Вопросы вирусологии. 2019; 64: 5-11
АДЪЮВАНТЫ ГРИППОЗНЫХ ВАКЦИН: НОВЫЕ ВОЗМОЖНОСТИ ПРИМЕНЕНИЯ СУЛЬФАТИРОВАННЫХ ПОЛИСАХАРИДОВ ИЗ МОРСКИХ БУРЫХ ВОДОРОСЛЕЙ
Кузнецова Т. А., Персиянова Е. В., Запорожец Т. С., Беседнова Н. Н.
https://doi.org/10.18821/0507-4088-2019-64-1-5-11Аннотация
Список литературы
1. Гендон Ю.З., Васильев Ю.М. Проблемы профилактики гриппа с помощью вакцин. Журнал микробиологии, эпидемиологии и иммунобиологии. 2011; (4): 116-24.
2. Гендон Ю.З. Проблемы профилактики гриппа у беременных женщин и новорожденных детей. Вопросы вирусологии. 2009; 54(4): 4-10.
3. Васильев Ю.М. Направления совершенствования вакцин против гриппа. Врач. 2014; (8): 12-4.
4. Цыбалова Л.М., Киселев О.И. Универсальные вакцины против гриппа. Разработки, перспективы использования. Вопросы вирусологии. 2012; 57(1): 9-14.
5. Киселев О.И. Прогресс в создании пандемических противогриппозных вакцин и технологии их производства. Биотехнология. 2010; (2): 8-24.
6. Atmar R.L, Keitel W.A. Adjuvants for pandemic influenza vaccines. Curr. Top. Microbiol. Immunol. 2009; 333: 323-44. doi: 10.1007/978-3-540-92165-3_16
7. Glenny A.T., Buttle G.A.H., Stevens M.F. Rate of disappearance of diphtheria toxoid injected into rabbits and guinea pigs: toxoid precipitated with Alum. J. Pathol. Bacteriol. 1931; 34(2): 267-75. doi: 10.1002/path.1700340214
8. Ghimire T.R. The mechanisms of action of vaccines containing aluminum adjuvants: an in vitro vs in vivo paradigm. SpringerPlus. 2015; 4: 181. doi: 10.1186/s40064-015-0972-0
9. Lukiw W.J., Bazan N.G. Neuroinflammatory signaling upregulation in Alzheimer’s disease. Neurochem. Res. 2000; 25(9-10): 1173-84.
10. Cohly H.H., Panja A. Immunological findings in autism. Int. Rev. Neurobiol. 2005; 71: 317-41.
11. Exley C., Mamutse G., Korchazhkina O., Pye E., Strekopytov S., Polwart A., et al. Elevated urinary excretion of aluminium and iron in multiple sclerosis. Mult. Scler. 2006; 12(5): 533-40. doi: 10.1177/1352458506071323
12. Vargas D.L., Nascimbene C., Krishnan C., Zimmerman A.W., Pardo C.A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 2005; 57(1): 67-81. doi: 10.1002/ana.20315
13. Vera-Lastra O., Medina G., del Cruz-Dominguez M.P., Jara L.J., Shoenfeld Y. Autoimmune/inflammatory syndrome induced by adjuvants (Shoenfeld’s syndrome): clinical and immunological spectrum. Expert Rev. Clin. Immunol. 2013; 9(4): 361-73. doi: 10.1586/eci.13.2
14. O’Hagan D.T., Ott G.S., De Gregorio E., Seubert A. The mechanism of action of MF59 - an innately attractive adjuvant formulation. Vaccine. 2012; 30(29): 4341-8. doi: 10.1016/j.vaccine.2011.09.061
15. Roman F., Vaman T., Kafeja F., Hanon E., Van Damme P. AS03(A) - adjuvanted influenza A (H1N1) 2009 vaccine for adults up to 85 years of age. Clin. Infect. Dis. 2010; 51(6): 668-77. doi: 10.1086/655830
16. Wack A., Baudner B., Hilbert A., Manini I., Nuti S., Tavarini S., et al. Combination adjuvants for the induction of potent, long-lasting antibody and T-cell responses to influenza vaccine in mice. Vaccine. 2008; 26(4): 552-61. doi: 10.1016/j.vaccine.2007.11.054
17. Yin J., Khandaker G., Rashid H., Heron L., Ridda I., Booy R. Immunogenicity and safety of pandemic influenza A(H1N1) 2009 vaccine: systematic review and meta-analysis. Influenza Other Respir. Viruses. 2011; 5(5): 299-305. doi: 10.1111/j.1750-2659.2011.00229.x
18. Hwang S.M., Kim H.L., Min K.W., Kim M., Lim J.S., Choi J.M., et al. Comparison of the adverse events associated with MF59-adjuvanted and non-adjuvanted H1N1 vaccines in healthy young male Korean soldiers. Jpn. J. Infect. Dis. 2012; 65(3): 193-7.
