Журналов:     Статей:        

Вопросы вирусологии. 2017; 62: 119-128

МОРФОЛОГИЧЕСКИЙ АНАЛИЗ ВИРУСА ГЕПАТИТА В С ЭСКЕЙП-МУТАЦИЯМИ В S-ГЕНЕ G145R И S143L

Коноплева М. В., Соколова М. В., Шевлягина Н. В., Баженов А. И., Фельдшерова А. А., Крымский М. А., Борисова В. Н., Семененко Т. А., Нестеренко В. Г., Суслов А. П.

https://doi.org/10.18821/0507-4088-2017-62-3-119-128

Аннотация

Введение. По серологическим свойствам и при иммунизации дикий тип HBsAg вируса гепатита В (ВГВ) и его мутант G145R ведут себя как различные антигены. Это свидетельствует о серьезных структурных изменениях, которые предположительно способны оказать существенное влияние на морфогенез вирионов и субвирусных частиц. Однако морфологические и ультраструктурные исследования ВГВ с мутацией G145R ранее не проводились. Цель работы: изучение структурно-морфологической организации ВГВ при наличии эскейп-мутации G145R. Методы. Исследования сывороток, очищенных вирусов, а также рекомбинантных HBsAg проводили с помощью трансмиссионной электронной микроскопии методом негативного контраста и непрямой реакции иммуномечения с применением моноклональных антител различной специфичности. В качестве контроля использовали образцы ВГВ дикого типа и ВГВ, имеющего мутацию S143L, полученные аналогичным способом. Результаты. В препаратах дикого штамма и ВГВ с мутацией S143L показано наличие типичных вирусных частиц ВГВ. Препараты ВГВ с мутацией G145R отличались выраженной морфологической гетерогенностью. В исходной сыворотке и препарате очищенного вируса, содержащих мутант G145R, обнаружены крупные овальные частицы размером 60-70 нм и до 200 нм соответственно. Подтверждено наличие антигенных структур ВГВ во всех гетерогенных формах. Показано, что формирование субвирусных частиц при экспрессии рекомбинантного HBsAg с мутацией G145R зависит от условий экспрессии и очистки белка. Они могут варьировать от хорошо сформированных круглых и овальных субвирусных частиц размером 20-50 нм до практически неструктурированных мелкозернистых масс. Заключение. Получены прямые данные о влиянии эскейп-мутации G145R в S-гене в отличие от мутации S143L на морфогенез вирионов и субвирусных частиц ВГВ.
Список литературы

1. Seitz S., Urban S., Antoni C., Böttcher B. Cryo-electron microscopy of hepatitis B virions reveals variability in envelope capsid interactions. EMBO J. 2007; 26(18): 4160-7.

2. Zlotnick A., Venkatakrishnan B., Tan Z., Lewellyn E., Turner W., Francis S. Core protein: A pleiotropic keystone in the HBV lifecycle. Antiviral Res. 2015; 121: 82-93.

3. Rezaee R., Poorebrahim M., Najafi S., Sadeghi S., Pourdast A., Alavian S.M. et al. Impacts of the G145R Mutation on the Structure and Immunogenic Activity of the Hepatitis B Surface Antigen: A Computational Analysis. Hepat. Mon. 2016; 16(7): e39097.

4. Dane D.S., Cameron C.H., Briggs N.M. Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet. 1970; 1(7649): 695-708.

5. Gilbert R.J., Beales L., Blond D., Simon M.N., Lin B.Y., Chisari F.V. et al. Hepatitis B small surface antigen particles are octahedral. Proc. Natl. Acad. Sci. U.S. A. 2005; 102(41): 14783-8.

6. Kaito M., Ohba H., Chiba J., Kohara M., Tanaka H., Fujita N. et al. The ultrastructural morphology of native hepatitis B virus. Med. Mol. Morphol. 2006; 39(3): 136-45.

7. Bruss V. Hepatitis B virus morphogenesis. World J. Gastroenterol. 2007; 13(1): 65-73.

8. Bruss V. A short linear sequence in the pre-S domain of the large hepatitis B virus envelope protein required for virion formation. J. Virol. 1997; 71(12): 9350-7.

9. Poisson F., Severac A., Hourioux C., Coudeau A., Roingeard P. Both pre-S1 and S domains of hepatitis B virus envelope proteins interact with the core particle. Virology. 1997; 228(1): 115-120.

10. Tan W.S., Dyson M.R., Murray K. Two distinct segments of the hepatitis B virus surface contribute synergistically to its assotiation with the viral core particles. J. Mol. Biol. 1999; 286(3): 797-808.

