Журналов:     Статей:        

Вопросы вирусологии. 2020; 65: 35-40

Характеристика В1-клеток в процессе экспериментального лейкомогенеза

Ездакова И. Ю., Капустина О. В., Гулюкин М. И., Степанова Т. В.

https://doi.org/10.36233/0507-4088-2020-65-1-35-40

Аннотация

Введение. Вирус лейкоза крупного рогатого скота (КРС) вызывает значительную поликлональную экспансию CD5+ , IgM+ B-лимфоцитов, известных как персистирующий лимфоцитоз приблизительно у 30% заражённого КРС. Однако пока не ясно, что происходит с данной субпопуляцией В-клеток в ранний период инфицирования животных.

Цель исследования – количественная характеристика IgM+ и CD5+ В-клеток в процессе иммунного ответа на заражение вирусом лейкоза крупного рогатого скота (BLV), которая может дать важную информацию о механизмах прайминга лимфоцитов при инфицировании BLV.

Материал и методы. В эксперименте использовали BLV-отрицательных телят чёрно-пёстрой породы в возрасте 8 мес (n = 11). Животным опытной группы (n = 8) внутривенно вводили кровь BLV-положительной коровы. Телятам контрольной группы (n = 3) вводили физиологический раствор. Исследования проводили до и после заражения на 5, 7, 14, 21, 28 и 65-е сутки иммунного ответа. Количество В-лимфоцитов в крови определяли методом иммунопероксидазного окрашивания на основе моноклональных антител к IgM и CD5.

Результаты. В результате проведённых исследований установлено, что уровень CD5+ В-клеток повышается на 14-е сутки первичного иммунного ответа, характеризующегося поликлональной пролиферацией CD5+ В-клеток, которые являются первичной мишенью для BLV. Данные исследований подтверждают, что в лимфоцитах экспериментально заражённого КРС поверхностная агрегация молекул IgM и CD5 на В-лимфоцитах отсутствует.

Обсуждение. Известно, что именно от субпопуляции В1-клеток зависит волнообразный характер синтеза IgM, который был показан в предыдущих исследованиях. После 7-х суток иммунного ответа показатели IgM+ и CD5+-клеток не коррелируют, что показывает их функциональное различие. Возможно, увеличение числа CD5+-клеток связано не с В-клетками, а с дифференцирующимися под влиянием вируса Т-лимфоцитами.

Выводы. Субпопуляция В1-клеток является первичной мишенью вируса лейкоза КРС. 65-е сутки иммунного ответа характеризуются экспансией IgM+ В-клеток, снижением числа CD5+-клеток и равномерным распределением рецепторов по периметру клеток.

Список литературы

1. Bartlett P.C., Norby B., Byrem T.M., Parmelee A., Ledergerber J.T., Erskine R.J. Bovine leukemia virus and cow longevity in Michigan dairy herds. J. Dairy Sci. 2013; 96(3): 1591-7. http://doi.org/10.3168/jds.2012-5930

2. Frie M.C., Sporer K.R., Wallace J.C., Maes R.K., Sordillo L.M., Bartlett P.C., et al. Reduced humoral immunity and atypical cell-mediated immunity in response to vaccination in cows naturally infected with bovine leukemia virus. Vet. Immunol. Immunopathol. 2016; 182: 125-35. http://doi.org/10.1016/j.vetimm.2016.10.013

3. Florins A., Boxus M., Vandermeers F., Verlaeten O., Bouzar A.B., Defoiche J., et al. Emphasis on cell turnover in two hosts infected by bovine leukemia virus: A rationale for host susceptibility to disease. Vet. Immunol. Immunopathol. 2008; 125(1-2): 1-7. http://doi.org/10.1016/j.vetimm.2008.04.007

4. Brym P., Ruść A., Kamiński S. Evaluation of reference genes for qRT-PCR gene expression studies in whole blood samples from healthy and leukemia-virus infected cattle. Vet. Immunol. Immunopathol. 2013; 153(3-4): 302-7. http://doi.org/10.1016/j.vetimm.2013.03.004

5. Mayr B., Vogel I., Graninger W., Schlerka G., Wöckl F., Schleger W. Circulating immune cells and immune complexes in peripheral blood of healthy and of bovine leukemia virus-infected cows and lymphosarcomatous calves. Vet. Immunol. Immunopathol. 1982; 3(5): 475-84. http://doi.org/10.1016/0165-2427(82)90013-7