19. Beyer W., Nauta J., Palache A., Giezeman K., Osterhaus A. Immunogenicity and safety of inactivated influenza vaccines in primed populations: a systematic literature review and metaanalysis. Vaccine. 2011; 29(34): 5785-92. doi: 10.1016/j.vaccine.2011.05.040
20. Cooper C.L., Davis H.L., Morris M.L., Efler S.M., Krieg A.M., Li Y., et al. Safety and immunogenicity of CPG 7909 injection as an adjuvant to Fluarix influenza vaccine. Vaccine. 2004; 22(23-24): 3136-43. doi: 10.1016/j.vaccine.2004.01.058
21. Iho S., Maeyama J., Suzuki F. CpG oligodeoxynucleotides as mucosal adjuvants. Hum. Vaccin. Immunother. 2015; 11(3): 755-60. doi: 10.1080/21645515.2014.1004033
22. Gursel M., Gursel I. Development of CpG ODN based vaccine adjuvant formulations. Methods Mol. Biol. 2016; 1404: 289-98. doi: 10.1007/978-1-4939-3389-1_20
23. Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat. Immunol. 2010; 11(5): 373-84. doi:10.1038/ni.1863
24. Tanegashima K., Takahashi R., Nuriya H., Iwase R., Naruse N., Tsuji K., et al. CXCL14 acts as a specific carrier of CpG DNA into dendritic cells and activates Toll-like receptor 9-mediated adaptive immunity. EBioMedicine. 2017; 24: 247-56. doi: 10.1016/j.ebiom.2017.09.012
25. Bauer M., Redecke V., Ellwart J.W., Scherer B., Kremer J.P., Wagner H., et al. Bacterial CpG DNA triggers activation and maturation of human CD11c(-), CD123(+) dendritic cells. J. Immunol. 2001; 166(8): 5000-7. doi: 10.4049/jimmunol.166.8.5000
26. Fu J., Liang J., Kang H., Lin J., Yu Q., Yang Q. Effects of different CpG oligodeoxynucleotides with inactivated avian H5N1 influenza virus on mucosal immunity of chickens. Poult. Sci. 2013; 92(11): 2866-75. doi:10.3382/ps.2013-03205
27. Hanagata N. CpG oligodeoxynucleotide nanomedicines for the prophylaxis or treatment of cancers, infectious diseases, and allergies. Int. J. Nanomedicine. 2017; 12: 515-31. doi: 10.2147/IJN.S114477
28. Schwendener R.A. Liposomes as vaccine delivery systems: a review of the recent advances. Ther. Adv. Vaccines. 2014; 2(6): 159-82. doi: 10.1177/2051013614541440
29. Moser C., Muller M., Kaeser M.D., Weydemann U., Amacker M. Influenza virosomes as vaccine adjuvant and carrier system. Expert Rev. Vaccines. 2013; 12(7): 779-91. doi: 10.1586/14760584.2013.811195
30. Gasparini R., Amicizia D., Lai P.L., Rossi S., Panatto D. Effectiveness of adjuvanted seasonal influenza vaccines (Inflexal® V and Fluad®) in preventing hospitalization for influenza and pneumonia in the elderly: a matched case-control study. Hum. Vaccin. Immunother. 2013; 9(1): 144-52. doi: 10.4161/hv.22231
31. Herzog C., Hartmann K., Künzi V., Kürsteiner O., Mischler R., LazarH., et al. Eleven years of Inflexal® V - a virosomal adjuvanted influenza vaccine. Vaccine. 2009; 27(33): 4381-7. doi: 10.1016/j.vaccine.2009.05.029
32. Селькова Е.П., Гренкова Т.А., Алешкин В.А., Гудова Н.В., Лыткина И.Н., Михайлова Е.В. и др. Изучение иммуногенности, эффективности и переносимости отечественной вакцины «Ультрикс®» среди лиц повышенного риска инфицирования и заболеваемости гриппом и острыми респираторными вирусными инфекциями. Эпидемиология и инфекционные болезни. Актуальные вопросы. 2016; (1): 59-66.
33. Петров Р.В., Хаитов Р.М. Иммуногены и вакцины нового поколения. M.: ГЭОТАР-Медиа; 2011.
34. Романенко В.В., Осипова И.В., Лиознов Д.А., Марцевич С.Ю., Анкудинова А.В., Чебыкина Т.В. Результаты клинического исследования по оценке безопасности и эффективности полимер-субъединичной адъювантной гриппозной вакцины при сочетанном применении иммуномодулятора у лиц 60 лет и старше. Эпидемиология и вакцинопрофилактика. 2016; 15(5): 63-71.
