Журналов:     Статей:        

Вопросы вирусологии. 2018; 63: 68-76

КРОСС-ПРОТЕКТИВНЫЕ СВОЙСТВА ПРОТИВОГРИППОЗНОЙ ВАКЦИНЫ НА ОСНОВЕ РЕКОМБИНАНТНОГО БЕЛКА HBC4M2E

Цыбалова Л. М., Степанова Л. А., Шуклина М. А., Петров С. В., Ковалёва А. А., Потапчук М. В., Шалджян А. А., Забродская Я. А., Егоров В. В.

https://doi.org/10.18821/0507-4088-2018-63-2-68-76

Аннотация

Одной из актуальнейших задач в области профилактики гриппа и предотвращения пандемий этой инфекции является создание вакцин, индуцирующих иммунный ответ против всех вирусов гриппа А, представляющих угрозу для человека. Разработка таких кросс-протективных вакцин ведется в мире более 10 лет. Несколько препаратов находятся в стадии клинических исследований. Нами был изучен рекомбинантный белок HBc4M2e, состоящий из 4 тандемно соединённых копий высококонсервативного наружного домена белка М2 вируса гриппа А, генетически слитого с белком-носителем - коровым антигеном вируса гепатита В. В качестве адъюванта в кандидатной вакцине использовался коммерческий препарат Деринат. Доклинические исследования на лабораторных животных (мыши, хорьки) показали, что иммунизация приводит к формированию высокого уровня специфических иммуноглобулинов в крови и бронхоальвеолярных лаважах. При этом вырабатываются иммуноглобулины субтипа IgG2a, наиболее важного медиатора антителозависимой цитотоксичности. Вакцина стимулирует пролиферацию Т-лимфоцитов и образование CD4+ и CD8+ Т-клеток, синтезирующих гамма-интерферон. При экспериментальном заражении летальными дозами (5 LD50) вирусов гриппа А субтипов H1N1, H2N2, H3N2, H1N1pdm09 иммунизированные животные переносили инфекцию в лёгкой форме и практически полностью были защищены от гибели (90-100%). Репликация вируса в лёгких иммунизированных мышей снижалась на 1,8 - 4,8 log10. Высокая иммуногенность вакцины и снижение тяжести экспериментальной инфекции продемонстрировано также на хорьках. Разработанная рекомбинантная вакцина Унифлю обладает высокой специфической активностью и выраженной кросс-протективностью. При условии успешных клинических исследований она может рассматриваться как предпандемическая.
Список литературы

1. Wood J.M. Developing vaccines against pandemic influenza. Phil. Trans. R. Soc. Lond. B Biol. Sci. 2001; 356(1416): 1953-60.

2. Neirynck S., Deroot I., Saelans X., Vanlandschoot P., Jou W., Fiers W. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat. Med. 1999; 5(10): 1157-63.

3. Fiers W., De Filette M., El Bakkouri K., Schepens B., Roose K., Schotsaert M., et al. M2e-based universal influenza A vaccine. Vaccine. 2009; 27(45): 6280-3.

4. Steel J., Lowen A., Wang T.T., Yondola M., Gao Q., Haye K., et al. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. MBio. 2010; 1(1): е00018-10.

5. Hessel A., Savidis-Dacho H., Coulibaly S., Portsmouth D., Kreil T.R., Crowe B.A., et al. MVA vectors expressing conserved influenza proteins protect mice against lethal challenge with H5N1, H9N2 and H7N1 viruses. PLoS One. 2014; 9(2): e88340.

6. Dehg L., Ibanes L.I., Van den Bossche V., Roose K., Youssef S.A., de Bruin A. et al. Protection against Influenza A Virus Challenge with M2e-Displaying Filamentous Escherichia coli Phages. PLoS One. 2015; 10(5): e0126650.

