http://doi.org/10.1073/pnas.1811345215

16. Han J., Perez J., Schafer A., Cheng H., Peet N., Rong L., et al. Influenza virus: small molecule therapeutics and mechanisms of antiviral resistance. Curr. Med. Chem. 2018; 25(38): 5115-27. DOI: http://doi.org/10.2174/0929867324666170920165926

17. Fire A.Z. Gene silencing by double-stranded RNA. Cell Death Differ. 2007; 14(12): 1998-2012. DOI: http://doi.org/10.1038/sj.sdd.4402253

18. Fire A., Xu S.Q., Montgomery M.K., Kostas S.A., Driver S.E., Mel-lo C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998; 391(6669): 806-11. DOI: http://doi.org/10.1002/hep.30594

19. Park S., Park J., Kim E., Lee Y. The Capicua-ETV 5 axis regulates liver-resident memory CD 8+ T cell development and the pathogenesis of liver injury. Hepatology. 2019; 70(1): 358-71. DOI: http://doi.org/10.1002/hep.30594

20. Vaucheret Х., Beclin С., Fagard М. Post-transcriptional gene silencing in plants. J. Cell Sci. 2001; 114(Pt. 17): 3083-91.

21. Sharp P.A. RNA-interference - 2001. GenesDev. 2001; 15(5): 485-90. DOI: http://doi.org/10.1101/gad.880001

22. Файзулоев Е.Б., Никонова А.А., Зверев В.В. Перспективы создания противовирусных препаратов на основе малых интерферирующих РНК. Вопросы вирусологии. 2013; (Спец. 1): 159-69.

23. Haiyong H. RNA interference to knock down gene expression. Methods Mol. Biol. 2018; 1706: 293-302. DOI: https://doi.org/10.1007/978-1-4939-7471-9_16

24. van der Ree M.H., van der Meer A.J., van Nuenen A.C., de Bruijne J., Ottosen S., Janssen H.L., et al. Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Aliment. Pharmacol. Ther. 2016; 43(1): 102-13. DOI: http://doi.org/10.1111/apt.13432

25. Soriano V, Barreiro P., Benitez L., Pena J.M., de Mendoza C. New antivirals for the treatment of chronic hepatitis B. Expert Opin. In-vestig. Drugs. 2017; 26(7): 843-51. DOI: http://doi.org/101080/13543784.2017.1333105

26. Qureshi A., Tantray V.G., Kirmani A.R., Ahangar A.G. A review on current status of antiviral siRNA. Rev. Med. Virology. 2018; 28(4): 1976. DOI: http://doi.org/10.1002/rmv.1976

27. Ge Q., McManus M.T., Nguyen T., Shen C.H., Sharp P.A., Eisen H.N., et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl. Acad. Sci. 2003; 100(5): 2718-23. DOI: http://doi.org/10.1073/pnas.0437841100

28. Ge Q., Filip L., Bai A., Nguyen T., Eisen H.N., Chen J. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl. Acad. Sci. 2004; 101(23): 8676-81. DOI: http://doi.org/10.1073/pnas.0402486101

29. Zhiqiang W., Yaowu Y., Fan Y., Jian Y., Yongfeng H., Lina Z., et al. Effective siRNAs inhibit the replication of novel influenza A (H1N1) virus. Antiviral Res. 2010; 85(3): 559-61. DOI: http://doi.org/10.1016/j.antiviral.2009.12.010

30. Sui H.Y., Zhao G.Y., Huang J.D., Jin D.Y., Yuen K.Y., Zheng B.J. Small interfering RNA targeting M2 gene induces effective and long-term inhibition of influenza A virus replication. PLoS One. 2009; 4(5): 5671. DOI: http://doi.org/10.1371/journal.pone.0005671

31. Piasecka J., Lenartowicz E., Soszynska-Jozwiak M., Szutkowska B., Kierzek R., Kierzek E. RNA Secondary structure motifs of the influenza A virus as targets for siRNA-mediated RNA interference. Mol. Ther. Nucleic. Acids. 2020; 19: 627-42. DOI: http://doi.org/10.1016/j/omtn.2019.12.018

32. Presloid J.B., Novella I.S. RNA viruses and RNAi: quasispecies implications for viral escape. Viruses. 2015; 7(6): 3226-40. DOI: http://doi.org/10.3390/v7062768

33. Das A.T., Brummelkamp T.R., Westerhout E.M., Vink M., Madire-djo M., Bernards R., et al. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J. Virol. 2004; 78(5): 2601-5. DOI: http://doi.org/10.1128/jvi.78.5.2601-2605.2004