35. Киселев О.И., Дюков М.И. Иммунологический адъювант на основе наночастиц для вакцин против высокопатогенных штаммов вируса гриппа. Патент РФ № 2529959; 2014.
36. Никифорова А.Н., Исакова-Сивак И.Н., Ерофеева М.К., Фельдблюм И.В., Руденко Л.Г. Результаты изучения безопасности и иммуногенности отечественной субъединичной адъювантной вакцины Совигрипп у добровольцев 18-60 лет. Эпидемиология и вакцинопрофилактика. 2014; (2): 72-8.
37. Lövgren-Bengtsson K., Morein B., Osterhaus A.D. ISCOM technology-based Matrix M™ adjuvant: success in future vaccines relies on formulation. Expert. Rev. Vaccines. 2011; 10(4): 401-3. doi: 10.1586/erv.11.25
38. Sun H.X., Xie Y., Ye Y.P. ISCOMs and ISCOMATRIX. Vaccine. 2009; 27(33): 4388-401. doi: 10.1016/j.vaccine.2009.05.032
39. Красильников И.В., Ленева И.А., Михайлова Н.А., Доронин А.Н., Бражкин А.С. Иммунобиологические свойства экспериментальных инактивированных гриппозных вакцин, содержащих корпускулярные адъюванты. Медицинский алфавит. 2016; 2(16): 30-5
40. Cox R.J., Pedersen G., Madhun A.S., Svindland S., Saevik M., Breakwell L., et al. Evaluation of a virosomal H5N1 vaccine formulated with Matrix M™ adjuvant in a phase I clinical trial. Vaccine. 2011; 29(45): 8049-59. doi: 10.1016/j.vaccine.2011.08.042
41. Семакова А.П., Микшис Н.И. Адъювантные технологии в создании современных вакцин. Проблемы особо опасных инфекций. 2016; (2): 28-35. doi: 10.21055/0370-1069-2016-2-28-35
42. Petrovsky N., Cooper P.D. Carbohydrate-based immune adjuvants. Expert Rev. Vaccines. 2011; 10(4): 523-37. doi: 10.1586/erv.11.30
43. Petrovsky N., Cooper P. Advax™, a novel microcrystalline polysaccharide particle engineered from delta inulin, provides robust adjuvant potency together with tolerability and safety. Vaccine. 2015; 33(44): 5920-6. doi: 10.1016/j.vaccine.2015.09.030
44. Silva D., Cooper P.D., Petrovsky N. Inulin-derived adjuvants efficiently promote both Th1 and Th2 immuneresponses. Immunol. Cell Biol. 2004; 82(6), 611-6. doi: 10.1111/j.1440-1711.2004.01290.x
45. Gordon D., Kelley P., Heinzel S., Cooper P., Petrovsky N. Immunogenicity and safety of Advax™, a novel polysaccharide adjuvant based on delta inulin, when formulated with hepatitis B surface antigen; a randomized controlled Phase I study. Vaccine. 2014; 32(48), 6469-77. doi: 10.1016/j.vaccine.2014.09.034
46. Khalili I., Ghadimipour S., Sadigh Eteghad S., Fathi Najafi M., Ebrahimi M.M., Godsian N., et al. Evaluation of immune response against inactivated avian influenza (H9N2) vaccine, by using chitosan nanoparticles. Jundishapur J. Microbiol. 2015; 8(12): e27035. doi: 10.5812/jjm.27035
47. Spinner J., Oberoi H., Yorgensen Y., Poirier D.S., Burkhart D.J., Plante M., et al. Methylglycol chitosan and a synthetic TLR4 agonist enhance immune responses to influenza vaccine administered sublingually. Vaccine. 2015; 33(43): 5845-53. doi: 10.1016/j.vaccine.2015.08.086
48. Гендон Ю.З., Маркушин С.Г., Васильев Ю.М., Акопова И.И., Кривцов Г.Г. Повышение иммуногенности инактивированной вакцины из штамма вируса гриппа А/Калифорния/7/09 (H1N1) при использовании в качестве адъюванта хитозана и анализ антигенной специфичности этого штамма вируса гриппа. Вопросы вирусологии. 2012; 57(1): 28-33
49. Chang H., Li X., Teng Y., Liang Y., Peng B., Fang F., et al. Comparison of adjuvant efficacy of chitosan and aluminum hydroxide for intraperitoneally administered inactivated influenza H5N1 vaccine. DNA Cell Biol. 2010; 29(9): 563-8. doi: 10.1089/dna.2009.0977
50. Макаренкова И.Д., Логунов Д.Ю., Тухватулин А.И., Семенова И.Б., Звягинцева Т.Н., Горбач В.И. и др. Сульфатированные полисахариды бурых водорослей - лиганды толл-подобных рецепторов. Биомедицинская химия. 2012; 58(3): 318-25. doi: 10.18097/pbmc20125803318
