Журналов:     Статей:        

Вопросы вирусологии. 2015; 60: 25-30

Влияние точечных мутаций в генах полимеразного комплекса вируса гриппа a/pr/8/34 (h1n1) на иммунный ответ мышей

Кузнецова С. А., Исакова-Сивак И. Н., Кузнецова В. А., Петухова Г. Д., Лосев И. В., Донина С. А., Руденко Л. Г., Найхин А. Н.

Аннотация

Вакцинные штаммы для живых гриппозных вакцин (ЖГВ) холодоадаптированы и имеют температурочувствительный и ослабленный фенотип за счет наличия специфических мутаций во внутренних генах от донора аттенуации. В данной работе мы использовали мутантные штаммы патогенного вируса A/ Puerto Rico/8/34 (H1N1), содержащие ts-мутации в генах PB1 (K265N, V591I), PB2 (V478L) и РА (L28P, V341L) отдельно или в различных комбинациях, с целью оценить вклад этих мутаций в формирование иммунного ответа. Последовательное внесение тестируемых мутаций приводит к ступенчатому снижению уровней вирусспецифических антител в сыворотке крови и в меньшей степени - мукозальных антител. Мы продемонстрировали сильную положительную корреляцию между аттенуацией вируса (титр вируса в легких) и титрами антител. Ts-мутации в PB1, PB2 и PA генах участвуют главным образом в модуляции гуморального иммунитета и незначительно влияют на формирование клеточного адаптивного иммунного ответа.
Список литературы

1. Kreijtz J.H., Fouchier R.A., Rimmelzwaan G.F. Immune responses to influenza virus infection. Virus Res. 2011; 162(1–2): 19–30.

2. Программа фундаментальных научных исследований государственных академий на 2013-2020 года (Распоряжение Правительства Российской Федерации от 3 декабря 2012 N2237-р), подраздел 205 «Получение новых знаний о механизмах постинфекционной и поствакцинальной иммунологии». М.; 2012.

3. Киселева И.В., Ларионова Н.В., Voeten J.T.M., Teley L.C., Drieszen-van der Cruijsen S.K., Heldens J.G. и др. Ведущая роль генов полимеразного комплекса в аттенуации доноров отечественной живой гриппозной вакцины А и В. Журнал микробиологии, эпиднмиологии, иммунобиологии. 2010; 6: 41–7.

4. Isakova-Sivak I., Chen L.M., Matsuoka Y.,Voeten J.T., Kiseleva I., Heldens J.G. et al. Genetic bases of the temperature-sensitive phenotype of A master donor virus used in live attenuated influenza vaccines: A/Leningrad/134/17/57(H2N2). Virology. 2011; 412 (2): 297–305.

5. Донина С.А., Найхин А.Н., Петухова Г.Д., Баранцева И.Б., Чиркова Т.В., Григорьева Е.П. и др. Системный гуморальный и клеточный иммунный ответ при экспериментальной гриппозной инфекции и вакцинации. Медиинкая иммунология. 2006; 8 (1): 31–6.

6. Петухова Г.Д., Найхин А.Н., Баранцева И.Б., Донина С.А., Чиркова Т.В., Григорьева Е.П. и др. Локальный гуморальный и клеточный иммунный ответ мышей при гриппозной инфекции и вакцинации. Медицинская иммунологии. 2006; 8 (4): 511–6.

7. Petukhova G., Chirkova T., Donina S., Korenkov D., Naykhin A., Rudenko L. Comparative studies of local antibody and cellular immune responses to influenza infection and vaccination with live attenuated influenza vaccine (LAIV) utilizing a mouse nasalassociated lymphoid tissue (NALT) separation method. Vaccine. 2009; 27(19): 2580–87.

8. Znou B., Li Y., Speer S. Engineering temperature sensitive live attenuated influenza vaccines from emerging viruses. Vaccine. 2012; 30(24): 3691–702.

9. Jin H., Zhou H., Lu B., Kemble G. Imparting temperature sensitivity and attenuation in ferrets to A/Puerto/Rico/8/34 influenza virus by transferring the genetic signature for temperature sensitivity from cold-adapted A/Ann Arbor/6/60. J. Virol. 2004; 78(2): 995–8.

10. He W., Wang W., Han H., Wang L., Zhang G., Gao B. Molecular basis of live-attenuated influenza virus. PLoS ONE. 2013; 8 (3): e60413.

11. Gabriel G., Garn H., Wegmann M., Renz H., Herwing A., Klenk H.-D. et al. The potential of a protease activation mutant of a highly pathogenic avian influenza virus for a pandemic live vaccine. Vaccine. 2008; 26(7): 956–65.

12. Jin H., Lu B., Zhou H., Ma C., Zhao J., Yang C. et al. Multiple amino acid residues confer temperature sensitivity to human influenza virus vaccine strains (FluMist) derived from cold-adapted A/Ann Arbor/6/60. Virology. 2003; 306: 18–24.