34. Nikam R.R., Gore K.R. Journey of siRNA: clinical developments and targeted delivery. Nucleic. Acid Ther. 2018; 28(4): 209-24. DOI: http://doi.org/10.1089/nat.2017.0715

35. Lyons D.M., Lauring A.S. Mutation and epistasis in influenza virus evolution. Viruses. 2018; 10(8): 407. DOI: http://doi.org/10.3390/v10080407

36. Lesch M., Luckner M., Meyer M., Weege F., Gravenstein I., Raf-tery M., et al. RNAi-based small molecule repositioning reveals clinically approved urea-based kinase inhibitors as broadly active antivirals. PLoS Pathog. 2019; 15(3): e1007601. DOI: http://doi.org/101371/journal.ppat.1007601

37. Konig R., Stertz S., Zhou Y., Inoue A., Hoffmann H.H., Bhattacha-ryya S., et al. Human host factors required for influenza virus replication. Nature. 2010; 46(7282): 813-7. DOI: http://doi.org/10.1038/nature08699

38. Karlas A., Machuy N., Shin Y, Pleissner K.P., Artarini A., Heuer D., et al. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature. 2010; 463(7282): 818-22. DOI: http://doi.org/10.1038/nature08760

39. Eierhoff T., Hrincius E.R., Rescher U., Ludwig S., Ehrhardt C. The Epidermal Growth Factor Receptor (EGFR) promotes uptake of influenza А viruses (IAV) into host cells. PLoS Pathog. 2010; 6(9): e1001099. DOI: http://doi.org/101371/journal.ppat1001099

40. Estrin M.A., Hussein I.T.M., Puryear W.B., Kuan A.C., Artim S.C., Runstadler J.A. Host-directed combinatorial RNAi improves inhibition of diverse strains of influenza A virus in human respiratory epithelial cells. PLoS One. 2018; 13(5): e0197246. DOI: http://doi.org/10.1371/journal.pone.0197246

41. Rupp J.C., Locatelli M., Grieser A., Ramos A., Campbell P.J., Yi H., et al. Host cell copper transporters CTR1 and ATP7A are important for Influenza A virus replication. Virol J. 2017; 14(1): 11. DOI: http://doi.org/10.1186/s12985-016-0671-7

42. Feizi N., Mehrbod P., Romani B., Soleimanjahi H., Bamdad T., Feizi A., et al. Autophagy induction regulates influenza virus replication in a time-dependent manner. J. Med. Microbiol. 2017; 66(4): 536-41. DOI: http://doi.org/10.1099/jmm.0.000455

43. Rossman J.S., Lamb R.A. Autophagy, apoptosis, and the influenza virus M2 protein. Cell Host Microbe. 2009; 6(4): 299-300. DOI: http://doi.org/10.1016/j.chom.2009.09.009

44. Romanov J., Walczak M., Ibiricu I., Schuchner S., Ogris E., Kraft C., et al. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J. 2012; 31(22): 4304-17. DOI: http://doi.org/10.1038/emboj.2012.278

45. Wang R., Zhu Y., Zhao J., Ren C., Li P., Chen H., et al. Autophagy Promotes Replication of Influenza A Virus In Vitro. J. Virol. 2019; 93(4): e01984-18. DOI: http://doi.org/10.1128/JVI.01984-18

Problems of Virology. 2020; 65: 182-190

The potential of synthetic small interfering RNA-based antiviral drugs for influenza treatment

Pashkov E. A., Faizuloev E. B., Svitich O. A., Sergeev O. V., Zverev V. V.

https://doi.org/10.36233/0507-4088-2020-65-4-182-190

Abstract

Influenza is a worldwide public health problem. Annually, this infection affects up to 15% of the world population; and about half a million people die from this disease every year. Moreover, influenza A and B viruses tend to garner most of the attention, as these types are a major cause of the epidemics and pandemics. Although the influenza virus primarily affects the respiratory tract, it may also affect the cardiovascular and central nervous systems. Several antiviral drugs, that target various stages of viral reproduction, have been considered effective for the treatment and prevention of influenza, but some virus strains become resistant to these medications. Thus, new strategies and techniques should be developed to overcome the antiviral drug resistance. Recent studies suggest that new drugs based on RNA interference (RNAi) appear to be a promising therapeutic approach that regulates the activity of viral or cellular genes. As it is known, the RNAi is a eukaryotic gene regulatory mechanism that can be triggered by a foreign double-stranded RNA (dsRNA) and results in the cleavage of the target messenger RNA (mRNA). This review discusses the prospects, advantages, and disadvantages of using RNAi in carrying out a specific treatment for influenza infection. However, some viruses confer resistance to small interfering RNAs (siRNA) targeting viral genes. This problem can significantly reduce the effectiveness of RNAi. Therefore, applying siRNAs targeting host cell factors required for influenza virus reproduction can be a way to overcome the antiviral drug resistance.

