Журналов:     Статей:        

Вопросы вирусологии. 2020; 65: 6-15

Этиология эпидемической вспышки COVID-19 в г. Ухань (провинция Хубэй, Китайская Народная Республика), ассоциированной с вирусом 2019-nCoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, подрод Sarbecovirus): уроки эпидемии SARS-CoV

Львов Д. К., Альховский С. В., Колобухина Л. В., Бурцева Е. И.

https://doi.org/10.36233/0507-4088-2020-65-1-6-15

Аннотация

Результаты сравнительного филогенетического, вирусологического, эпидемиологического, экологического и клинического изучения тяжёлого острого респираторного синдрома (ТОРС) (SARS-2002), ближневосточного респираторного синдрома (БВРС) (MERS-2012) и эпидемической вспышки острого респираторного заболевания (COVID-19) в 2019–2020 гг. в г. Ухань (Хубэй, Китайская Народная Республика, КНР) позволили сделать следующие выводы:

– этиологическим агентом COVID-19 является коронавирус (вирус 2019-CoV), филогенетически близкий к возбудителю ТОРС (вирус SARS-related human CoV) и родственным ему коронавирусам, изолированным от летучих мышей (вирусы SARS-related bat CoV). Эти вирусы относятся к подроду Sarbecovirus рода Betacoronavirus, подсемейства Orthocoronavirinae, семейства Coronaviridae (Cornidovirinea: Nidovirales). Следовательно, эпидемическая вспышка острого респираторного заболевания COVID-19 является вариантом ТОРС (КНР, 2002) и отличается от БВРС (Саудовская Аравия, 2012), вызванного другим коронавирусом, относящимся к подроду Merbecovirus того же рода;

– cогласно результатам филогенетического анализа 35 различных бетакоронавирусов (Betacoronavirus), изолированных в 2002–2019 гг. от людей и из природных источников, природным резервуаром коронавируса 2019-nCoV, также как и вируса SARS-related human CoV, являются летучие мыши рода Rhinolophus (Rhinolophidae), но, возможно, и представители других родов. Дополнительным резервуаром вируса могут служить употребляемые в пищу промежуточные виды животных (змеи, циветты, ежи, барсуки и т.д.), заражение которых происходит при поедании инфицированных летучих мышей. SARS-подобные вирусы циркулировали среди летучих мышей в межэпидемическом периоде (2003–2019 гг.);

– сезонные коронавирусы (подрод Duvinacovirus, род Alphacoronavirus) циркулируют в настоящее время (ноябрь 2019 г. – январь 2020 г.) в Европейской части, на Урале, в Сибири и на Дальнем Востоке России, наряду с вирусами гриппа А (H1N1)pdm09, A (H3N2) и В, а также другими шестью вирусами, вызывающими острые респираторные вирусные инфекции (вирус парагриппа, респираторно-синцитиальный вирус, адено-, рино-, бока-, и метапневмовирусы).

Список литературы

1. de Groot R.J., Baker S.C., Baric R., Enjuanes L., Gorbalenya A.E., Holmes K.V., et al. Family Coronaviridae. In: King A.M., Adams M.J., Carstens E.B., Lefkowitz E.J., eds. Virus Taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses. London: Elsevier; 2012: 806-28.

2. Львов Д.К., Щелканов М.Ю. Коронавирусы (Coronaviridae). В кн.: Львов Д.К., ред. Руководство по вирусологии. Вирусы и вирусные инфекции человека и животных. М.: МИА; 2013: 211-8.