7. WHO. Global Vaccine Action Plan. Available at: http://www.who.int/immunization/global_vaccine_action_plan/en/

8. Jegerlehner A., Schmitz N., Storni T., Bachmann M.F. Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity. J. Immunol. 2004; 172(9): 5598-605.

9. El Bakkouri K., Descamps F., De Fillete M., Smet A., Festjens E., Birkett A. et al. Universal vaccine based on ectodomain of matrix protein 2 of influenza A: Fc receptors and alveolar macrophages mediate protection. J. Immunol. 2011; 186(2): 1022-31.

10. Andersson A.M., Hakansson K.O., Jensen B.A., Christensen D., Andersen P., Thomsen A. R., et al. Increased immunogenicity and protective efficacy of influenza M2e fused to a tetramerizing protein. PLoS One. 2012; 7(10): e46395.

11. Kim M.C., Lee Y.N., Ko E.J. Supplementation of influenza split vaccines with conserved M2 ectodomains overcomes strain specificity and provides long-term cross protection. Mol. Ther. 2014; 22(7): 1364-74.

12. Ravin N.V., Blokhina E.A., Kuprianov V.V., Stepanova L.A., Shaldjan A.A., Kovaleva A.A., et al. Development of a candidate influenza vaccine based on virus-like particles displaying influenza M2e peptide into the immunodominant loop region of hepatitis B core antigen: Insertion of multiple copies of M2e increases immunogenicity and protective efficiency. Vaccine. 2015; 33(29): 3392-7.

13. Tsybalova L.M., Stepanova L.A., Kuprianov V.V., Blokhina E.A., Potapchuk M.V., Korotkov A.V., et al. Development of a candidate influenza vaccine based on virus-like particles displaying influenza M2e peptide into the immunodominant region of hepatitis B core antigen: Broad protective efficacy of particles carrying four copies of M2e. Vaccine. 2015; 33(29): 3398-406.

14. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227(5259): 680-5.

15. Malen H., Berven F.S., Fladmark K.E., Wiker H.G. Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics. 2007; 7(10): 1702-18.

16. Stepanova L.A., Kotlyarov R.Y., Kovaleva A.A., Potapchuk M.V., Korotkov A.V., Sergeeva M.V., et al. Protection against multiple influenza A virus strains induced by candidate recombinant vaccine based on heterologous M2e peptides linked to flagellin. PLoS One. 2015; 10(3): e0119520.

17. Филатов О.Ю., Кашаева О.В., Бугримов Д.Ю., Климович А.А. Морфофизиологические принципы иммунологического действия ДНК эукариот. Российский иммунологический журнал. 2013; 7(4): 385-90.

18. Бугримов Д.Ю., Лядов Д.В., Красноруцкая О.Н., Климович А.А. Оценка уровня экспрессии TLR-9 рецепторов при введении препарата Деринат. Вестник новых медицинских технологий. 2012; 19(2): 288-9.

19. De Filette M., Jou W.M., Birkett A., Lyons K., Schultz B., Tonkyro A., et al. Universal influenza A vaccine: optimization of M2-based constructs. Virology. 2005; 337(1): 149-61.

20. Mozdzanovska K., Zharikova D., Cudic M., Otvos l., Gerhard W. Roles of adjuvantand route of vaccination in antibody response and protection engendered by a synthetic matrix protein 2-based influenza A virus vaccine in the mouse. Virol. J. 2007; 4: 118-29.

21. Schmiz N., Beerli R., Bauer M., Jegerlehner A., Dietmeier K., Maudrich M., et al. Universal vaccine against influenza virus: linking TLR signaling to anti-viral protection. Eur. J. Immunol. 2012; 42(4): 863-9.

22. Herzenberg L.A., Tokuhisa T., Park D.R. Epitope-specific regulation. II. A bistable, Igh-restricted regulatory mechanism central to immunologic memory. J. Exp. Med. 1982; 155(6): 1741-53.