References

1. Peteranderl C., Herold S., Schmoldt C. Human influenza virus infections. Semin. Respir. Crit. Care Med. 2016; 37(4): 487-500. DOI: http://doi.org/10.1055/s-0036-1584801

2. Cheng A.C., Holmes M., Dwyer D.E., Senanayake S., Cooley L., Irving L.B., et al. Influenza epidemiology in patients admitted to sentinel Australian hospitals in 2018: the Influenza Complications Alert Network (FluCAN). Commun. Dis. Intell. (2018). 2019; 43. DOI: http://doi/10.33321/cdi.2019.43.48

3. Chekkoth S.M., Supreeth R.N., Valsala N., Kumar P., Raja R.S. Spontaneous pneumomediastinum in H1N1 infection: uncommon complication of a common infection. J. R. Coll Physicians. Edinb. 2019; 49(4): 298-300. DOI: http://doi.org/10.4997/JRCPE.2019.409.

4. Mastrolia M.V., Rubino C., Resti M., Trapani S., Galli L. Characteristics and outcome of influenza-associated encephalopathy/ encephalitis among children in a tertiary pediatric hospital in Italy, 2017-2019. BMC Infect. Dis. 2019; 19(1): 1012. DOI: http://doi.org/10.1186/s12879-019-4636-5

5. Taubenberger J.K., Kash J.C. Influenza virus evolution, host adaptation, and pandemic form. Cell Host Microbe. 2010; 7(6): 440-51. DOI: http://doi.org/10.1016/j.chom.2010.05.009

6. Pinto L.H., Lamb R.A. The M2 proton channels of influenza A and B viruses. J. Biol. Chem. 2006; 281(14): 8997-9000. DOI: http://doi.org/10.1074/jbc.R500020200

7. Wang J., Wu Y., Ma C., Fiorin G., Wang J., Pinto L.H., et al. Structure and inhibition of the drug-resistant S31N mutant of the M2 ion channel of influenza A virus. Proc. Natl. Acad. Sci. USA. 2013; 110(4): 1315-20. DOI: http://doi.org/10.1073/pnas.1216526110

8. Hurt A.C., Ernest J., Deng Y.M., Iannello P., Besselaar T.G., Birch C., et al. The emergence and spread of resistant influenza A (H1N1) viruses in Oceania, Southeast Asia and South Asia. Antiviral Res. 2009; (1): 90-3. DOI: http://doi.org/10.1016/j.antiviral.2009.03.003

9. Hurt A.C. The epidemiology and spread of drug resistant human influenza viruses. Curr. Opin. Virol. 2014; (8): 22-9. DOI: http://doi.org/10.1016/j.coviro.2014.04.009

10. Lampejo T. Influenza and antiviral resistance: an overview. Eur. J. Clin. Microbiol. Infect. Dis. 2020; 39(7): 1201-8. DOI: http://doi.org/10.1007/s10096-020-03840-9

11. Kiselev O.I., Maleev V.V., Deeva E.G., Leneva I.A., Sel'kova E.P., Osipova E.A. i dr. Klinicheskaya effektivnost' preparata Arbidol (umifenovir) v terapii grippa u vzroslykh: promezhutochnye rezul'taty mnogotsentrovogo dvoinogo slepogo randomizirovannogo platsebo-kontroliruemogo issledovaniya ARBITR. Terapevticheskii arkhiv. 2015; 87(1): 88-96. DOI: http://doi.org/10.17116/terarkh201587188-96

12. Leneva I.A., Russell R.J., Boriskin Y.S., Hay A.J. Characteristics of arbidol-resistant mutants of influenza virus: Implications for the mechanism of anti-influenza action of arbidol. Antiviral Res. 2009; 81(2): 132-40. DOI: http://doi.org/10.1016/j.antiviral.2008.10.009