51. Coffman R.L., Sher A., Seder R.A. Vaccine adjuvants: putting innate immunity to work. Immunity. 2010; 33(4): 492-503. doi: 10.1016/j.immuni.2010.10.002
52. Reed S.G., Orr M.T., Fox C.B. Key roles of adjuvants in modern vaccines. Nat. Med. 2013; 19: 1597-608. doi: 10.1038/nm.3409
53. Lin C.C., Pan I.H., Li Y.R., Pan Y.G., Lin M.K., Lu Y.H., et al. The adjuvant effects of high-molecule-weight polysaccharides purified from Antrodia cinnamomea on dendritic cell function and DNA vaccines. PLoS One. 2015; 10(2): e0116191. doi: 10.1371/journal.pone.0116191
54. Zhang W., Oda T., Yu Q., Jin J.O. Fucoidan from Macrocystis pyrifera has powerful immune-modulatory effects compared to three other fucoidans. Mar. Drugs. 2015; 13(3): 1084-104. doi: 10.3390/md13031084
55. Jin J.O., Zhang W., Du J.Y., Wong K.W., Oda T., Yu Q. Fucoidan can function as an adjuvant in vivo to enhance dendritic cell maturation and function and promote antigen-specific T cell immune responses. PLoS One. 2014; 9(6): e99396. doi: 10.1371/journal.pone.0099396
56. Hayashi K., Lee J.B., Nakano T., Hayashi T. Anti-influenza A virus characteristics of a fucoidan from sporophyll of Undaria pinnatifida in mice with normal and compromised immunity. Microbes Infect. 2013; 15(4): 302-9. doi: 10.1016/j.micinf.2012.12.004
57. Synytsya A., Bleha R., Synytsya A., Pohl R., Hayashi K., Yoshinaga K., et al. Mekabu fucoidan: structural complexity and defensive effects against avian influenza A viruses. Carbohydr. Polym. 2014; 111: 633-44. doi: 10.1016/j.carbpol.2014.05.032
58. Song L., Chen X., Liu X., Zhang F., Hu L., Yue Y., et al. Characterization and comparison of the structural features, immune-modulatory and anti-avian influenza virus activities conferred by three algal sulfated polysaccharides. Mar. Drugs. 2016; 14(1): 4. doi: 10.3390/md14010004
59. Кузнецова Т.А., Степанова Л.А., Ермакова С.П. Повышение иммуногенности инактивированного вируса гриппа А/калифорния/7/09 (H1N1) при использовании в качестве адъюванта фукоидана из бурой водоросли Fucus evanescens. Здоровье. Медицинская экология. Наука. 2017; (3): 57-9
60. Negishi H., Mori M., Mori H., Yamori Y. Supplementation of elderly Japanese men and women with fucoidan from seaweed increases immune responses to seasonal influenza vaccination. J. Nutr. 2013; 143(11): 1794-8. doi: 10.3945/jn.113.179036
61. Chen L.M., Liu P.Y., Chen Y.A., Tseng H.Y., Shen P.C., Hwang P.A., et al. Oligo-Fucoidan prevents IL-6 and CCL2 production and cooperates with p53 to suppress ATM signaling and tumor progression. Sci. Rep. 2017; 7(1): 11864. doi: 10.1038/s41598-017-12111-1
62. Кузнецова Т.А., Иванушко Л.А., Персиянова Е.В., Шутикова А.Л., Ермакова С.П., Хотимченко М.Ю. и др. Оценка адъювантных эффектов фукоидана из бурой водоросли Fucus evanescens и его структурных аналогов для усиления эффективности вакцин. Биомедицинская химия. 2017; 63(6): 553-8. doi: 10.18097/PBMC20176306553
63. Oyewumi M.O., Kumar A., Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev. Vaccines. 2010; 9(9): 1095-107. doi: 10.1586/erv.10.89
Problems of Virology. 2019; 64: 5-11
ADJUVANTS OF INFLUENZA VACCINES: NEW POSSIBILITIES OF USING SULPHATED POLYSACCHARIDES FROM MARINE BROWN ALGAE
Kuznetsova T. A., Persiyanova E. V., Zaporozhets T. S., Besednova N. N.
https://doi.org/10.18821/0507-4088-2019-64-1-5-11Abstract
References
1. Gendon Yu.Z., Vasil'ev Yu.M. Problemy profilaktiki grippa s pomoshch'yu vaktsin. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2011; (4): 116-24.
