Журналов:     Статей:        

Вопросы вирусологии. 2016; 61: 79-84

Использование модели мышь ICR – вирус натуральной оспы для оценки эффективности противовирусных препаратов

Титова К. А., Сергеев Ал. А., Кабанов А. С., Булычев Л. Е., Сергеев Ар. А., Галахова Д. О., Шишкина Л. Н., Замедянская А. С., Нестеров А. Е., Глотов А. Г., Таранов О. С., Омигов В. В., Агафонов А. П., Сергеев А. Н.

https://doi.org/10.18821/0507-4088-2016-61-2-79-84

Аннотация

Мышей аутбредной популяции ICR интраназально (и/н) заражали вирусом натуральной оспы (ВНО, штамм Ind-3a). Клинические признаки заболевания не появлялись даже при использовании максимально возможной дозы вируса 5,2 lg бляшкообразующих единиц (БОЕ). При этом 50% инфицирующая доза (ИД50) ВНО, оцениваемая по наличию или отсутствию вируса в легких через 3 сут после заражения (п. з.), была равна 2,7±0,4 lg БОЕ, что с учетом его 10% аппликации в легких при и/н введении соответствовало 1,7 lg БОЕ. Это свидетельствует о высокой инфекционности ВНО для мышей, сравнимой с его инфекционностью для человека. После и/н заражения мышей ВНО в дозе 30 ИД50 наиболее высокие концентрации вируса обнаружены в легких (4,9 lg БОЕ/мл гомогената) и тканях носовой полости (4,8 lg БОЕ/мл). Патоморфологические изменения в респираторных органах инфицированных ВНО мышей появлялись через 3–5 сут п. з., а размножение ВНО отмечено в эпителиоцитах и макрофагах. При пероральном введении препаратов sT-246 и НИОХ-14 в дозе 60 мкг на 1 г массы мыши за 1 сут до заражения, через 2 ч, 1 и 2 сут п. з. продукция ВНО в легких через 3 сут п. з. снижалась в 10 раз. Таким образом, аутбредных мышей ICR, инфицированных ВНО, можно использовать в качестве лабораторной модели натуральной оспы при оценке лечебнопрофилактической эффективности противооспенных препаратов.
Список литературы

1. Jahrling P.B., Hensley L.E., Martinez M.J., LeDuc J.W., Rubins K.H., Relman D.A. et al. Exploring the potential of variola virus infection of cynomolgus macaques as a model for human smallpox. Proc. Natl. Acad. Sci. 2004; 101 (42): 15 197–200.

2. Huggins J., Goff A., Hensley L., Mucker E., Shamblin J., Wlazlowski C. et al. Nonhuman primates are protected from smallpox virus or monkeypox virus challenges by the antiviral drug ST-246. Antimicrob. Agents Chemother. 2009; 53 (6): 2620–5.

3. Chapman J.L., Nichols D.K., Martinez M.J., Raymond J.W. Animal models of Orthopoxvirus infection. Vet. Pathol. 2010; 47 (5): 852–70.

4. Sergeev A.A., Bulychev L.E., P’yankov O.V., Sergeev A.A., Kabanov A.S., Bodnev S.A. et al. Search for an animal model to study the effectiveness of antismallpox drugs. In: Hygienic Aspects in the Field of Sanitary and Epidemiological Welfare of Human [Gigienicheskie aspekty v oblasti obespecheniya sanitarno-epidemiologicheskogo blagopoluchiya cheloveka]. Novosibirsk; 2012: 356–64. (in Russian)

5. Sergeev A.A., Kabanov A.S., Bulychev L.E., P’yankov O.V., Sergeev Ar.A., Taranov O.S. et al. Exploitation of mouse model for assessment of therapeutic and prophylactic efficacy of drugs against monkeypox. Problemy osobo opasnykh infektsiy. 2013; 2: 60–5. (in Russian)

6. Sergeev A.A., Kabanov A.S., Bulychev L.E., Sergeev A.A., Taranov O.S., Bodnev S.A. et al. Method for Evaluating the Antipox Activity of Therapeutic and Prophylactic Preparations. Patent RF № 2496149; 2013. (in Russian)

7. Руководство по содержанию и использованию лабораторных животных. Перевод с английского. Washington, D.C.: National Academy Press; 1996.

8. Leparc-Goffart I., Poirier B., Garin D., Tissier M.H., Fuchs F., Crance J.M. Standartization of a neutralizing anti-vaccinia antibodies titration method: an essential step for titration of vaccinia immunoglobulins and smallpox vaccines evaluation. J. Clin. Virol. 2005; 32 (1): 47–52.

9. Кабанов А.С., Сергеев А.А., Шишкина Л.Н., Булычев Л.Е., Скарнович М.О., Сергеев А.А. и др. Сравнительное изучение противовирусной активности химических соединений в отношении ортопоксвирусов в экспериментах in vivo. Вопросы вирусологии. 2013, 4: 39–43.