3. Perlman S., Gallagher T., Snijder E.J. Nidoviruses. Washington: ASM press; 2008.

4. Woo P.C., Lau S.K., Huang Y., Yuen K.Y. Coronavirus diversity, phylogeny and interspecies jumping. Exp. Biol. Med. (Maywood). 2009; 234(10): 1117-27. DOI: 10.3181/0903-MR-94

5. Cowley J.A., Dimmock C.M., Spann K.M., Walker P.J. Gill-associated virus of Penaeus monodon prawns: an invertebrate virus with ORF1a and ORF1b genes related to arteri– and coronaviruses. J. Gen. Virol. 2000; 81(Pt. 6): 1473-84. DOI: 10.1099/0022-1317-81-6-1473

6. Decaro N., Buonavoglia C. An update on canine coronaviruses: viral evolution and pathobiology. Vet. Microbiol. 2008; 132(3-4): 221-34. DOI: 10.1016/j.vetmic.2008.06.007

7. Cavanagh D. Coronaviruses in poultry and other birds. Avian Pathol. 2005; 34(6): 439-48. DOI: 10.1080/03079450500367682

8. Chu D.K., Leung C.Y., Gilbert M., Joyner P.H., Ng E.M., Tse T.M., et al. Avian coronavirus in wild aquatic birds. J. Virol. 2011; 85(23): 12815-20. DOI: 10.1128/JVI.05838-11

9. Traavik T., Mehl R., Kjeldsberg E. “Runde” viurs, a coronaviruslike agent associated with seabirds and ticks. Arch. Virol. 1977; 55(1-2): 25-38. http://doi.org/10.1007/bf01314476

10. Gagneur A., Vallet S., Talbot P.J., Legrand-Quillien M.C., Picard B., Payan C., et al. Outbreaks of human coronavirus in a pediatric and neonatal intensive care unit. Eur. J. Pediatr. 2008; 167(12): 1427-34. http://doi.org/10.1007/s00431-008-0687-0

11. Колобухина Л.В., Львов Д.К. Коронавирусная инфекция, тяжелый острый респираторный синдром. В кн.: Львов Д.К., ред. Руководство по вирусологии. Вирусы и вирусные инфекции человека и животных. М.: МИА; 2013: 588-92.

12. Xu J., Hu J., Wang J., Han Y., Hu Y., Wen J., et al. Genome organization of the SARS-CoV. Genomics Proteomics Bioinformatics. 2003; 1(3): 226-35. http://doi.org/10.1016/s1672-0229(03)01028-3

13. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J.H., et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005; 310(5748): 676-9. http://doi.org/10.1126/science.1118391

14. Woo P.C., Lau S.K., Lam C.S., Lau C.C., Tsang A.K., Lau J.H., et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 2012; 86(7): 3995-4008. http://doi.org/10.1128/JVI.06540-11

15. Guan Y., Zheng B.J., He Y.Q., Liu X.L., Zhuang Z.X., Cheung C.L., et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003; 302(5643): 276-8. http://doi.org/10.1126/science.1087139

16. Annan A., Baldwin H.J., Corman V.M., Klose S.M., Owusu M., Nkrumah E.E., et al. Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg. Infect. Dis. 2013; 19(3): 456-9. http://doi.org/10.3201/eid1903.121503

17. Balboni A., Battilani M., Prosperi S. The SARS-like coronaviruses: the role of bats and evolutionary relationships with SARS coronavirus. New Microbiol. 2012; 35(1): 1-16.

18. Wang L.F., Shi Z., Zhang S., Field H., Daszak P., Eaton B.T. Review of bats and SARS. Emerg. Infect. Dis. 2006; 12(12): 1834-40. http://doi.org/10.3201/eid1212.060401

19. Dominguez S.R., O’Shea T.J., Oko L.M., Holmes K.V. Detection of group 1 coronaviruses in bats in North America. Emerg. Infect. Dis. 2007; 13(9): 1295-300. http://doi.org/10.3201/eid1309.070491

20. Gloza-Rausch F., Ipsen A., Seebens A., Gottsche M., Panning M., Drexler J.F., et al. Detection and prevalence patterns of group I coronaviruses in bats, northern Germany. Emerg. Infect. Dis. 2008; 14(4): 626-31. http://doi.org/10.3201/eid1404.071439

21. Lau S.K., Woo P.C., Li K.S., Huang Y., Tsoi H.W., Wong B.H., et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. USA. 2005; 102(39): 14040-5. http://doi.org/10.1073/pnas.0506735102

