Журналов:     Статей:        

Вопросы вирусологии. 2017; 62: 162-168

ДИМЕРНЫЕ БИСБЕНЗИМИДАЗОЛЫ ПОДАВЛЯЮТ ИНФЕКЦИИ, ВЫЗВАННЫЕ ВИРУСОМ ПРОСТОГО ГЕРПЕСА И ЦИТОМЕГАЛОВИРУСОМ ЧЕЛОВЕКА, В КЛЕТОЧНЫХ КУЛЬТУРАХ

Климова Р., Момотюк Е. Д., Демидова Н. А., Чернорыж Я. Ю., Коваль В. С., Иванов А. А., Жузе А. Л., Кущ А. А.

https://doi.org/10.18821/0507-4088-2017-62-4-162-168

Аннотация

Изучена противовирусная активность новой серии АТ-специфичных флуоресцентных симметричных димерных бисбензимидазолов DBA(n) в модельных клеточных системах инфекций, вызванных вирусом простого герпеса 1-го типа (ВПГ1) и цитомегаловирусом человека (ЦМВ). В молекулах DBA(n) бисбензимидазольные фрагменты связаны олигометиленовым линкером с разным числом метиленовых групп в линкере (n = 1, 3, 5, 7, 9, 11). В отличие от синтезированной ранее серии димерных бисбензимидазолов DB(n) у серии DBA(n) концевые фрагменты молекул содержат вместо N-метилпиперазиновых групп N-диметиламинопропилкарбоксамидные группы. Соединения DBA(n) продемонстрировали существенно лучшую растворимость в воде, способность проникать через клеточную и ядерную мембрану и окрашивать ДНК в живых клетках. Данные, полученные при анализе противовирусной активности, показали, что соединения DBA(1) и DBA(7) обладают терапевтическими свойствами в отношении инфекции, вызванной ВПГ1 (ВПГ-инфекции) in vitro, причем DBA(7) полностью подавляет вирусную инфекцию. Соединение DBA(11) проявило лечебные свойства как в отношении ВПГ-инфекции, так и ЦМВ-инфекции in vitro. Кроме того, DBA(7) и DBA(1) проявили микробицидную активность. Таким образом, соединение DBA(11), проявляющее активность против двух широко распространенных вирусных инфекций, заслуживает дальнейших исследований. Высокая противовирусная активность DBA(7) во всех схемах воздействия указывает на перспективность этого соединения как основы для разработки новых препаратов против герпесвирусных инфекций.
Список литературы

1. Looker K.J., Magaret A.S., May M.T., Turner K.M., Vickerman P., Gottlieb S.L. et al. Global and Regional Estimates of Prevalent and Incident Herpes Simplex Virus Type 1 Infections in 2012. PLoS One. 2015; 10(10): e0140765.

2. James S.H., Kimberlin D.W. Neonatal herpes simplex virus infection: epidemiology and treatment. Clin. Perinatol. 2015; 42(1): 47-59.

3. Barrett M.P., Gemmell C.G., Suckling C.J. Minor groove binders as anti-infective agents. Pharmacol. Ther. 2013; 139: 12-23.

4. Wilson W. D., Nguyen B., Tanious F. A., Mathis A., Hal J.E., Stephens C.E. et al. Dications that target the DNA minor groove: compound design and preparation, DNA interactions, cellular distribution and biological activity. Curr. Med. Chem. Anticancer. Agents. 2005; 5(4): 389-408.

5. Мейхи Б. Вирусология. Методы: Пер. с англ. М.: Мир; 1988

6. Latt S.A. Optical studies of metaphase chromosome organization. Annu. Rev. Biophys. Bioeng. 1976; (5): 1-37.

7. Teng M.K., Usman N., Frederick C.A., Wang A.H. The molecular structure of the complex of Hoechst 33258 and the DNA dodecamer d(CGCGAATTCGCG). Nucleic. Acids. Res. 1988; (16): 2671.

8. Vega M.C., Saez I.G., Aymami J., Eritja R., van der Marel G.A., van Boom J.H., et al. Three-dimensional crystal structure of the A-tract DNA dodecamer d(CGCAAATTTGCG) complexed with the minor-groove-binding drug Hoechst 33258. Eur. J. Biochem. 1994; 222: 721.