2. Gendon Yu.Z. Problemy profilaktiki grippa u beremennykh zhenshchin i novorozhdennykh detei. Voprosy virusologii. 2009; 54(4): 4-10.
3. Vasil'ev Yu.M. Napravleniya sovershenstvovaniya vaktsin protiv grippa. Vrach. 2014; (8): 12-4.
4. Tsybalova L.M., Kiselev O.I. Universal'nye vaktsiny protiv grippa. Razrabotki, perspektivy ispol'zovaniya. Voprosy virusologii. 2012; 57(1): 9-14.
5. Kiselev O.I. Progress v sozdanii pandemicheskikh protivogrippoznykh vaktsin i tekhnologii ikh proizvodstva. Biotekhnologiya. 2010; (2): 8-24.
6. Atmar R.L, Keitel W.A. Adjuvants for pandemic influenza vaccines. Curr. Top. Microbiol. Immunol. 2009; 333: 323-44. doi: 10.1007/978-3-540-92165-3_16
7. Glenny A.T., Buttle G.A.H., Stevens M.F. Rate of disappearance of diphtheria toxoid injected into rabbits and guinea pigs: toxoid precipitated with Alum. J. Pathol. Bacteriol. 1931; 34(2): 267-75. doi: 10.1002/path.1700340214
8. Ghimire T.R. The mechanisms of action of vaccines containing aluminum adjuvants: an in vitro vs in vivo paradigm. SpringerPlus. 2015; 4: 181. doi: 10.1186/s40064-015-0972-0
9. Lukiw W.J., Bazan N.G. Neuroinflammatory signaling upregulation in Alzheimer’s disease. Neurochem. Res. 2000; 25(9-10): 1173-84.
10. Cohly H.H., Panja A. Immunological findings in autism. Int. Rev. Neurobiol. 2005; 71: 317-41.
11. Exley C., Mamutse G., Korchazhkina O., Pye E., Strekopytov S., Polwart A., et al. Elevated urinary excretion of aluminium and iron in multiple sclerosis. Mult. Scler. 2006; 12(5): 533-40. doi: 10.1177/1352458506071323
12. Vargas D.L., Nascimbene C., Krishnan C., Zimmerman A.W., Pardo C.A. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann. Neurol. 2005; 57(1): 67-81. doi: 10.1002/ana.20315
13. Vera-Lastra O., Medina G., del Cruz-Dominguez M.P., Jara L.J., Shoenfeld Y. Autoimmune/inflammatory syndrome induced by adjuvants (Shoenfeld’s syndrome): clinical and immunological spectrum. Expert Rev. Clin. Immunol. 2013; 9(4): 361-73. doi: 10.1586/eci.13.2
14. O’Hagan D.T., Ott G.S., De Gregorio E., Seubert A. The mechanism of action of MF59 - an innately attractive adjuvant formulation. Vaccine. 2012; 30(29): 4341-8. doi: 10.1016/j.vaccine.2011.09.061
15. Roman F., Vaman T., Kafeja F., Hanon E., Van Damme P. AS03(A) - adjuvanted influenza A (H1N1) 2009 vaccine for adults up to 85 years of age. Clin. Infect. Dis. 2010; 51(6): 668-77. doi: 10.1086/655830
16. Wack A., Baudner B., Hilbert A., Manini I., Nuti S., Tavarini S., et al. Combination adjuvants for the induction of potent, long-lasting antibody and T-cell responses to influenza vaccine in mice. Vaccine. 2008; 26(4): 552-61. doi: 10.1016/j.vaccine.2007.11.054
17. Yin J., Khandaker G., Rashid H., Heron L., Ridda I., Booy R. Immunogenicity and safety of pandemic influenza A(H1N1) 2009 vaccine: systematic review and meta-analysis. Influenza Other Respir. Viruses. 2011; 5(5): 299-305. doi: 10.1111/j.1750-2659.2011.00229.x
18. Hwang S.M., Kim H.L., Min K.W., Kim M., Lim J.S., Choi J.M., et al. Comparison of the adverse events associated with MF59-adjuvanted and non-adjuvanted H1N1 vaccines in healthy young male Korean soldiers. Jpn. J. Infect. Dis. 2012; 65(3): 193-7.