11. Khan N., Guarnieri M., Ahn S.H., Li J., Zhou Y., Bang G. et al. Modulation of hepatitis B virus secretion by naturally occurring mutations in the S gene. J. Virol. 2004; 78(7): 3262-70.

12. Greiner V.J., Egelé C., Oncul S., Ronzon F., Manin C., Klymchenko A. et al. Characterization of the lipid and protein organization in HBsAg viral particles by steady-state and time-resolved fluorescence spectroscopy. Biochimie. 2010; 92(8): 994-1002.

13. Gavilanes F., Gomez-Gutierrez J., Aracil M., Gonzalez-Ros J.M., Ferragut J.A., Guerrero E. et al. Hepatitis B surface antigen. Role of lipids in maintaining the structural and antigenic properties of protein components. Biochem. J. 1990; 265(3): 857-64.

14. Carman W.F., Zanetti A.R., Karayiannis P., Waters J., Manzillo G., Tanzi E., et al. Vaccine-induced escape mutant of hepatitis B virus. Lancet. 1990; 336(8711): 325-9.

15. Zuckerman A.J., Zuckerman J.N. Molecular epidemiology of hepatitis B virus mutant. J. Med. Virol. 1999; 58: 193-5.

16. Weber B. Genetic variability of the S gene of hepatitis B virus: clinical and diagnostic impact. J. Clin. Virol. 2005; 32: 102-12.

17. Ben-Porath E., Wands J.R., Marciniak R.A., Wong M.A., Hornstein L., Ryder R. et al. Structural analysis of hepatitis B surface antigen by monoclonal antibodies. J. Clin. Invest. 1985; 76(4): 1338-47.

18. Waters J.A., Kennedy M., Voet P., Hauser P., Petre J., Carman W. et al. Loss of the Common «A» Determinant of Hepatitis B Surface Antigen by a Vaccine-induced Escape Mutant. J. Clin. Invest. 1992; 90: 2543-7.

19. Roohi A., Khoshnoodi J., Zarnani A.H., Shokri F. Epitope mapping of recombinant hepatitis B surface antigen by murine monoclonal antibodies. Hybridoma (Larchmt). 2005; 24(2): 71-7.

20. Баженов А.И., Коноплева М.В., Эльгорт Д.А., Фельдшерова А.А., Хац Ю.С., Годков М.А. и др. Алгоритм серологического поиска и оценка распространенности серологически значимых HBsAg-мутаций у хронических носителей вируса гепатита В. Журнал микробиологии, эпидемиологии и иммунобиологии. 2007; (6): 30-7.

21. Баженов А.И., Эльгорт Д.А., Фельдшерова А.А., Будницкая П.З., Никитина Н.И., Хац Ю.С. и др. Сравнительная оценка активности анти-HBs, индуцированных естественным путём или вакцинацией, в отношении различных вариантов HBsAg. Эпидемиология и вакцинопрофилактика. 2012; (2): 76-81.

22. Крымский М.А., Борисов И.А., Яковлев М.С., Агафонов М.О., Тер-Аванесян М.Д., Суслов А.П. и др. Рекомбинантньiй штамм дрожжей Hansenula polymorpha - продуцент мутантного поверхностного антигена вируса гепатита В (варианты). Патент РФ № 2586513 C1; 2016.

23. Ito S., Karnovsky M.J. Formaldehyde/glutaraldehyde fixatives containing trinitro compounds. J. Cell Biol. 1968; 39: 168a-9a.

24. Reynolds E.S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 1963; 17(2): 208-12.

25. Newman G.R., Jasani B., Williams E.D. A simple post-embedding system for the rapid demonstration of tissue antigens under the electron microscope. Histochem. J. 1983; 15(6): 543-55.

26. Bendayan M., Zollinger M. Ultrastructural localization of antigenic sites on osmium-fixed tissues applying the protein A-gold technique. J. Histochem. Cytochem. 1983; 31(1): 101-9.

27. Dryden K.A., Wieland S.F., Witten-Bauer C., Gerin J.L., Chisari F.V., Yeager M. Native hepatitis B virions and capsids visualized by electron cryomicroscopy. Mol. Cell. 2006; 22: 843-50.

28. Böttcher B., Tsuji N., Takahashi H., Dyson M.R., Zhao S., Crowther R.A. et al. Peptides that block hepatitis B virus assembly: analysis by cryomicroscopy, mutagenesis and transfection. EMBO J. 1998; 17(23): 6839-45.