9. Chiang S.Y., Welch J.J., Rauscher F.J., Beerman T.A. Effects of minor groove binding drugs on the interaction of TATA box binding protein and TFIIA with DNA. Biochemistry. 1994; (33): 7033-40.

10. Chiang S.Y., Welch J.J., Rauscher F.J., Beerman T.A. Effect of DNA-binding drugs on early growth response factor-1 and TATA box-binding protein complex formation with the herpes simplex virus latency promoter. J. Biol. Chem. 1996; 271: 23999-4004.

11. Chen A.Y., Yu C., Gatto B., Liu L.F. DNA minor groove-binding ligands: a different class of mammalian DNA topoisomerase I inhibitors. Proc. Nat. Acad. Sci. USA. 1993; 90: 8131-5.

12. Zhang X., Zhang S.C., Sun D., Hu J., Wali A., Pass H., et al. New insight into the molecular mechanisms of the biological effects of DNA minor groove binders. PLoS One. 2011; 6(10): e25822.

13. Woynarowski J.M., McHugh M., Sigmund R.D., Beerman T.A. Modulation of topoisomerase II catalytic activity by DNA minor groove binding agents distamycin, Hoechst 33258, and 4’,6-diamidine-2-phenylindole. Mol. Pharmacol. 1989; 35: 177-82.

14. Soderlind K.J., Gorodetsky B., Singh A.K., Bachur N.R., Miller G.G., Lown J.W. Bis-benzimidazole anticancer agents: targeting human tumour helicases. Anticancer. Drug Design. 1999; 14: 19-36.

15. Martin R.F., Broadhurst S., D’Abrew S., Budd R., Sephton R., Reum M., et al. Radioprotection by DNA ligands. Br. J. Cancer Suppl. 1996; 74(27): 99-101.

16. Lyubimova N.V., Coutlas P.G., Yuen K., Martin R.F. In vivo radioprotection of mouse brain endothelial cells by Hoechst 33342. Br. J. Radiol. 2001; 74: 77-82.

17. Сусова О.Ю., Иванов А.А., Моралес Руисс С.С., Лессовая Е.А., Громыко А.В., Стрельцов С.А. и др. Узкобороздочные димерные бисбензимидозолы ингибируют in vitro связывание с ДНК эукариотической ДНК топоизомеразы I. Биохимия. 2010; 75(6): 781-8

18. Cherepanova N.A., Ivanov A.A., Maltseva D.V., Minero A.S., Gromyko A.V., Streltsov S.A., et al. Dimeric bisbenzimidazoles inhibit the DNA methylation catalyzed by the murine Dnmt3a catalytic domain. J. Enzyme Inhib. Med. Chem. 2011; 26(2): 295-300.

19. Tunitskaya V.L., Mukovnya A.V., Ivanov A.A., Gromyko A.V., Ivanov A.V., Streltsov S.A., et al. Inhibition of the helicase activity of the HCV NS3 protein by symmetrical dimeric bis-benzimidazoles. Bioorg. Med. Chem. Lett. 2011; 21(18): 5331-5.

20. Попов К.В., Егорова Е.И., Иванов А.А., Громыко А.В., Жузе А.Л., Большева Н.Л. и др. Димерные бисбензимидозольные красители на основе Hoechst 33258 новые ДНК-специфичные флюорохромы для цитогенетики человека и растений. Биологические мембраны. Журнал мембранной и клеточной биологии. 2008; 25(3): 173-80

21. Looker K.J., Magaret A.S., Turner K.M., Vickerman P., Gottlieb S.L., Newman L.M. Global estimates of prevalent and incident herpes simplex virus type 2 infections in 2012. PLoS One. 2015; 10(1): e114989

22. Климова Р.Р., Малиновская В.В., Гусева Т.С., Паршина О.В., Гетия Е.Г., Дегтярева М.В. и др. Влияние герпесвирусных инфекций на уровень провоспалительных цитокинов у недоношенных новорожденных детей. Вопросы вирусологии. 2011; (4): 23-6

23. Moore M.D., Bunka D.H., Forzan M., Spear P.G., Stockley P.G., McGowan I., et al. Generation of neutralizing aptamers against herpes simplex virus type 2: potential components of multivalent microbicides. J. Gen. Virol. 2011; 92(7): 1493-9.