6. Murakami K., Sentsui H., Inoshima Y., Inumaru S. Increase in gammadelta T cells in the blood of cattle persistently infected with bovine leukemia virus following administration of recombinant bovine IFN-gamma. Vet. Immunol. Immunopathol. 2004; 101(1-2): 61-71. http://doi.org/10.1016/j.vetimm.2004.04.016

7. Usui T., Konnai S., Ohashi K., Onuma M. Expression of tumor necrosis factor-α in IgM+ B-cells from bovine leukemia virus-infected lymphocytotic sheep. Vet. Immunol. Immunopathol. 2006; 112(3-4): 296-301. http://doi.org/10.1016/j.vetimm.2006.03.002

8. Frie M.C., Coussens P.M. Bovine leukemia virus: A major silent threat to proper immune responses in cattle. Vet. Immunol. Immunopathol. 2015; 163(3-4): 103-14. http://doi.org/10.1016/j.vetimm.2014.11.014

9. Murakami K., Inumaru S., Yokoyama T., Okada K., Sentsui H. Expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor on B-1a cell from persistent lymphocytosis (PL) cows and lymphoma cell induced by bovine leukemia virus. Vet. Immunol. Immunopathol. 1999; 68(1): 49-59. http://doi.org/10.1016/s0165-2427(99)00011-2

10. Ездакова И.Ю., Капустина О.В., Попова Е.В. Модуляция Igрецепторов В-клеток крови крупного рогатого скота. Морфология. 2019; 156(6): 93-4.

11. Попова Е.В., Ездакова И.Ю. Иммуноглобулиновые рецепторы В-лимфоцитов животных. Труды Всероссийского НИИ экспериментальной ветеринарии им. Я.Р. Коваленко. 2015; 78: 199-206.

12. Murakami H., Todaka H., Uchiyama J., Sato R., Sogawa K., Sakaguchi M., et al. A point mutation to the long terminal repeat of bovine leukemia virus related to viral productivity and transmissibility. Virology. 2019; 537: 45-52. http://doi.org/10.1016/j.virol.2019.08.015

13. Mirsky M.L., Olmstead C.A., Da Y., Lewin H.A. The prevalence of proviral bovine leukemia virus in peripheral blood mononuclear cells at two subclinical stages infection. J. Virol. 1996; 70(4): 2178-83.

14. Juliarena M.A., Barrios C.N., Ceriani C.M., Esteban E.N. Hot topic: Bovine leukemia virus (BLV)-infected cows with low proviral load are not a source of infection for BLV-free cattle. J. Dairy Sci. 2016; 99(6): 4586-9. http://doi.org/10.3168/jds.2015-10480

15. Гулюкин М.И., Капустина О.В., Ездакова И.Ю., Вальциферова С.В., Степанова Т.В., Аноятбеков М. Выявление специфических антител классов G и М к вирусу лейкоза крупного рогатого скота в сыворотках крови. Вопросы вирусологии. 2019; 64(4): 173-7. http://doi.org/10.36233/0507-4088-2019-64-4-173-177

16. Сantor C.H., Pritchard S.M., Dequiedt F., Willems I., Kettmann R., Davis W.C. CD5 is dissociated from the B-cell receptor in B cells from BLV-infected, PL cattle: consequences to B-cell receptor-mediated apoptosis. J. Virol. 2001; 75(4): 1689-96. http://doi.org/10.1128/JVI.75.4.1689-1696.2001

17. Gillet N., Florins A., Boxus M., Burteau C., Nigro A., Vandermeers F., et al. Mechanisms of leukemogenesis induced by BLV: prospects for novel anti-retroviral therapies in human. Retrovirology. 2007; 4: 18. http://doi.org/10.1186/1742-4690-4-18

18. Suzuki S., Konnai S., Okagawa T., Ikebuchi R., Nishimori A., Kohara J., et al. Increased expression of the regulatory T cellassociated marker CTLA-4 in bovine leukemia virus infection. Vet. Immunol. Immunopathol. 2015; 163(3-4): 115-24. http://doi.org/10.1016/j.vetimm.2014.10.006