23. Spellberg В. Type 1/Type 2 Immunity in Infectious Diseases. Clin. Infect. Dis. 2000; 32(1): 76-102.

Problems of Virology. 2018; 63: 68-76

CROSS-PROTECTIVE PROPERTIES OF AN INFLUENZA VACCINE BASED ON HBC4M2E RECOMBINANT PROTEIN

Tsybalova L. M., Stepanova L. A., Shuklina M. A., Petrov S. V., Kovaleva A. A., Potapchuk M. V., Shaldzhan A. A., Zabrodskaya Y. A., Egorov V. V.

https://doi.org/10.18821/0507-4088-2018-63-2-68-76

Abstract

One of the main problems in the area of influenza prophylaxis and pandemic prevention is the development of cross-reactive vaccines, i.e. vaccines directed against all subtypes of human influenza viruses. Such vaccines are being developed in many countries for more than 10 years. A number of vaccines are presently undergoing clinical trials. We created Uniflu candidate vaccine based on recombinant HBc4M2e protein consisting of 4 tandem-connected copies of the highly conserved ectodomain of M2 protein of the influenza A virus. These 4 copies were genetically fused to the carrier protein, namely hepatitis B core antigen. Commercially available Derinat was used as adjuvant in the candidate vaccine. Preclinical studies on laboratory animals (mice, ferrets) demonstrated that immunization with Uniflu leads to significantly higher level of specific immunoglobulins in the blood and bronchoalveolar lavages. Moreover, it produces immunoglobulins belonging to subtype IgG2a that is the most important mediator of antibody-dependent cytotoxicity. The vaccine under review stimulates the proliferation of T-lymphocytes, as well as the formation of CD4+ and CD8+ T-cells synthesizing ɣ-IFN. When infected with the lethal doses (5 LD50) of influenza A viruses of the subtypes H1N1, H2N2, H3N2, and H1N1pdm09, immunized animals typically developed mild form of illness. This kept them alive in 90-100% of cases, which demonstrated almost complete protection from death. Replication of the virus in the lungs of immunized mice was reduced by 1.8-4.8 log10. High immunogenicity of the vaccine, and reduced clinical symptoms following experimental infection, were demonstrated in ferrets as well. The developed recombinant vaccine Uniflu has high specific activity and cross-protection. Uniflu can be proposed as pre-pandemic vaccine, provided that it passes clinical trials.
References

1. Wood J.M. Developing vaccines against pandemic influenza. Phil. Trans. R. Soc. Lond. B Biol. Sci. 2001; 356(1416): 1953-60.

2. Neirynck S., Deroot I., Saelans X., Vanlandschoot P., Jou W., Fiers W. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat. Med. 1999; 5(10): 1157-63.

3. Fiers W., De Filette M., El Bakkouri K., Schepens B., Roose K., Schotsaert M., et al. M2e-based universal influenza A vaccine. Vaccine. 2009; 27(45): 6280-3.

4. Steel J., Lowen A., Wang T.T., Yondola M., Gao Q., Haye K., et al. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. MBio. 2010; 1(1): e00018-10.

5. Hessel A., Savidis-Dacho H., Coulibaly S., Portsmouth D., Kreil T.R., Crowe B.A., et al. MVA vectors expressing conserved influenza proteins protect mice against lethal challenge with H5N1, H9N2 and H7N1 viruses. PLoS One. 2014; 9(2): e88340.

6. Dehg L., Ibanes L.I., Van den Bossche V., Roose K., Youssef S.A., de Bruin A. et al. Protection against Influenza A Virus Challenge with M2e-Displaying Filamentous Escherichia coli Phages. PLoS One. 2015; 10(5): e0126650.

7. WHO. Global Vaccine Action Plan. Available at: http://www.who.int/immunization/global_vaccine_action_plan/en/

8. Jegerlehner A., Schmitz N., Storni T., Bachmann M.F. Influenza A vaccine based on the extracellular domain of M2: weak protection mediated via antibody-dependent NK cell activity. J. Immunol. 2004; 172(9): 5598-605.