29. Kalinina T., Iwanski A., Will H., Sterneck M. Deficiency in virion secretion and decreased stability of the hepatitis B virus immune escape mutant G145R. Hepatology. 2003; 38(5): 1274-81.

Problems of Virology. 2017; 62: 119-128

MORPHOLOGICAL ANALYSIS OF HEPATITIS B VIRUS WITH ESCAPE MUTATIONS IN S-gene G145R AND S143L

Konopleva M. V., Sokolova M. V., Shevlyagina N. V., Bazhenov A. I., Fel’Dsherova A. A., Krymskij M. A., Borisova V. N., Semenenko T. A., Nesterenko V. G., Suslov A. P.

https://doi.org/10.18821/0507-4088-2017-62-3-119-128

Abstract

Background. In terms of serological properties and immunization, the wild type of HBsAg HBV and its G145R mutant behave as different antigens. This testifies to serious structural changes, which presumably could have a significant impact on the morphogenesis of virions and subviral particles. Nevertheless, morphological and ultrastructural investigations of HBV with G145R mutation have not been carried yet. Objectives. Research of structural and morphological organization of HBV in the presence of the G145R escape mutation. Methods. Studies of sera, purified viruses and recombinant HBsAg were carried out by transmission electron microscopy by the method of negative staining and indirect reaction of immunelabeling using monoclonal antibodies of different specificity. Specimens of wild type HBV and HBV with S143L mutation obtained in an identical manner were used as the control. Results. The presence of typical virus particles of HBV was shown in the specimens of wild strain and HBV with S143L mutation. Specimens of HBV with G145R mutation were characterized by expressed morphological heterogeneity. In the initial serum and in the specimen of purified virus containing G145R mutant, large oval particles 60-70 nm and up to 200 nm in size, respectively, were found. The presence of antigen structures of HBV in all heterogeneous forms was confirmed. It was shown that forming of subviral particles in the process of expression of the recombinant HBsAg with G145R mutation depends on conditions of expression and purification of the protein. They can vary from well-formed circular and oval particles to practically unstructured fine-grained masses. Conclusion. Direct data on the impact of G145R escape-mutation in S-gene, in contrast to S143L mutation, on the morphogenesis of virions and subviral particles of HBV were obtained.
References

1. Seitz S., Urban S., Antoni C., Böttcher B. Cryo-electron microscopy of hepatitis B virions reveals variability in envelope capsid interactions. EMBO J. 2007; 26(18): 4160-7.

2. Zlotnick A., Venkatakrishnan B., Tan Z., Lewellyn E., Turner W., Francis S. Core protein: A pleiotropic keystone in the HBV lifecycle. Antiviral Res. 2015; 121: 82-93.

3. Rezaee R., Poorebrahim M., Najafi S., Sadeghi S., Pourdast A., Alavian S.M. et al. Impacts of the G145R Mutation on the Structure and Immunogenic Activity of the Hepatitis B Surface Antigen: A Computational Analysis. Hepat. Mon. 2016; 16(7): e39097.

4. Dane D.S., Cameron C.H., Briggs N.M. Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet. 1970; 1(7649): 695-708.

5. Gilbert R.J., Beales L., Blond D., Simon M.N., Lin B.Y., Chisari F.V. et al. Hepatitis B small surface antigen particles are octahedral. Proc. Natl. Acad. Sci. U.S. A. 2005; 102(41): 14783-8.

6. Kaito M., Ohba H., Chiba J., Kohara M., Tanaka H., Fujita N. et al. The ultrastructural morphology of native hepatitis B virus. Med. Mol. Morphol. 2006; 39(3): 136-45.

7. Bruss V. Hepatitis B virus morphogenesis. World J. Gastroenterol. 2007; 13(1): 65-73.

8. Bruss V. A short linear sequence in the pre-S domain of the large hepatitis B virus envelope protein required for virion formation. J. Virol. 1997; 71(12): 9350-7.

9. Poisson F., Severac A., Hourioux C., Coudeau A., Roingeard P. Both pre-S1 and S domains of hepatitis B virus envelope proteins interact with the core particle. Virology. 1997; 228(1): 115-120.

10. Tan W.S., Dyson M.R., Murray K. Two distinct segments of the hepatitis B virus surface contribute synergistically to its assotiation with the viral core particles. J. Mol. Biol. 1999; 286(3): 797-808.

11. Khan N., Guarnieri M., Ahn S.H., Li J., Zhou Y., Bang G. et al. Modulation of hepatitis B virus secretion by naturally occurring mutations in the S gene. J. Virol. 2004; 78(7): 3262-70.