22. Tong S., Conrardy C., Ruone S., Kuzmin I.V., Guo X., Tao Y., et al. Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emerg. Infect. Dis. 2009; 15(3): 482-5. http://doi.org/10.3201/eid1503.081013

23. Zhou P., Li H., Wang H., Wang L.F., Shi Z. Bat severe acute respiratory syndrome-like coronavirus ORF3b homologues display different interferon antagonist activities. J. Gen. Virol. 2012; 93(Pt. 2): 275-81. http://doi.org/10.1099/vir.0.033589-0

24. Summary table of SARS cases by country, 1 November 2002 – 7 August 2003. Available at: https://www.who.int/csr/sars/country/2003_08_15/en/

25. Покровский В.И., Малеев В.В., Киселев О.И. Коронавирус SARS – возбудитель атипичной пневмонии. Временые методические рекомендации. М.; 2003.

26. Чучалин А.Г. Синдром острого повреждения легких. РМЖ. 2006; 14(22): 1582.

27. Riley S., Fraser C., Donnelly C.A., Ghani A.C., Abu-Raddad L.J., Hedley A.J., et al. Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science. 2003; 300(5627): 1961-6. http://doi.org/10.1126/science.1086478

28. Lipsitch M., Cohen T., Cooper B., Robins J.M., Ma S., James L., et al. Transmission dynamics and control of severe acute respiratory syndrome. Science. 2003; 300(5627): 1966-70. http://doi.org/10.1126/science.1086616

29. Wang J.T., Sheng W.H., Fang C.T., Chen Y.C., Wang J.L., Yu C.J., et al. Clinical manifestations, laboratory findings, and treatment outcomes of SARS patients. Emerg. Infect. Dis. 2004; 10(5): 818-24. http://doi.org/10.3201/eid1005.030640

30. Drosten C., Gunther S., Preiser W., van der Werf S., Brodt H.R., Becker S., et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003; 348(20): 1967-76. http://doi.org/10.1056/NEJMoa030747

31. Tan E.L., Ooi E.E., Lin C.Y., Tan H.C., Ling A.E., Lim B., et al. Inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs. Emerg. Infect. Dis. 2004; 10(4): 581-6. http://doi.org/10.3201/eid1004.030458

32. Дерябин П.Г., Зарубаев В.В. К вопросу о коронавирусной инфекции и перспективах профилактики и лечения препаратами интерферона альфа-2в человеческого рекомбинантного. Инфекционные болезни. 2014; 12(3): 32-4.

33. de Groot R.J., Baker S.C., Baric R.S., Brown C.S., Drosten C., Enjuanes L., et al. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J. Virol. 2013; 87(14): 7790-2. http://doi.org/10.1128/JVI.01244-13

34. Reusken C.B., Haagmans B.L., Muller M.A., Gutierrez C., Godeke G.J., Meyer B., et al. Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect. Dis. 2013; 13(10): 859-66. http://doi.org/10.1016/S1473-3099(13)70164-6

35. Perera R.A., Wang P., Gomaa M.R., El-Shesheny R., Kandeil A., Bagato O., et al. Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013. Euro Surveill. 2013; 18(36): pii20574. http://doi.org/10.2807/1560-7917.es2013.18.36.20574

36. Стрелков П.П. Отряд Chiroptera, Blumenbach, 1779 – Рукокрылые. В кн.: Громов И.М., Баранова Г.И., ред. Каталог млекопитающих СССР. Плиоцен – современность. Ленинград: Наука; 1981: 31-53.