13. Furuta Y., Takahashi K., Kuno-Maekawa M., Sangawa H., Uehara S., Kozaki K., et al. Mechanism of action of T-705 against influenza virus. Antimicrob. Agents Chemother. 2005; 49(3): 981-6. DOI: http://doi.org/10.1128/AAC.49.3.981-986.2005

14. Sleeman K., Mishin V.P., Deyde V.M., Furuta Y., Klimov A.I., Gubareva L.V. In vitro antiviral activity of favipiravir (T-705) against drug-resistant influenza and 2009 A (H1N1) viruses. Antimicrob. Agents Chemother. 2010; 54(6): 2517-24. DOI: http://doi.org/10.1128/AAC.01739-0954

15. Goldhill D.H., Te Velthuis A.J.W., Fletcher R.A., Langat P, Zambon M., Lackenby A., et al. Barclayb. The mechanism of resistance to favipiravir in influenza. Proc. Natl. Acad. Sci. 2018; 115(45): 11613-8. DOI: http://doi.org/10.1073/pnas.1811345215

16. Han J., Perez J., Schafer A., Cheng H., Peet N., Rong L., et al. Influenza virus: small molecule therapeutics and mechanisms of antiviral resistance. Curr. Med. Chem. 2018; 25(38): 5115-27. DOI: http://doi.org/10.2174/0929867324666170920165926

17. Fire A.Z. Gene silencing by double-stranded RNA. Cell Death Differ. 2007; 14(12): 1998-2012. DOI: http://doi.org/10.1038/sj.sdd.4402253

18. Fire A., Xu S.Q., Montgomery M.K., Kostas S.A., Driver S.E., Mel-lo C.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998; 391(6669): 806-11. DOI: http://doi.org/10.1002/hep.30594

19. Park S., Park J., Kim E., Lee Y. The Capicua-ETV 5 axis regulates liver-resident memory CD 8+ T cell development and the pathogenesis of liver injury. Hepatology. 2019; 70(1): 358-71. DOI: http://doi.org/10.1002/hep.30594

20. Vaucheret Kh., Beclin S., Fagard M. Post-transcriptional gene silencing in plants. J. Cell Sci. 2001; 114(Pt. 17): 3083-91.

21. Sharp P.A. RNA-interference - 2001. GenesDev. 2001; 15(5): 485-90. DOI: http://doi.org/10.1101/gad.880001

22. Faizuloev E.B., Nikonova A.A., Zverev V.V. Perspektivy sozdaniya protivovirusnykh preparatov na osnove malykh interferiruyushchikh RNK. Voprosy virusologii. 2013; (Spets. 1): 159-69.

23. Haiyong H. RNA interference to knock down gene expression. Methods Mol. Biol. 2018; 1706: 293-302. DOI: https://doi.org/10.1007/978-1-4939-7471-9_16

24. van der Ree M.H., van der Meer A.J., van Nuenen A.C., de Bruijne J., Ottosen S., Janssen H.L., et al. Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Aliment. Pharmacol. Ther. 2016; 43(1): 102-13. DOI: http://doi.org/10.1111/apt.13432

25. Soriano V, Barreiro P., Benitez L., Pena J.M., de Mendoza C. New antivirals for the treatment of chronic hepatitis B. Expert Opin. In-vestig. Drugs. 2017; 26(7): 843-51. DOI: http://doi.org/101080/13543784.2017.1333105

26. Qureshi A., Tantray V.G., Kirmani A.R., Ahangar A.G. A review on current status of antiviral siRNA. Rev. Med. Virology. 2018; 28(4): 1976. DOI: http://doi.org/10.1002/rmv.1976

27. Ge Q., McManus M.T., Nguyen T., Shen C.H., Sharp P.A., Eisen H.N., et al. RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc. Natl. Acad. Sci. 2003; 100(5): 2718-23. DOI: http://doi.org/10.1073/pnas.0437841100

28. Ge Q., Filip L., Bai A., Nguyen T., Eisen H.N., Chen J. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl. Acad. Sci. 2004; 101(23): 8676-81. DOI: http://doi.org/10.1073/pnas.0402486101

29. Zhiqiang W., Yaowu Y., Fan Y., Jian Y., Yongfeng H., Lina Z., et al. Effective siRNAs inhibit the replication of novel influenza A (H1N1) virus. Antiviral Res. 2010; 85(3): 559-61. DOI: http://doi.org/10.1016/j.antiviral.2009.12.010