24. Slyker J.A. Cytomegalovirus and paediatric HIV infection. J. Virus Erad. 2016; 2(4): 208-14.

25. Lichtner M., Cicconi P., Vita S., Cozzi-Lepri A., Galli M., Lo Caputo S., et al. Cytomegalovirus coinfection is associated with an increased risk of severe non-AIDS-defining events in a large cohort of HIV-infected patients. J. Infect. Dis. 2015; 211(Pt. 2): 178-86.

Problems of Virology. 2017; 62: 162-168

DIMERIC BISBENZIMIDAZOLES SUPPRESS THE HERPES SIMPLEX VIRUS AND HUMAN CYTOMEGALOVIRUS INFECTIONS IN CELL СULTURES

Klimova R. R., Momotyuk E. D., Demidova N. A., Chernoryzh Ya. Yu., Koval V. S., Ivanov A. A., Zhuze A. L., Kushch A. A.

https://doi.org/10.18821/0507-4088-2017-62-4-162-168

Abstract

Antiviral activity of new AТ-specific fluorescent symmetric dimeric bisbenzimidazoles of DBА(n) series was assessed in the cell models of infections caused by type 1 herpes simplex virus (HSV1) and human cytomegalovirus (CMV). In DBA(n) molecules bisbenzimidazole fragments are bound to an oligomethylene liner with varied number of methylene groups in the linker (n = 1, 3, 5, 7, 9, 11). In contrast to DB(n) dimeric bisbenzimidazoles, in DBA(n) series terminal fragments of macromolecules contain N-dimethylaminopropylcarboxamide groups instead of N-methylpiperazine groups. DBА(n) compounds better dissolve in water, pass across plasma and nuclear membrane, and stain DNA in living cells. DBA(1) and DBA(7) produced therapeutic effects in HSV1 infection; DBA(7) completely suppressed the infection. DBA(11) displayed in vitro therapeutic activity in HSV1 and CMV infections. In addition, DBA(7) and DBA(1) showed microbicidal activity. Thus, DBA(11), which is active against two viruses causing severe diseases with serious health consequences for immunodeficient individuals, should be further investigated. High antiviral activity of DBA(7) in all test models indicates that this compound is a promising active agent for innovative antiviral drugs.
References

1. Looker K.J., Magaret A.S., May M.T., Turner K.M., Vickerman P., Gottlieb S.L. et al. Global and Regional Estimates of Prevalent and Incident Herpes Simplex Virus Type 1 Infections in 2012. PLoS One. 2015; 10(10): e0140765.

2. James S.H., Kimberlin D.W. Neonatal herpes simplex virus infection: epidemiology and treatment. Clin. Perinatol. 2015; 42(1): 47-59.

3. Barrett M.P., Gemmell C.G., Suckling C.J. Minor groove binders as anti-infective agents. Pharmacol. Ther. 2013; 139: 12-23.

4. Wilson W. D., Nguyen B., Tanious F. A., Mathis A., Hal J.E., Stephens C.E. et al. Dications that target the DNA minor groove: compound design and preparation, DNA interactions, cellular distribution and biological activity. Curr. Med. Chem. Anticancer. Agents. 2005; 5(4): 389-408.

5. Meikhi B. Virusologiya. Metody: Per. s angl. M.: Mir; 1988

6. Latt S.A. Optical studies of metaphase chromosome organization. Annu. Rev. Biophys. Bioeng. 1976; (5): 1-37.

7. Teng M.K., Usman N., Frederick C.A., Wang A.H. The molecular structure of the complex of Hoechst 33258 and the DNA dodecamer d(CGCGAATTCGCG). Nucleic. Acids. Res. 1988; (16): 2671.

8. Vega M.C., Saez I.G., Aymami J., Eritja R., van der Marel G.A., van Boom J.H., et al. Three-dimensional crystal structure of the A-tract DNA dodecamer d(CGCAAATTTGCG) complexed with the minor-groove-binding drug Hoechst 33258. Eur. J. Biochem. 1994; 222: 721.

9. Chiang S.Y., Welch J.J., Rauscher F.J., Beerman T.A. Effects of minor groove binding drugs on the interaction of TATA box binding protein and TFIIA with DNA. Biochemistry. 1994; (33): 7033-40.

10. Chiang S.Y., Welch J.J., Rauscher F.J., Beerman T.A. Effect of DNA-binding drugs on early growth response factor-1 and TATA box-binding protein complex formation with the herpes simplex virus latency promoter. J. Biol. Chem. 1996; 271: 23999-4004.