37. Surveillance case definitions for human infection with novel coronavirus (nCoV). Available at: https://www.who.int/internal-publications-detail/surveillance-case-definitions-for-human-infectionwithnovel-coronavirus-(ncov)

38. Disease commodity package – Novel Coronavirus (nCoV). Available at: https://www.who.int/publications-detail/disease-commodity-package---novel-coronavirus-(ncov)

39. WHO recommendations to reduce risk of transmission of emerging pathogens from animals to humans in live animal markets. Available at: https://www.who.int/health-topics/coronavirus/who-recommendations-to-reduce-risk-of-transmission-of-emerging-pathogens-from-animals-to-humans-in-live-animal-markets

40. Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases. Available at: https://www.who.int/publications-detail/laboratory-testing-for-2019-novel-coronavirus-insuspected-human-cases-20200117

41. European surveillance for human infection with novel coronavirus (2019-nCoV). Available at: https://www.ecdc.europa.eu/en/european-surveillance-human-infection-novel-coronavirus-2019-ncov

42. European Virus Archive – GLOBAL. Available at: https://www.european-virus-archive.com/

43. Diagnostic detection of Wuhan coronavirus 2019 by realtime RTPCR. Available at: https://www.who.int/docs/defaultsource/coronaviruse/wuhan-virus-assay-v1991527e5122341d99287a1b17c111902.pdf?sfvrsn=d381fc88_2

44. Novel Coronavirus (2019-nCoV) situation reports (WHO). Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports

45. WHO, Western Pacific Region. Avian Influenza Weekly Update 2019. Available at: https://iris.wpro.who.int/handle/10665.1/14328

46. Львов Д.К. Грипп и другие новые и возвращающиеся инфекции Северной Евразии: глобальные последствия. В кн.: Федеральный справочник здравоохранения России. Том 11. М.; 2010: 209-19.

47. Львов Д.К., Борисевич С.В., Альховский С.В., Бурцева Е.И. Актуальные подходы анализа вирусных геномов в интересах биобезопасности. Инфекционные болезни: новости, мнения, обучение. 2019; 8(2): 96-101. http://doi.org/10.24411/2305-3496-2019-12012

48. Lvov D.K., Shchelkanov M.Y., Alkhovsky S.V., Deryabin P.G. Zoonotic Viruses of Northern Eurasia. Taxonomy and Ecology. London: Academic Press, Elsevier; 2015.

49. WHO. Coronavirus disease 2019 (COVID-19). Sitation report - 40 (29 February 2020).

Problems of Virology. 2020; 65: 6-15

Etiology of epidemic outbreaks COVID-19 in Wuhan, Hubei province, Chinese People Republic associated with 2019-nCoV (Nidovirales, Coronaviridae, Coronavirinae, Betacoronavirus, Subgenus Sarbecovirus): lessons of SARS-CoV outbreak

Lvov D. K., Alkhovsky S. V., Kolobukhina L. V., Burtseva E. I.

https://doi.org/10.36233/0507-4088-2020-65-1-6-15

Abstract

Results of analysis of phylogenetic, virological, epidemiological, ecological, clinical data of COVID-19 outbreaks in Wuhan, China (PRC) in comparison with SARS-2002 and MERS-2012 outbreaks allow to conclude:

– the etiological agent of COVID-19 is coronavirus (2019-CoV), phylogenetically close to the SARS-CoV, isolated from human, and SARS-related viruses isolated from bats (SARS-related bat CoV viruses). These viruses belong to the Sarbecovirus subgenus, Betacoronavirus genus, Orthocoronavirinae subfamily, Coronaviridae family (Cornidovirinea: Nidovirales). COVID-19 is a variant of SARS-2002 and is different from MERS-2012 outbreak, which were caused by coronavirus belonged to the subgenus Merbecovirus of the same genus;

– according to the results of phylogenetic analysis of 35 different betacoronaviruses, isolated from human and from wild animals in 2002-2019, the natural source of COVID-19 and SARS-CoV (2002) is bats of Rhinolophus genus (Rhinolophidae) and, probably, some species of other genera. An additional reservoir of the virus could be an intermediate animal species (snakes, civet, hedgehogs, badgers, etc.) that are infected by eating of infected bats. SARS-like coronaviruses circulated in bats in the interepidemic period (2003-2019);

– seasonal coronaviruses (subgenus Duvinacovirus, Alphacoronavirus) are currently circulating (November 2019

– January 2020) in the European part of Russia, Urals, Siberia and the Far East of Russia, along with the influenza viruses A(H1N1)pdm09, A(H3N2), and В, as well as six other respiratory viruses (HPIV, HAdV, HRSV, HRV, HBoV, and HMPV)

References

1. de Groot R.J., Baker S.C., Baric R., Enjuanes L., Gorbalenya A.E., Holmes K.V., et al. Family Coronaviridae. In: King A.M., Adams M.J., Carstens E.B., Lefkowitz E.J., eds. Virus Taxonomy: Classification and Nomenclature of Viruses. Ninth Report of the International Committee on Taxonomy of Viruses. London: Elsevier; 2012: 806-28.