19. Beyer W., Nauta J., Palache A., Giezeman K., Osterhaus A. Immunogenicity and safety of inactivated influenza vaccines in primed populations: a systematic literature review and metaanalysis. Vaccine. 2011; 29(34): 5785-92. doi: 10.1016/j.vaccine.2011.05.040
20. Cooper C.L., Davis H.L., Morris M.L., Efler S.M., Krieg A.M., Li Y., et al. Safety and immunogenicity of CPG 7909 injection as an adjuvant to Fluarix influenza vaccine. Vaccine. 2004; 22(23-24): 3136-43. doi: 10.1016/j.vaccine.2004.01.058
21. Iho S., Maeyama J., Suzuki F. CpG oligodeoxynucleotides as mucosal adjuvants. Hum. Vaccin. Immunother. 2015; 11(3): 755-60. doi: 10.1080/21645515.2014.1004033
22. Gursel M., Gursel I. Development of CpG ODN based vaccine adjuvant formulations. Methods Mol. Biol. 2016; 1404: 289-98. doi: 10.1007/978-1-4939-3389-1_20
23. Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat. Immunol. 2010; 11(5): 373-84. doi:10.1038/ni.1863
24. Tanegashima K., Takahashi R., Nuriya H., Iwase R., Naruse N., Tsuji K., et al. CXCL14 acts as a specific carrier of CpG DNA into dendritic cells and activates Toll-like receptor 9-mediated adaptive immunity. EBioMedicine. 2017; 24: 247-56. doi: 10.1016/j.ebiom.2017.09.012
25. Bauer M., Redecke V., Ellwart J.W., Scherer B., Kremer J.P., Wagner H., et al. Bacterial CpG DNA triggers activation and maturation of human CD11c(-), CD123(+) dendritic cells. J. Immunol. 2001; 166(8): 5000-7. doi: 10.4049/jimmunol.166.8.5000
26. Fu J., Liang J., Kang H., Lin J., Yu Q., Yang Q. Effects of different CpG oligodeoxynucleotides with inactivated avian H5N1 influenza virus on mucosal immunity of chickens. Poult. Sci. 2013; 92(11): 2866-75. doi:10.3382/ps.2013-03205
27. Hanagata N. CpG oligodeoxynucleotide nanomedicines for the prophylaxis or treatment of cancers, infectious diseases, and allergies. Int. J. Nanomedicine. 2017; 12: 515-31. doi: 10.2147/IJN.S114477
28. Schwendener R.A. Liposomes as vaccine delivery systems: a review of the recent advances. Ther. Adv. Vaccines. 2014; 2(6): 159-82. doi: 10.1177/2051013614541440
29. Moser C., Muller M., Kaeser M.D., Weydemann U., Amacker M. Influenza virosomes as vaccine adjuvant and carrier system. Expert Rev. Vaccines. 2013; 12(7): 779-91. doi: 10.1586/14760584.2013.811195
30. Gasparini R., Amicizia D., Lai P.L., Rossi S., Panatto D. Effectiveness of adjuvanted seasonal influenza vaccines (Inflexal® V and Fluad®) in preventing hospitalization for influenza and pneumonia in the elderly: a matched case-control study. Hum. Vaccin. Immunother. 2013; 9(1): 144-52. doi: 10.4161/hv.22231
31. Herzog C., Hartmann K., Künzi V., Kürsteiner O., Mischler R., LazarH., et al. Eleven years of Inflexal® V - a virosomal adjuvanted influenza vaccine. Vaccine. 2009; 27(33): 4381-7. doi: 10.1016/j.vaccine.2009.05.029
32. Sel'kova E.P., Grenkova T.A., Aleshkin V.A., Gudova N.V., Lytkina I.N., Mikhailova E.V. i dr. Izuchenie immunogennosti, effektivnosti i perenosimosti otechestvennoi vaktsiny «Ul'triks®» sredi lits povyshennogo riska infitsirovaniya i zabolevaemosti grippom i ostrymi respiratornymi virusnymi infektsiyami. Epidemiologiya i infektsionnye bolezni. Aktual'nye voprosy. 2016; (1): 59-66.
33. Petrov R.V., Khaitov R.M. Immunogeny i vaktsiny novogo pokoleniya. M.: GEOTAR-Media; 2011.
34. Romanenko V.V., Osipova I.V., Lioznov D.A., Martsevich S.Yu., Ankudinova A.V., Chebykina T.V. Rezul'taty klinicheskogo issledovaniya po otsenke bezopasnosti i effektivnosti polimer-sub\"edinichnoi ad\"yuvantnoi grippoznoi vaktsiny pri sochetannom primenenii immunomodulyatora u lits 60 let i starshe. Epidemiologiya i vaktsinoprofilaktika. 2016; 15(5): 63-71.
35. Kiselev O.I., Dyukov M.I. Immunologicheskii ad\"yuvant na osnove nanochastits dlya vaktsin protiv vysokopatogennykh shtammov virusa grippa. Patent RF № 2529959; 2014.