13. Mueller S., Coleman J.R., Papamichail D., Ward C.B., Nimnual A., Futcher B. et al. Live attenuated influenza virus vaccines by computer-aided rational design. Nat. Biotechn. 2010; 28 (7): 723–6.

14. Solorzano A., Ye J., Perez D.R. Alternative live-attenuated influenza vaccines based on modifications in the polymerase genes protect against epidemic and pandemic flu. J. Virology. 2010; 84(9): 4587– 96.

15. Subbarao E.K., Kawaoka Y., Murphy B.R. Rescue of an influenza A virus wild-type PB2 gene and a mutant derivative bearing a sitespecific temperature and attenuating mutation. J. Virology. 1993; 67: 7223–8.

16. Subbarao E.K., Park E. J.U, Lawson C.M., Chen A.Y., Murphy B.R. Sequential addition of temperature-sensitive missense mutations into the PB2 gene of influenza A transfectant viruses can effect an increase in temperature sensitivity and attenuation and permits the rational design of a genetically engineered live influenza A virus vaccine. J. Virology. 1995; 69(10): 5969–77.

17. Boon A.C., de Mutsert G., Graus Y.M., Fouchier R.A., Sinthicolaas K., Osterhaus A.D. Sequence variation in a newly identified HLAB35-restricted epitope in the influenza A virus nucleoprotein associated with escape from Cytotoxic T lymphocytes. J. Virology. 2002; 76(5): 2567–72.

18. Rimmelzwaan G.F., Boon A.C., Voeten J.T., Berkhoff E.C., Fouchier R.A., Osterhaus A.D. Sequence variation in the influenza A virus nucleoprotein associated with escape from Cytotoxic T lymphocytes. Virus Res. 2004; 103 (1–2): 97–100.

19. Voeten J.T., Bestebroer T.M., Nieuwkoop N.J., Fouchier R.A., Osterhaus A.D. Antigenic drift in the influenza a virus (H3N2) nucleoprotein and escape from recognition by Cytotoxic T lymphocytes. J. Virology. 2000; 74 (15): 6800–7.

20. Cox R.J., Brokstad K.A., Ogra E.P. Influenza virus: immunity and vaccination strategies. Comparison of the immune response to inactivated and live, attenuated influenza vaccines. Scand. J. Immunol. 2004; 59(1): 1–15.

Problems of Virology. 2015; 60: 25-30

Effect of Point Mutations in the Polymerase Genes of the Influenza A/PR/8/34 (H1N1) Virus on the Immune Response in a Mouse Model

Kuznetsova S. A., Isakova-Sivak I. N., Kuznetcova V. A., Petukhova G. D., Losev I. V., Donina S. A., Rudenko L. G., Naikhin A. N.

Abstract

The vaccine strains for live attenuated influenza vaccines (LAIVs) have cold-adapted, temperature-sensitive, and attenuated phenotypes, which are guaranteed by the presence of specific mutations from the master donor virus in their internal genes. In this study, we used mutant viruses of the pathogenic A/Puerto Rico/8/34 (H1N1) that contained ts-mutations in PB1 (K265N, V591I), PB2 (V478L), and PA (L28P, V341L) genes along and/or in different combinations to evaluate the impact of these mutations in the immune responses. Sequential addition of tested mutations resulted in the stepwise decrease in virus-specific serum and, to a lesser extent, mucosal antibody levels. We demonstrated strong positive correlation between virus attenuation (virus titer in lung) and antibody titers. The ts-mutations in PB1, PB2, and PA genes are mostly involved in the modulation of the humoral immunity, but also have a moderate effect on the cellular adaptive immune response.
References

1. Kreijtz J.H., Fouchier R.A., Rimmelzwaan G.F. Immune responses to influenza virus infection. Virus Res. 2011; 162(1–2): 19–30.

2. Programma fundamental'nykh nauchnykh issledovanii gosudarstvennykh akademii na 2013-2020 goda (Rasporyazhenie Pravitel'stva Rossiiskoi Federatsii ot 3 dekabrya 2012 N2237-r), podrazdel 205 «Poluchenie novykh znanii o mekhanizmakh postinfektsionnoi i postvaktsinal'noi immunologii». M.; 2012.

3. Kiseleva I.V., Larionova N.V., Voeten J.T.M., Teley L.C., Drieszen-van der Cruijsen S.K., Heldens J.G. i dr. Vedushchaya rol' genov polimeraznogo kompleksa v attenuatsii donorov otechestvennoi zhivoi grippoznoi vaktsiny A i V. Zhurnal mikrobiologii, epidnmiologii, immunobiologii. 2010; 6: 41–7.