2. L'vov D.K., Shchelkanov M.Yu. Koronavirusy (Coronaviridae). V kn.: L'vov D.K., red. Rukovodstvo po virusologii. Virusy i virusnye infektsii cheloveka i zhivotnykh. M.: MIA; 2013: 211-8.

3. Perlman S., Gallagher T., Snijder E.J. Nidoviruses. Washington: ASM press; 2008.

4. Woo P.C., Lau S.K., Huang Y., Yuen K.Y. Coronavirus diversity, phylogeny and interspecies jumping. Exp. Biol. Med. (Maywood). 2009; 234(10): 1117-27. DOI: 10.3181/0903-MR-94

5. Cowley J.A., Dimmock C.M., Spann K.M., Walker P.J. Gill-associated virus of Penaeus monodon prawns: an invertebrate virus with ORF1a and ORF1b genes related to arteri– and coronaviruses. J. Gen. Virol. 2000; 81(Pt. 6): 1473-84. DOI: 10.1099/0022-1317-81-6-1473

6. Decaro N., Buonavoglia C. An update on canine coronaviruses: viral evolution and pathobiology. Vet. Microbiol. 2008; 132(3-4): 221-34. DOI: 10.1016/j.vetmic.2008.06.007

7. Cavanagh D. Coronaviruses in poultry and other birds. Avian Pathol. 2005; 34(6): 439-48. DOI: 10.1080/03079450500367682

8. Chu D.K., Leung C.Y., Gilbert M., Joyner P.H., Ng E.M., Tse T.M., et al. Avian coronavirus in wild aquatic birds. J. Virol. 2011; 85(23): 12815-20. DOI: 10.1128/JVI.05838-11

9. Traavik T., Mehl R., Kjeldsberg E. “Runde” viurs, a coronaviruslike agent associated with seabirds and ticks. Arch. Virol. 1977; 55(1-2): 25-38. http://doi.org/10.1007/bf01314476

10. Gagneur A., Vallet S., Talbot P.J., Legrand-Quillien M.C., Picard B., Payan C., et al. Outbreaks of human coronavirus in a pediatric and neonatal intensive care unit. Eur. J. Pediatr. 2008; 167(12): 1427-34. http://doi.org/10.1007/s00431-008-0687-0

11. Kolobukhina L.V., L'vov D.K. Koronavirusnaya infektsiya, tyazhelyi ostryi respiratornyi sindrom. V kn.: L'vov D.K., red. Rukovodstvo po virusologii. Virusy i virusnye infektsii cheloveka i zhivotnykh. M.: MIA; 2013: 588-92.

12. Xu J., Hu J., Wang J., Han Y., Hu Y., Wen J., et al. Genome organization of the SARS-CoV. Genomics Proteomics Bioinformatics. 2003; 1(3): 226-35. http://doi.org/10.1016/s1672-0229(03)01028-3

13. Li W., Shi Z., Yu M., Ren W., Smith C., Epstein J.H., et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005; 310(5748): 676-9. http://doi.org/10.1126/science.1118391

14. Woo P.C., Lau S.K., Lam C.S., Lau C.C., Tsang A.K., Lau J.H., et al. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 2012; 86(7): 3995-4008. http://doi.org/10.1128/JVI.06540-11

15. Guan Y., Zheng B.J., He Y.Q., Liu X.L., Zhuang Z.X., Cheung C.L., et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science. 2003; 302(5643): 276-8. http://doi.org/10.1126/science.1087139

16. Annan A., Baldwin H.J., Corman V.M., Klose S.M., Owusu M., Nkrumah E.E., et al. Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. Emerg. Infect. Dis. 2013; 19(3): 456-9. http://doi.org/10.3201/eid1903.121503

17. Balboni A., Battilani M., Prosperi S. The SARS-like coronaviruses: the role of bats and evolutionary relationships with SARS coronavirus. New Microbiol. 2012; 35(1): 1-16.