36. Nikiforova A.N., Isakova-Sivak I.N., Erofeeva M.K., Fel'dblyum I.V., Rudenko L.G. Rezul'taty izucheniya bezopasnosti i immunogennosti otechestvennoi sub\"edinichnoi ad\"yuvantnoi vaktsiny Sovigripp u dobrovol'tsev 18-60 let. Epidemiologiya i vaktsinoprofilaktika. 2014; (2): 72-8.
37. Lövgren-Bengtsson K., Morein B., Osterhaus A.D. ISCOM technology-based Matrix M™ adjuvant: success in future vaccines relies on formulation. Expert. Rev. Vaccines. 2011; 10(4): 401-3. doi: 10.1586/erv.11.25
38. Sun H.X., Xie Y., Ye Y.P. ISCOMs and ISCOMATRIX. Vaccine. 2009; 27(33): 4388-401. doi: 10.1016/j.vaccine.2009.05.032
39. Krasil'nikov I.V., Leneva I.A., Mikhailova N.A., Doronin A.N., Brazhkin A.S. Immunobiologicheskie svoistva eksperimental'nykh inaktivirovannykh grippoznykh vaktsin, soderzhashchikh korpuskulyarnye ad\"yuvanty. Meditsinskii alfavit. 2016; 2(16): 30-5
40. Cox R.J., Pedersen G., Madhun A.S., Svindland S., Saevik M., Breakwell L., et al. Evaluation of a virosomal H5N1 vaccine formulated with Matrix M™ adjuvant in a phase I clinical trial. Vaccine. 2011; 29(45): 8049-59. doi: 10.1016/j.vaccine.2011.08.042
41. Semakova A.P., Mikshis N.I. Ad\"yuvantnye tekhnologii v sozdanii sovremennykh vaktsin. Problemy osobo opasnykh infektsii. 2016; (2): 28-35. doi: 10.21055/0370-1069-2016-2-28-35
42. Petrovsky N., Cooper P.D. Carbohydrate-based immune adjuvants. Expert Rev. Vaccines. 2011; 10(4): 523-37. doi: 10.1586/erv.11.30
43. Petrovsky N., Cooper P. Advax™, a novel microcrystalline polysaccharide particle engineered from delta inulin, provides robust adjuvant potency together with tolerability and safety. Vaccine. 2015; 33(44): 5920-6. doi: 10.1016/j.vaccine.2015.09.030
44. Silva D., Cooper P.D., Petrovsky N. Inulin-derived adjuvants efficiently promote both Th1 and Th2 immuneresponses. Immunol. Cell Biol. 2004; 82(6), 611-6. doi: 10.1111/j.1440-1711.2004.01290.x
45. Gordon D., Kelley P., Heinzel S., Cooper P., Petrovsky N. Immunogenicity and safety of Advax™, a novel polysaccharide adjuvant based on delta inulin, when formulated with hepatitis B surface antigen; a randomized controlled Phase I study. Vaccine. 2014; 32(48), 6469-77. doi: 10.1016/j.vaccine.2014.09.034
46. Khalili I., Ghadimipour S., Sadigh Eteghad S., Fathi Najafi M., Ebrahimi M.M., Godsian N., et al. Evaluation of immune response against inactivated avian influenza (H9N2) vaccine, by using chitosan nanoparticles. Jundishapur J. Microbiol. 2015; 8(12): e27035. doi: 10.5812/jjm.27035
47. Spinner J., Oberoi H., Yorgensen Y., Poirier D.S., Burkhart D.J., Plante M., et al. Methylglycol chitosan and a synthetic TLR4 agonist enhance immune responses to influenza vaccine administered sublingually. Vaccine. 2015; 33(43): 5845-53. doi: 10.1016/j.vaccine.2015.08.086
48. Gendon Yu.Z., Markushin S.G., Vasil'ev Yu.M., Akopova I.I., Krivtsov G.G. Povyshenie immunogennosti inaktivirovannoi vaktsiny iz shtamma virusa grippa A/Kaliforniya/7/09 (H1N1) pri ispol'zovanii v kachestve ad\"yuvanta khitozana i analiz antigennoi spetsifichnosti etogo shtamma virusa grippa. Voprosy virusologii. 2012; 57(1): 28-33
49. Chang H., Li X., Teng Y., Liang Y., Peng B., Fang F., et al. Comparison of adjuvant efficacy of chitosan and aluminum hydroxide for intraperitoneally administered inactivated influenza H5N1 vaccine. DNA Cell Biol. 2010; 29(9): 563-8. doi: 10.1089/dna.2009.0977
50. Makarenkova I.D., Logunov D.Yu., Tukhvatulin A.I., Semenova I.B., Zvyagintseva T.N., Gorbach V.I. i dr. Sul'fatirovannye polisakharidy burykh vodoroslei - ligandy toll-podobnykh retseptorov. Biomeditsinskaya khimiya. 2012; 58(3): 318-25. doi: 10.18097/pbmc20125803318