19. Hamilton V.T., Stone D.M., Cantor G.H. Translocation of the B cell receptor to lipid rafts is inhibited in B cells from BLV-infected, persistent lymphocytosis cattle. Virology. 2003; 315(1): 135-47. http://doi.org/10.1016/s0042-6822(03)00522-1

Problems of Virology. 2020; 65: 35-40

Characterization of B1-cells during experimental leukomogenesis

Ezdakova I. Yu., Kapustina O. V., Gulyukin M. I., Stepanova T. V.

https://doi.org/10.36233/0507-4088-2020-65-1-35-40

Abstract

Background. Bovine leukemia causes a significant polyclonal expansion of CD5+ , IgM+ B lymphocytes, known as persistent lymphocytosis (PL), in approximately 30% of infected cattle. However, it is not yet clear what happens to this subpopulation of B cells in the early period of infection of animals.

Purpose. Quantitative characterization of IgM+ and CD5B cells during the immune response, which can provide important information on the mechanisms of lymphocyte priming in BLV infection.

Material and methods. The experiment used BLV-negative calves of black-motley breed at the age of 8 months (n = 11). Animals (n = 8) were intravenously injected with blood of a BLV-positive cow. Control calves (n = 3) were injected with saline. Studies were performed before and after infection on days 5, 7, 14, 21, 28 and 65 of the immune response. The determination of the number of B-lymphocytes in the blood was carried out by the method of immunoperoxidase staining based on monoclonal antibodies to IgM, CD5.

Results. As a result of the studies, it was found that the level of CD5+ B cells increases on the 14th day of the primary immune response, characterized by polyclonal proliferation of CD5+ B cells, which are the primary target for BLV. Our research data confirm that in the lymphocytes of experimentally infected cattle, surface aggregation of IgM and CD5 molecules on B-lymphocytes is absent.

Discussion. It is known that the wave-like nature of IgM synthesis, which was shown in previous studies, depends on a subpopulation of B1 cells. After 7 days of the immune response, IgM+ and CD5+ cells do not correlate, which shows their functional difference. The increase in CD5+ cells is probably not associated with B cells, but with T cells differentiating under the influence of the virus.

Conclusions. A subset of B1 cells is the primary target of cattle leukemia virus. The 65th day of the immune response is characterized by the expansion of IgM+ B cells, a decrease in the number of CD5+ cells and a uniform distribution of receptors around the perimeter of the cells.

References

1. Bartlett P.C., Norby B., Byrem T.M., Parmelee A., Ledergerber J.T., Erskine R.J. Bovine leukemia virus and cow longevity in Michigan dairy herds. J. Dairy Sci. 2013; 96(3): 1591-7. http://doi.org/10.3168/jds.2012-5930

2. Frie M.C., Sporer K.R., Wallace J.C., Maes R.K., Sordillo L.M., Bartlett P.C., et al. Reduced humoral immunity and atypical cell-mediated immunity in response to vaccination in cows naturally infected with bovine leukemia virus. Vet. Immunol. Immunopathol. 2016; 182: 125-35. http://doi.org/10.1016/j.vetimm.2016.10.013

3. Florins A., Boxus M., Vandermeers F., Verlaeten O., Bouzar A.B., Defoiche J., et al. Emphasis on cell turnover in two hosts infected by bovine leukemia virus: A rationale for host susceptibility to disease. Vet. Immunol. Immunopathol. 2008; 125(1-2): 1-7. http://doi.org/10.1016/j.vetimm.2008.04.007

4. Brym P., Ruść A., Kamiński S. Evaluation of reference genes for qRT-PCR gene expression studies in whole blood samples from healthy and leukemia-virus infected cattle. Vet. Immunol. Immunopathol. 2013; 153(3-4): 302-7. http://doi.org/10.1016/j.vetimm.2013.03.004

5. Mayr B., Vogel I., Graninger W., Schlerka G., Wöckl F., Schleger W. Circulating immune cells and immune complexes in peripheral blood of healthy and of bovine leukemia virus-infected cows and lymphosarcomatous calves. Vet. Immunol. Immunopathol. 1982; 3(5): 475-84. http://doi.org/10.1016/0165-2427(82)90013-7

6. Murakami K., Sentsui H., Inoshima Y., Inumaru S. Increase in gammadelta T cells in the blood of cattle persistently infected with bovine leukemia virus following administration of recombinant bovine IFN-gamma. Vet. Immunol. Immunopathol. 2004; 101(1-2): 61-71. http://doi.org/10.1016/j.vetimm.2004.04.016