12. Greiner V.J., Egelé C., Oncul S., Ronzon F., Manin C., Klymchenko A. et al. Characterization of the lipid and protein organization in HBsAg viral particles by steady-state and time-resolved fluorescence spectroscopy. Biochimie. 2010; 92(8): 994-1002.

13. Gavilanes F., Gomez-Gutierrez J., Aracil M., Gonzalez-Ros J.M., Ferragut J.A., Guerrero E. et al. Hepatitis B surface antigen. Role of lipids in maintaining the structural and antigenic properties of protein components. Biochem. J. 1990; 265(3): 857-64.

14. Carman W.F., Zanetti A.R., Karayiannis P., Waters J., Manzillo G., Tanzi E., et al. Vaccine-induced escape mutant of hepatitis B virus. Lancet. 1990; 336(8711): 325-9.

15. Zuckerman A.J., Zuckerman J.N. Molecular epidemiology of hepatitis B virus mutant. J. Med. Virol. 1999; 58: 193-5.

16. Weber B. Genetic variability of the S gene of hepatitis B virus: clinical and diagnostic impact. J. Clin. Virol. 2005; 32: 102-12.

17. Ben-Porath E., Wands J.R., Marciniak R.A., Wong M.A., Hornstein L., Ryder R. et al. Structural analysis of hepatitis B surface antigen by monoclonal antibodies. J. Clin. Invest. 1985; 76(4): 1338-47.

18. Waters J.A., Kennedy M., Voet P., Hauser P., Petre J., Carman W. et al. Loss of the Common «A» Determinant of Hepatitis B Surface Antigen by a Vaccine-induced Escape Mutant. J. Clin. Invest. 1992; 90: 2543-7.

19. Roohi A., Khoshnoodi J., Zarnani A.H., Shokri F. Epitope mapping of recombinant hepatitis B surface antigen by murine monoclonal antibodies. Hybridoma (Larchmt). 2005; 24(2): 71-7.

20. Bazhenov A.I., Konopleva M.V., El'gort D.A., Fel'dsherova A.A., Khats Yu.S., Godkov M.A. i dr. Algoritm serologicheskogo poiska i otsenka rasprostranennosti serologicheski znachimykh HBsAg-mutatsii u khronicheskikh nositelei virusa gepatita V. Zhurnal mikrobiologii, epidemiologii i immunobiologii. 2007; (6): 30-7.

21. Bazhenov A.I., El'gort D.A., Fel'dsherova A.A., Budnitskaya P.Z., Nikitina N.I., Khats Yu.S. i dr. Sravnitel'naya otsenka aktivnosti anti-HBs, indutsirovannykh estestvennym putem ili vaktsinatsiei, v otnoshenii razlichnykh variantov HBsAg. Epidemiologiya i vaktsinoprofilaktika. 2012; (2): 76-81.

22. Krymskii M.A., Borisov I.A., Yakovlev M.S., Agafonov M.O., Ter-Avanesyan M.D., Suslov A.P. i dr. Rekombinantn'ii shtamm drozhzhei Hansenula polymorpha - produtsent mutantnogo poverkhnostnogo antigena virusa gepatita V (varianty). Patent RF № 2586513 C1; 2016.

23. Ito S., Karnovsky M.J. Formaldehyde/glutaraldehyde fixatives containing trinitro compounds. J. Cell Biol. 1968; 39: 168a-9a.

24. Reynolds E.S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 1963; 17(2): 208-12.

25. Newman G.R., Jasani B., Williams E.D. A simple post-embedding system for the rapid demonstration of tissue antigens under the electron microscope. Histochem. J. 1983; 15(6): 543-55.

26. Bendayan M., Zollinger M. Ultrastructural localization of antigenic sites on osmium-fixed tissues applying the protein A-gold technique. J. Histochem. Cytochem. 1983; 31(1): 101-9.

27. Dryden K.A., Wieland S.F., Witten-Bauer C., Gerin J.L., Chisari F.V., Yeager M. Native hepatitis B virions and capsids visualized by electron cryomicroscopy. Mol. Cell. 2006; 22: 843-50.

28. Böttcher B., Tsuji N., Takahashi H., Dyson M.R., Zhao S., Crowther R.A. et al. Peptides that block hepatitis B virus assembly: analysis by cryomicroscopy, mutagenesis and transfection. EMBO J. 1998; 17(23): 6839-45.

29. Kalinina T., Iwanski A., Will H., Sterneck M. Deficiency in virion secretion and decreased stability of the hepatitis B virus immune escape mutant G145R. Hepatology. 2003; 38(5): 1274-81.