51. Coffman R.L., Sher A., Seder R.A. Vaccine adjuvants: putting innate immunity to work. Immunity. 2010; 33(4): 492-503. doi: 10.1016/j.immuni.2010.10.002
52. Reed S.G., Orr M.T., Fox C.B. Key roles of adjuvants in modern vaccines. Nat. Med. 2013; 19: 1597-608. doi: 10.1038/nm.3409
53. Lin C.C., Pan I.H., Li Y.R., Pan Y.G., Lin M.K., Lu Y.H., et al. The adjuvant effects of high-molecule-weight polysaccharides purified from Antrodia cinnamomea on dendritic cell function and DNA vaccines. PLoS One. 2015; 10(2): e0116191. doi: 10.1371/journal.pone.0116191
54. Zhang W., Oda T., Yu Q., Jin J.O. Fucoidan from Macrocystis pyrifera has powerful immune-modulatory effects compared to three other fucoidans. Mar. Drugs. 2015; 13(3): 1084-104. doi: 10.3390/md13031084
55. Jin J.O., Zhang W., Du J.Y., Wong K.W., Oda T., Yu Q. Fucoidan can function as an adjuvant in vivo to enhance dendritic cell maturation and function and promote antigen-specific T cell immune responses. PLoS One. 2014; 9(6): e99396. doi: 10.1371/journal.pone.0099396
56. Hayashi K., Lee J.B., Nakano T., Hayashi T. Anti-influenza A virus characteristics of a fucoidan from sporophyll of Undaria pinnatifida in mice with normal and compromised immunity. Microbes Infect. 2013; 15(4): 302-9. doi: 10.1016/j.micinf.2012.12.004
57. Synytsya A., Bleha R., Synytsya A., Pohl R., Hayashi K., Yoshinaga K., et al. Mekabu fucoidan: structural complexity and defensive effects against avian influenza A viruses. Carbohydr. Polym. 2014; 111: 633-44. doi: 10.1016/j.carbpol.2014.05.032
58. Song L., Chen X., Liu X., Zhang F., Hu L., Yue Y., et al. Characterization and comparison of the structural features, immune-modulatory and anti-avian influenza virus activities conferred by three algal sulfated polysaccharides. Mar. Drugs. 2016; 14(1): 4. doi: 10.3390/md14010004
59. Kuznetsova T.A., Stepanova L.A., Ermakova S.P. Povyshenie immunogennosti inaktivirovannogo virusa grippa A/kaliforniya/7/09 (H1N1) pri ispol'zovanii v kachestve ad\"yuvanta fukoidana iz buroi vodorosli Fucus evanescens. Zdorov'e. Meditsinskaya ekologiya. Nauka. 2017; (3): 57-9
60. Negishi H., Mori M., Mori H., Yamori Y. Supplementation of elderly Japanese men and women with fucoidan from seaweed increases immune responses to seasonal influenza vaccination. J. Nutr. 2013; 143(11): 1794-8. doi: 10.3945/jn.113.179036
61. Chen L.M., Liu P.Y., Chen Y.A., Tseng H.Y., Shen P.C., Hwang P.A., et al. Oligo-Fucoidan prevents IL-6 and CCL2 production and cooperates with p53 to suppress ATM signaling and tumor progression. Sci. Rep. 2017; 7(1): 11864. doi: 10.1038/s41598-017-12111-1
62. Kuznetsova T.A., Ivanushko L.A., Persiyanova E.V., Shutikova A.L., Ermakova S.P., Khotimchenko M.Yu. i dr. Otsenka ad\"yuvantnykh effektov fukoidana iz buroi vodorosli Fucus evanescens i ego strukturnykh analogov dlya usileniya effektivnosti vaktsin. Biomeditsinskaya khimiya. 2017; 63(6): 553-8. doi: 10.18097/PBMC20176306553
63. Oyewumi M.O., Kumar A., Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev. Vaccines. 2010; 9(9): 1095-107. doi: 10.1586/erv.10.89
События
-
Журнал «Неотложная кардиология и кардиоваскулярные риски» присоединился к Elpub >>>
6 июн 2025 | 09:45 -
К платформе Elpub присоединился «Медицинский журнал» >>>
5 июн 2025 | 09:41 -
НЭИКОН принял участие в конференции НИИ Организации здравоохранения и медицинского менеджмента >>>
30 мая 2025 | 10:32 -
Журнал «Творчество и современность» присоединился к Elpub! >>>
27 мая 2025 | 12:38 -
Журналы НЦЭСМП приняты в Scopus >>>
27 мая 2025 | 12:35