7. Usui T., Konnai S., Ohashi K., Onuma M. Expression of tumor necrosis factor-α in IgM+ B-cells from bovine leukemia virus-infected lymphocytotic sheep. Vet. Immunol. Immunopathol. 2006; 112(3-4): 296-301. http://doi.org/10.1016/j.vetimm.2006.03.002

8. Frie M.C., Coussens P.M. Bovine leukemia virus: A major silent threat to proper immune responses in cattle. Vet. Immunol. Immunopathol. 2015; 163(3-4): 103-14. http://doi.org/10.1016/j.vetimm.2014.11.014

9. Murakami K., Inumaru S., Yokoyama T., Okada K., Sentsui H. Expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor on B-1a cell from persistent lymphocytosis (PL) cows and lymphoma cell induced by bovine leukemia virus. Vet. Immunol. Immunopathol. 1999; 68(1): 49-59. http://doi.org/10.1016/s0165-2427(99)00011-2

10. Ezdakova I.Yu., Kapustina O.V., Popova E.V. Modulyatsiya Igretseptorov V-kletok krovi krupnogo rogatogo skota. Morfologiya. 2019; 156(6): 93-4.

11. Popova E.V., Ezdakova I.Yu. Immunoglobulinovye retseptory V-limfotsitov zhivotnykh. Trudy Vserossiiskogo NII eksperimental'noi veterinarii im. Ya.R. Kovalenko. 2015; 78: 199-206.

12. Murakami H., Todaka H., Uchiyama J., Sato R., Sogawa K., Sakaguchi M., et al. A point mutation to the long terminal repeat of bovine leukemia virus related to viral productivity and transmissibility. Virology. 2019; 537: 45-52. http://doi.org/10.1016/j.virol.2019.08.015

13. Mirsky M.L., Olmstead C.A., Da Y., Lewin H.A. The prevalence of proviral bovine leukemia virus in peripheral blood mononuclear cells at two subclinical stages infection. J. Virol. 1996; 70(4): 2178-83.

14. Juliarena M.A., Barrios C.N., Ceriani C.M., Esteban E.N. Hot topic: Bovine leukemia virus (BLV)-infected cows with low proviral load are not a source of infection for BLV-free cattle. J. Dairy Sci. 2016; 99(6): 4586-9. http://doi.org/10.3168/jds.2015-10480

15. Gulyukin M.I., Kapustina O.V., Ezdakova I.Yu., Val'tsiferova S.V., Stepanova T.V., Anoyatbekov M. Vyyavlenie spetsificheskikh antitel klassov G i M k virusu leikoza krupnogo rogatogo skota v syvorotkakh krovi. Voprosy virusologii. 2019; 64(4): 173-7. http://doi.org/10.36233/0507-4088-2019-64-4-173-177

16. Santor C.H., Pritchard S.M., Dequiedt F., Willems I., Kettmann R., Davis W.C. CD5 is dissociated from the B-cell receptor in B cells from BLV-infected, PL cattle: consequences to B-cell receptor-mediated apoptosis. J. Virol. 2001; 75(4): 1689-96. http://doi.org/10.1128/JVI.75.4.1689-1696.2001

17. Gillet N., Florins A., Boxus M., Burteau C., Nigro A., Vandermeers F., et al. Mechanisms of leukemogenesis induced by BLV: prospects for novel anti-retroviral therapies in human. Retrovirology. 2007; 4: 18. http://doi.org/10.1186/1742-4690-4-18

18. Suzuki S., Konnai S., Okagawa T., Ikebuchi R., Nishimori A., Kohara J., et al. Increased expression of the regulatory T cellassociated marker CTLA-4 in bovine leukemia virus infection. Vet. Immunol. Immunopathol. 2015; 163(3-4): 115-24. http://doi.org/10.1016/j.vetimm.2014.10.006

19. Hamilton V.T., Stone D.M., Cantor G.H. Translocation of the B cell receptor to lipid rafts is inhibited in B cells from BLV-infected, persistent lymphocytosis cattle. Virology. 2003; 315(1): 135-47. http://doi.org/10.1016/s0042-6822(03)00522-1