18. Wang L.F., Shi Z., Zhang S., Field H., Daszak P., Eaton B.T. Review of bats and SARS. Emerg. Infect. Dis. 2006; 12(12): 1834-40. http://doi.org/10.3201/eid1212.060401

19. Dominguez S.R., O’Shea T.J., Oko L.M., Holmes K.V. Detection of group 1 coronaviruses in bats in North America. Emerg. Infect. Dis. 2007; 13(9): 1295-300. http://doi.org/10.3201/eid1309.070491

20. Gloza-Rausch F., Ipsen A., Seebens A., Gottsche M., Panning M., Drexler J.F., et al. Detection and prevalence patterns of group I coronaviruses in bats, northern Germany. Emerg. Infect. Dis. 2008; 14(4): 626-31. http://doi.org/10.3201/eid1404.071439

21. Lau S.K., Woo P.C., Li K.S., Huang Y., Tsoi H.W., Wong B.H., et al. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc. Natl. Acad. Sci. USA. 2005; 102(39): 14040-5. http://doi.org/10.1073/pnas.0506735102

22. Tong S., Conrardy C., Ruone S., Kuzmin I.V., Guo X., Tao Y., et al. Detection of novel SARS-like and other coronaviruses in bats from Kenya. Emerg. Infect. Dis. 2009; 15(3): 482-5. http://doi.org/10.3201/eid1503.081013

23. Zhou P., Li H., Wang H., Wang L.F., Shi Z. Bat severe acute respiratory syndrome-like coronavirus ORF3b homologues display different interferon antagonist activities. J. Gen. Virol. 2012; 93(Pt. 2): 275-81. http://doi.org/10.1099/vir.0.033589-0

24. Summary table of SARS cases by country, 1 November 2002 – 7 August 2003. Available at: https://www.who.int/csr/sars/country/2003_08_15/en/

25. Pokrovskii V.I., Maleev V.V., Kiselev O.I. Koronavirus SARS – vozbuditel' atipichnoi pnevmonii. Vremenye metodicheskie rekomendatsii. M.; 2003.

26. Chuchalin A.G. Sindrom ostrogo povrezhdeniya legkikh. RMZh. 2006; 14(22): 1582.

27. Riley S., Fraser C., Donnelly C.A., Ghani A.C., Abu-Raddad L.J., Hedley A.J., et al. Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science. 2003; 300(5627): 1961-6. http://doi.org/10.1126/science.1086478

28. Lipsitch M., Cohen T., Cooper B., Robins J.M., Ma S., James L., et al. Transmission dynamics and control of severe acute respiratory syndrome. Science. 2003; 300(5627): 1966-70. http://doi.org/10.1126/science.1086616

29. Wang J.T., Sheng W.H., Fang C.T., Chen Y.C., Wang J.L., Yu C.J., et al. Clinical manifestations, laboratory findings, and treatment outcomes of SARS patients. Emerg. Infect. Dis. 2004; 10(5): 818-24. http://doi.org/10.3201/eid1005.030640

30. Drosten C., Gunther S., Preiser W., van der Werf S., Brodt H.R., Becker S., et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003; 348(20): 1967-76. http://doi.org/10.1056/NEJMoa030747

31. Tan E.L., Ooi E.E., Lin C.Y., Tan H.C., Ling A.E., Lim B., et al. Inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs. Emerg. Infect. Dis. 2004; 10(4): 581-6. http://doi.org/10.3201/eid1004.030458

32. Deryabin P.G., Zarubaev V.V. K voprosu o koronavirusnoi infektsii i perspektivakh profilaktiki i lecheniya preparatami interferona al'fa-2v chelovecheskogo rekombinantnogo. Infektsionnye bolezni. 2014; 12(3): 32-4.