11. Chen A.Y., Yu C., Gatto B., Liu L.F. DNA minor groove-binding ligands: a different class of mammalian DNA topoisomerase I inhibitors. Proc. Nat. Acad. Sci. USA. 1993; 90: 8131-5.

12. Zhang X., Zhang S.C., Sun D., Hu J., Wali A., Pass H., et al. New insight into the molecular mechanisms of the biological effects of DNA minor groove binders. PLoS One. 2011; 6(10): e25822.

13. Woynarowski J.M., McHugh M., Sigmund R.D., Beerman T.A. Modulation of topoisomerase II catalytic activity by DNA minor groove binding agents distamycin, Hoechst 33258, and 4’,6-diamidine-2-phenylindole. Mol. Pharmacol. 1989; 35: 177-82.

14. Soderlind K.J., Gorodetsky B., Singh A.K., Bachur N.R., Miller G.G., Lown J.W. Bis-benzimidazole anticancer agents: targeting human tumour helicases. Anticancer. Drug Design. 1999; 14: 19-36.

15. Martin R.F., Broadhurst S., D’Abrew S., Budd R., Sephton R., Reum M., et al. Radioprotection by DNA ligands. Br. J. Cancer Suppl. 1996; 74(27): 99-101.

16. Lyubimova N.V., Coutlas P.G., Yuen K., Martin R.F. In vivo radioprotection of mouse brain endothelial cells by Hoechst 33342. Br. J. Radiol. 2001; 74: 77-82.

17. Susova O.Yu., Ivanov A.A., Morales Ruiss S.S., Lessovaya E.A., Gromyko A.V., Strel'tsov S.A. i dr. Uzkoborozdochnye dimernye bisbenzimidozoly ingibiruyut in vitro svyazyvanie s DNK eukarioticheskoi DNK topoizomerazy I. Biokhimiya. 2010; 75(6): 781-8

18. Cherepanova N.A., Ivanov A.A., Maltseva D.V., Minero A.S., Gromyko A.V., Streltsov S.A., et al. Dimeric bisbenzimidazoles inhibit the DNA methylation catalyzed by the murine Dnmt3a catalytic domain. J. Enzyme Inhib. Med. Chem. 2011; 26(2): 295-300.

19. Tunitskaya V.L., Mukovnya A.V., Ivanov A.A., Gromyko A.V., Ivanov A.V., Streltsov S.A., et al. Inhibition of the helicase activity of the HCV NS3 protein by symmetrical dimeric bis-benzimidazoles. Bioorg. Med. Chem. Lett. 2011; 21(18): 5331-5.

20. Popov K.V., Egorova E.I., Ivanov A.A., Gromyko A.V., Zhuze A.L., Bol'sheva N.L. i dr. Dimernye bisbenzimidozol'nye krasiteli na osnove Hoechst 33258 novye DNK-spetsifichnye flyuorokhromy dlya tsitogenetiki cheloveka i rastenii. Biologicheskie membrany. Zhurnal membrannoi i kletochnoi biologii. 2008; 25(3): 173-80

21. Looker K.J., Magaret A.S., Turner K.M., Vickerman P., Gottlieb S.L., Newman L.M. Global estimates of prevalent and incident herpes simplex virus type 2 infections in 2012. PLoS One. 2015; 10(1): e114989

22. Klimova R.R., Malinovskaya V.V., Guseva T.S., Parshina O.V., Getiya E.G., Degtyareva M.V. i dr. Vliyanie gerpesvirusnykh infektsii na uroven' provospalitel'nykh tsitokinov u nedonoshennykh novorozhdennykh detei. Voprosy virusologii. 2011; (4): 23-6

23. Moore M.D., Bunka D.H., Forzan M., Spear P.G., Stockley P.G., McGowan I., et al. Generation of neutralizing aptamers against herpes simplex virus type 2: potential components of multivalent microbicides. J. Gen. Virol. 2011; 92(7): 1493-9.

24. Slyker J.A. Cytomegalovirus and paediatric HIV infection. J. Virus Erad. 2016; 2(4): 208-14.

25. Lichtner M., Cicconi P., Vita S., Cozzi-Lepri A., Galli M., Lo Caputo S., et al. Cytomegalovirus coinfection is associated with an increased risk of severe non-AIDS-defining events in a large cohort of HIV-infected patients. J. Infect. Dis. 2015; 211(Pt. 2): 178-86.