10. Jordan R., Bailey T.R., Rippin S.R. Compounds, compositions and methods for treatment and prevention of orthopoxvirus infections and associated diseases. Patent WO 2004/112718 A3. International Patent Classification C07D 209/56; 2005.

11. Закс Л. Статистическое оценивание. Перевод с немецкого. М.: Статистика; 1976.

12. Дроздов С.Г., Гарин Н.С., Джиндоян Л.С., Тарасенко В.М. Основы техники безопасности в микробиологических и вирусологических лабораториях. М.: Медицина; 1987.

13. Martinez M.J., Bray M.P., Huggins J.W. A mouse model of aerosoltransmitted orthopoxviral disease: morphology of experimental aerosol-transmitted orthopoxviral disease in a cowpox virus-BALB/c mouse system. Arch. Pathol. Lab. Med. 2000; 124 (3): 362–77.

14. Sbrana E., Xiao S.Y., Newman P.C., Tesh R.B. Comparative pathology of North American and central African strains of monkeypox virus in a ground squirrel model of the disease. Amer. J. Trop. Med. Hyg. 2007; 76 (1): 155–64.

15. Goff A.J., Chapman J., Foster C., Wlazlowski C., Shamblin J., Lin K. et al. A novel respiratory model of infection with monkeypox virus in cynomolgus macaques. J. Virol. 2011; 85 (10): 4898–909.

16. Булычев Л.Е., Сергеев А.А., Кабанов А.С., Пьянков О.В., Сергеев А.А., Таранов О.С. и др. Изучение эффективности химических синтезированных соединений против ортопоксвирусов. Дальневосточный журнал инфекционной патологии. 2012; 20: 102–5.

17. Jordan R., Goff A., Frimm A., Corrado M.L., Hensley L.E., Byrd C.M. et al. ST-246 antiviral efficacy in a nonhuman primate monkeypox model: determination of the minimal effective dose and human dose justification. Antimicrob. Agents Chemother. 2009; 53 (5): 1817–22.

18. Stabenow J., Buller R.M., Schriewer J., West C., Sagartz J.E., Parker S.A. A mouse model of lethal infection for evaluating prophylactics and therapeutics against monkeypox virus. J. Virol. 2010; 84 (8): 3909–20.

Problems of Virology. 2016; 61: 79-84

The use of the model mouse ICR – variola virus for evaluation of antiviral drug efficacy

Titova K. A., Sergeev Al. A., Kabanov A. S., Bulychev L. E., Sergeev Ar. A., Galakhova D. O., Shishkina L. N., Zamedyanskaya A. S., Nesterov A. E., Glotov A. G., Taranov O. S., Omigov V. V., Agafonov A. P., Sergeev A. N.

https://doi.org/10.18821/0507-4088-2016-61-2-79-84

Abstract

Mice of the ICR outbred population were infected intranasally (i/n) with the variola virus (VARV, strain Ind-3a). Clinical signs of the disease did not appear even at the maximum possible dose of the virus 5.2 lg PFU/head (plaque-forming units per head). In this case, 50% infective dose (ID50) of VARV estimated by the presence or absence of the virus in the lungs three days after infection (p.i.) was equal to 2.7 ± 0.4 lg PFU/head. Taking into account the 10% application of the virus in the lungs during the intranasal infection of the mice, it was adequate to 1.7 lg PFU/lungs. This indicates a high infectivity of the VARV for mice comparable to its infectivity for humans. After the i/n infection of mice with the VARV at a dose 30 ID50/head the highest concentration of the virus detected in the lungs (4.9 ± 0.0 lg PFU/ml of homogenate) and in nasal cavity tissues (4.8 ± 0.0 lg PFU/ml) were observed. The pathomorphological changes in the respiratory organs of the mice infected with the VARV appeared at 3-5 days p.i., and the VARV reproduction noted in the epithelial cells and macrophages were noticed. When the preparations ST-246 and NIOCH-14 were administered orally at a dose of 60 μg/g of mouse weight up to one day before infection, after 2 hours, 1 and 2 days p.i., the VARV reproduction in the lungs after 3 days p.i. decreased by an order of magnitude. Thus, outbred ICR mice infected with the VARV can be used as a laboratory model of the smallpox when evaluating the therapeutic and prophylactic efficacy of the antismallpox drugs.
References

1. Jahrling P.B., Hensley L.E., Martinez M.J., LeDuc J.W., Rubins K.H., Relman D.A. et al. Exploring the potential of variola virus infection of cynomolgus macaques as a model for human smallpox. Proc. Natl. Acad. Sci. 2004; 101 (42): 15 197–200.