33. de Groot R.J., Baker S.C., Baric R.S., Brown C.S., Drosten C., Enjuanes L., et al. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. J. Virol. 2013; 87(14): 7790-2. http://doi.org/10.1128/JVI.01244-13

34. Reusken C.B., Haagmans B.L., Muller M.A., Gutierrez C., Godeke G.J., Meyer B., et al. Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect. Dis. 2013; 13(10): 859-66. http://doi.org/10.1016/S1473-3099(13)70164-6

35. Perera R.A., Wang P., Gomaa M.R., El-Shesheny R., Kandeil A., Bagato O., et al. Seroepidemiology for MERS coronavirus using microneutralisation and pseudoparticle virus neutralisation assays reveal a high prevalence of antibody in dromedary camels in Egypt, June 2013. Euro Surveill. 2013; 18(36): pii20574. http://doi.org/10.2807/1560-7917.es2013.18.36.20574

36. Strelkov P.P. Otryad Chiroptera, Blumenbach, 1779 – Rukokrylye. V kn.: Gromov I.M., Baranova G.I., red. Katalog mlekopitayushchikh SSSR. Pliotsen – sovremennost'. Leningrad: Nauka; 1981: 31-53.

37. Surveillance case definitions for human infection with novel coronavirus (nCoV). Available at: https://www.who.int/internal-publications-detail/surveillance-case-definitions-for-human-infectionwithnovel-coronavirus-(ncov)

38. Disease commodity package – Novel Coronavirus (nCoV). Available at: https://www.who.int/publications-detail/disease-commodity-package---novel-coronavirus-(ncov)

39. WHO recommendations to reduce risk of transmission of emerging pathogens from animals to humans in live animal markets. Available at: https://www.who.int/health-topics/coronavirus/who-recommendations-to-reduce-risk-of-transmission-of-emerging-pathogens-from-animals-to-humans-in-live-animal-markets

40. Laboratory testing for 2019 novel coronavirus (2019-nCoV) in suspected human cases. Available at: https://www.who.int/publications-detail/laboratory-testing-for-2019-novel-coronavirus-insuspected-human-cases-20200117

41. European surveillance for human infection with novel coronavirus (2019-nCoV). Available at: https://www.ecdc.europa.eu/en/european-surveillance-human-infection-novel-coronavirus-2019-ncov

42. European Virus Archive – GLOBAL. Available at: https://www.european-virus-archive.com/

43. Diagnostic detection of Wuhan coronavirus 2019 by realtime RTPCR. Available at: https://www.who.int/docs/defaultsource/coronaviruse/wuhan-virus-assay-v1991527e5122341d99287a1b17c111902.pdf?sfvrsn=d381fc88_2

44. Novel Coronavirus (2019-nCoV) situation reports (WHO). Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports

45. WHO, Western Pacific Region. Avian Influenza Weekly Update 2019. Available at: https://iris.wpro.who.int/handle/10665.1/14328

46. L'vov D.K. Gripp i drugie novye i vozvrashchayushchiesya infektsii Severnoi Evrazii: global'nye posledstviya. V kn.: Federal'nyi spravochnik zdravookhraneniya Rossii. Tom 11. M.; 2010: 209-19.

47. L'vov D.K., Borisevich S.V., Al'khovskii S.V., Burtseva E.I. Aktual'nye podkhody analiza virusnykh genomov v interesakh biobezopasnosti. Infektsionnye bolezni: novosti, mneniya, obuchenie. 2019; 8(2): 96-101. http://doi.org/10.24411/2305-3496-2019-12012

48. Lvov D.K., Shchelkanov M.Y., Alkhovsky S.V., Deryabin P.G. Zoonotic Viruses of Northern Eurasia. Taxonomy and Ecology. London: Academic Press, Elsevier; 2015.

49. WHO. Coronavirus disease 2019 (COVID-19). Sitation report - 40 (29 February 2020).