30. Sui H.Y., Zhao G.Y., Huang J.D., Jin D.Y., Yuen K.Y., Zheng B.J. Small interfering RNA targeting M2 gene induces effective and long-term inhibition of influenza A virus replication. PLoS One. 2009; 4(5): 5671. DOI: http://doi.org/10.1371/journal.pone.0005671

31. Piasecka J., Lenartowicz E., Soszynska-Jozwiak M., Szutkowska B., Kierzek R., Kierzek E. RNA Secondary structure motifs of the influenza A virus as targets for siRNA-mediated RNA interference. Mol. Ther. Nucleic. Acids. 2020; 19: 627-42. DOI: http://doi.org/10.1016/j/omtn.2019.12.018

32. Presloid J.B., Novella I.S. RNA viruses and RNAi: quasispecies implications for viral escape. Viruses. 2015; 7(6): 3226-40. DOI: http://doi.org/10.3390/v7062768

33. Das A.T., Brummelkamp T.R., Westerhout E.M., Vink M., Madire-djo M., Bernards R., et al. Human immunodeficiency virus type 1 escapes from RNA interference-mediated inhibition. J. Virol. 2004; 78(5): 2601-5. DOI: http://doi.org/10.1128/jvi.78.5.2601-2605.2004

34. Nikam R.R., Gore K.R. Journey of siRNA: clinical developments and targeted delivery. Nucleic. Acid Ther. 2018; 28(4): 209-24. DOI: http://doi.org/10.1089/nat.2017.0715

35. Lyons D.M., Lauring A.S. Mutation and epistasis in influenza virus evolution. Viruses. 2018; 10(8): 407. DOI: http://doi.org/10.3390/v10080407

36. Lesch M., Luckner M., Meyer M., Weege F., Gravenstein I., Raf-tery M., et al. RNAi-based small molecule repositioning reveals clinically approved urea-based kinase inhibitors as broadly active antivirals. PLoS Pathog. 2019; 15(3): e1007601. DOI: http://doi.org/101371/journal.ppat.1007601

37. Konig R., Stertz S., Zhou Y., Inoue A., Hoffmann H.H., Bhattacha-ryya S., et al. Human host factors required for influenza virus replication. Nature. 2010; 46(7282): 813-7. DOI: http://doi.org/10.1038/nature08699

38. Karlas A., Machuy N., Shin Y, Pleissner K.P., Artarini A., Heuer D., et al. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature. 2010; 463(7282): 818-22. DOI: http://doi.org/10.1038/nature08760

39. Eierhoff T., Hrincius E.R., Rescher U., Ludwig S., Ehrhardt C. The Epidermal Growth Factor Receptor (EGFR) promotes uptake of influenza A viruses (IAV) into host cells. PLoS Pathog. 2010; 6(9): e1001099. DOI: http://doi.org/101371/journal.ppat1001099

40. Estrin M.A., Hussein I.T.M., Puryear W.B., Kuan A.C., Artim S.C., Runstadler J.A. Host-directed combinatorial RNAi improves inhibition of diverse strains of influenza A virus in human respiratory epithelial cells. PLoS One. 2018; 13(5): e0197246. DOI: http://doi.org/10.1371/journal.pone.0197246

41. Rupp J.C., Locatelli M., Grieser A., Ramos A., Campbell P.J., Yi H., et al. Host cell copper transporters CTR1 and ATP7A are important for Influenza A virus replication. Virol J. 2017; 14(1): 11. DOI: http://doi.org/10.1186/s12985-016-0671-7

42. Feizi N., Mehrbod P., Romani B., Soleimanjahi H., Bamdad T., Feizi A., et al. Autophagy induction regulates influenza virus replication in a time-dependent manner. J. Med. Microbiol. 2017; 66(4): 536-41. DOI: http://doi.org/10.1099/jmm.0.000455

43. Rossman J.S., Lamb R.A. Autophagy, apoptosis, and the influenza virus M2 protein. Cell Host Microbe. 2009; 6(4): 299-300. DOI: http://doi.org/10.1016/j.chom.2009.09.009

44. Romanov J., Walczak M., Ibiricu I., Schuchner S., Ogris E., Kraft C., et al. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J. 2012; 31(22): 4304-17. DOI: http://doi.org/10.1038/emboj.2012.278

45. Wang R., Zhu Y., Zhao J., Ren C., Li P., Chen H., et al. Autophagy Promotes Replication of Influenza A Virus In Vitro. J. Virol. 2019; 93(4): e01984-18. DOI: http://doi.org/10.1128/JVI.01984-18