2. Huggins J., Goff A., Hensley L., Mucker E., Shamblin J., Wlazlowski C. et al. Nonhuman primates are protected from smallpox virus or monkeypox virus challenges by the antiviral drug ST-246. Antimicrob. Agents Chemother. 2009; 53 (6): 2620–5.

3. Chapman J.L., Nichols D.K., Martinez M.J., Raymond J.W. Animal models of Orthopoxvirus infection. Vet. Pathol. 2010; 47 (5): 852–70.

4. Sergeev A.A., Bulychev L.E., P’yankov O.V., Sergeev A.A., Kabanov A.S., Bodnev S.A. et al. Search for an animal model to study the effectiveness of antismallpox drugs. In: Hygienic Aspects in the Field of Sanitary and Epidemiological Welfare of Human [Gigienicheskie aspekty v oblasti obespecheniya sanitarno-epidemiologicheskogo blagopoluchiya cheloveka]. Novosibirsk; 2012: 356–64. (in Russian)

5. Sergeev A.A., Kabanov A.S., Bulychev L.E., P’yankov O.V., Sergeev Ar.A., Taranov O.S. et al. Exploitation of mouse model for assessment of therapeutic and prophylactic efficacy of drugs against monkeypox. Problemy osobo opasnykh infektsiy. 2013; 2: 60–5. (in Russian)

6. Sergeev A.A., Kabanov A.S., Bulychev L.E., Sergeev A.A., Taranov O.S., Bodnev S.A. et al. Method for Evaluating the Antipox Activity of Therapeutic and Prophylactic Preparations. Patent RF № 2496149; 2013. (in Russian)

7. Rukovodstvo po soderzhaniyu i ispol'zovaniyu laboratornykh zhivotnykh. Perevod s angliiskogo. Washington, D.C.: National Academy Press; 1996.

8. Leparc-Goffart I., Poirier B., Garin D., Tissier M.H., Fuchs F., Crance J.M. Standartization of a neutralizing anti-vaccinia antibodies titration method: an essential step for titration of vaccinia immunoglobulins and smallpox vaccines evaluation. J. Clin. Virol. 2005; 32 (1): 47–52.

9. Kabanov A.S., Sergeev A.A., Shishkina L.N., Bulychev L.E., Skarnovich M.O., Sergeev A.A. i dr. Sravnitel'noe izuchenie protivovirusnoi aktivnosti khimicheskikh soedinenii v otnoshenii ortopoksvirusov v eksperimentakh in vivo. Voprosy virusologii. 2013, 4: 39–43.

10. Jordan R., Bailey T.R., Rippin S.R. Compounds, compositions and methods for treatment and prevention of orthopoxvirus infections and associated diseases. Patent WO 2004/112718 A3. International Patent Classification C07D 209/56; 2005.

11. Zaks L. Statisticheskoe otsenivanie. Perevod s nemetskogo. M.: Statistika; 1976.

12. Drozdov S.G., Garin N.S., Dzhindoyan L.S., Tarasenko V.M. Osnovy tekhniki bezopasnosti v mikrobiologicheskikh i virusologicheskikh laboratoriyakh. M.: Meditsina; 1987.

13. Martinez M.J., Bray M.P., Huggins J.W. A mouse model of aerosoltransmitted orthopoxviral disease: morphology of experimental aerosol-transmitted orthopoxviral disease in a cowpox virus-BALB/c mouse system. Arch. Pathol. Lab. Med. 2000; 124 (3): 362–77.

14. Sbrana E., Xiao S.Y., Newman P.C., Tesh R.B. Comparative pathology of North American and central African strains of monkeypox virus in a ground squirrel model of the disease. Amer. J. Trop. Med. Hyg. 2007; 76 (1): 155–64.

15. Goff A.J., Chapman J., Foster C., Wlazlowski C., Shamblin J., Lin K. et al. A novel respiratory model of infection with monkeypox virus in cynomolgus macaques. J. Virol. 2011; 85 (10): 4898–909.

16. Bulychev L.E., Sergeev A.A., Kabanov A.S., P'yankov O.V., Sergeev A.A., Taranov O.S. i dr. Izuchenie effektivnosti khimicheskikh sintezirovannykh soedinenii protiv ortopoksvirusov. Dal'nevostochnyi zhurnal infektsionnoi patologii. 2012; 20: 102–5.

17. Jordan R., Goff A., Frimm A., Corrado M.L., Hensley L.E., Byrd C.M. et al. ST-246 antiviral efficacy in a nonhuman primate monkeypox model: determination of the minimal effective dose and human dose justification. Antimicrob. Agents Chemother. 2009; 53 (5): 1817–22.

18. Stabenow J., Buller R.M., Schriewer J., West C., Sagartz J.E., Parker S.A. A mouse model of lethal infection for evaluating prophylactics and therapeutics against monkeypox virus. J. Virol. 2010; 84 (8): 3909–20.