4. Isakova-Sivak I., Chen L.M., Matsuoka Y.,Voeten J.T., Kiseleva I., Heldens J.G. et al. Genetic bases of the temperature-sensitive phenotype of A master donor virus used in live attenuated influenza vaccines: A/Leningrad/134/17/57(H2N2). Virology. 2011; 412 (2): 297–305.

5. Donina S.A., Naikhin A.N., Petukhova G.D., Barantseva I.B., Chirkova T.V., Grigor'eva E.P. i dr. Sistemnyi gumoral'nyi i kletochnyi immunnyi otvet pri eksperimental'noi grippoznoi infektsii i vaktsinatsii. Mediinkaya immunologiya. 2006; 8 (1): 31–6.

6. Petukhova G.D., Naikhin A.N., Barantseva I.B., Donina S.A., Chirkova T.V., Grigor'eva E.P. i dr. Lokal'nyi gumoral'nyi i kletochnyi immunnyi otvet myshei pri grippoznoi infektsii i vaktsinatsii. Meditsinskaya immunologii. 2006; 8 (4): 511–6.

7. Petukhova G., Chirkova T., Donina S., Korenkov D., Naykhin A., Rudenko L. Comparative studies of local antibody and cellular immune responses to influenza infection and vaccination with live attenuated influenza vaccine (LAIV) utilizing a mouse nasalassociated lymphoid tissue (NALT) separation method. Vaccine. 2009; 27(19): 2580–87.

8. Znou B., Li Y., Speer S. Engineering temperature sensitive live attenuated influenza vaccines from emerging viruses. Vaccine. 2012; 30(24): 3691–702.

9. Jin H., Zhou H., Lu B., Kemble G. Imparting temperature sensitivity and attenuation in ferrets to A/Puerto/Rico/8/34 influenza virus by transferring the genetic signature for temperature sensitivity from cold-adapted A/Ann Arbor/6/60. J. Virol. 2004; 78(2): 995–8.

10. He W., Wang W., Han H., Wang L., Zhang G., Gao B. Molecular basis of live-attenuated influenza virus. PLoS ONE. 2013; 8 (3): e60413.

11. Gabriel G., Garn H., Wegmann M., Renz H., Herwing A., Klenk H.-D. et al. The potential of a protease activation mutant of a highly pathogenic avian influenza virus for a pandemic live vaccine. Vaccine. 2008; 26(7): 956–65.

12. Jin H., Lu B., Zhou H., Ma C., Zhao J., Yang C. et al. Multiple amino acid residues confer temperature sensitivity to human influenza virus vaccine strains (FluMist) derived from cold-adapted A/Ann Arbor/6/60. Virology. 2003; 306: 18–24.

13. Mueller S., Coleman J.R., Papamichail D., Ward C.B., Nimnual A., Futcher B. et al. Live attenuated influenza virus vaccines by computer-aided rational design. Nat. Biotechn. 2010; 28 (7): 723–6.

14. Solorzano A., Ye J., Perez D.R. Alternative live-attenuated influenza vaccines based on modifications in the polymerase genes protect against epidemic and pandemic flu. J. Virology. 2010; 84(9): 4587– 96.

15. Subbarao E.K., Kawaoka Y., Murphy B.R. Rescue of an influenza A virus wild-type PB2 gene and a mutant derivative bearing a sitespecific temperature and attenuating mutation. J. Virology. 1993; 67: 7223–8.

16. Subbarao E.K., Park E. J.U, Lawson C.M., Chen A.Y., Murphy B.R. Sequential addition of temperature-sensitive missense mutations into the PB2 gene of influenza A transfectant viruses can effect an increase in temperature sensitivity and attenuation and permits the rational design of a genetically engineered live influenza A virus vaccine. J. Virology. 1995; 69(10): 5969–77.

17. Boon A.C., de Mutsert G., Graus Y.M., Fouchier R.A., Sinthicolaas K., Osterhaus A.D. Sequence variation in a newly identified HLAB35-restricted epitope in the influenza A virus nucleoprotein associated with escape from Cytotoxic T lymphocytes. J. Virology. 2002; 76(5): 2567–72.

18. Rimmelzwaan G.F., Boon A.C., Voeten J.T., Berkhoff E.C., Fouchier R.A., Osterhaus A.D. Sequence variation in the influenza A virus nucleoprotein associated with escape from Cytotoxic T lymphocytes. Virus Res. 2004; 103 (1–2): 97–100.

19. Voeten J.T., Bestebroer T.M., Nieuwkoop N.J., Fouchier R.A., Osterhaus A.D. Antigenic drift in the influenza a virus (H3N2) nucleoprotein and escape from recognition by Cytotoxic T lymphocytes. J. Virology. 2000; 74 (15): 6800–7.

20. Cox R.J., Brokstad K.A., Ogra E.P. Influenza virus: immunity and vaccination strategies. Comparison of the immune response to inactivated and live, attenuated influenza vaccines. Scand. J. Immunol. 2004; 59(1): 1–15.