9. El Bakkouri K., Descamps F., De Fillete M., Smet A., Festjens E., Birkett A. et al. Universal vaccine based on ectodomain of matrix protein 2 of influenza A: Fc receptors and alveolar macrophages mediate protection. J. Immunol. 2011; 186(2): 1022-31.

10. Andersson A.M., Hakansson K.O., Jensen B.A., Christensen D., Andersen P., Thomsen A. R., et al. Increased immunogenicity and protective efficacy of influenza M2e fused to a tetramerizing protein. PLoS One. 2012; 7(10): e46395.

11. Kim M.C., Lee Y.N., Ko E.J. Supplementation of influenza split vaccines with conserved M2 ectodomains overcomes strain specificity and provides long-term cross protection. Mol. Ther. 2014; 22(7): 1364-74.

12. Ravin N.V., Blokhina E.A., Kuprianov V.V., Stepanova L.A., Shaldjan A.A., Kovaleva A.A., et al. Development of a candidate influenza vaccine based on virus-like particles displaying influenza M2e peptide into the immunodominant loop region of hepatitis B core antigen: Insertion of multiple copies of M2e increases immunogenicity and protective efficiency. Vaccine. 2015; 33(29): 3392-7.

13. Tsybalova L.M., Stepanova L.A., Kuprianov V.V., Blokhina E.A., Potapchuk M.V., Korotkov A.V., et al. Development of a candidate influenza vaccine based on virus-like particles displaying influenza M2e peptide into the immunodominant region of hepatitis B core antigen: Broad protective efficacy of particles carrying four copies of M2e. Vaccine. 2015; 33(29): 3398-406.

14. Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227(5259): 680-5.

15. Malen H., Berven F.S., Fladmark K.E., Wiker H.G. Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics. 2007; 7(10): 1702-18.

16. Stepanova L.A., Kotlyarov R.Y., Kovaleva A.A., Potapchuk M.V., Korotkov A.V., Sergeeva M.V., et al. Protection against multiple influenza A virus strains induced by candidate recombinant vaccine based on heterologous M2e peptides linked to flagellin. PLoS One. 2015; 10(3): e0119520.

17. Filatov O.Yu., Kashaeva O.V., Bugrimov D.Yu., Klimovich A.A. Morfofiziologicheskie printsipy immunologicheskogo deistviya DNK eukariot. Rossiiskii immunologicheskii zhurnal. 2013; 7(4): 385-90.

18. Bugrimov D.Yu., Lyadov D.V., Krasnorutskaya O.N., Klimovich A.A. Otsenka urovnya ekspressii TLR-9 retseptorov pri vvedenii preparata Derinat. Vestnik novykh meditsinskikh tekhnologii. 2012; 19(2): 288-9.

19. De Filette M., Jou W.M., Birkett A., Lyons K., Schultz B., Tonkyro A., et al. Universal influenza A vaccine: optimization of M2-based constructs. Virology. 2005; 337(1): 149-61.

20. Mozdzanovska K., Zharikova D., Cudic M., Otvos l., Gerhard W. Roles of adjuvantand route of vaccination in antibody response and protection engendered by a synthetic matrix protein 2-based influenza A virus vaccine in the mouse. Virol. J. 2007; 4: 118-29.

21. Schmiz N., Beerli R., Bauer M., Jegerlehner A., Dietmeier K., Maudrich M., et al. Universal vaccine against influenza virus: linking TLR signaling to anti-viral protection. Eur. J. Immunol. 2012; 42(4): 863-9.

22. Herzenberg L.A., Tokuhisa T., Park D.R. Epitope-specific regulation. II. A bistable, Igh-restricted regulatory mechanism central to immunologic memory. J. Exp. Med. 1982; 155(6): 1741-53.

23. Spellberg V. Type 1/Type 2 Immunity in Infectious Diseases. Clin. Infect. Dis. 2000; 32(1): 76-102.