Журналов:     Статей:        

Вопросы вирусологии. 2017; 62: 65-72

Активация парамиксовирусов протеазами в культурах нормальных и раковых клеток

Жирнов О. П.

https://doi.org/10.18821/0507-4088-2017-62-2-65-72

Аннотация

Изучали размножение парамиксовирусов Сендай и болезни Ньюкасла (ВБН) в культурах нормальных и раковых клеток. В культуре клеток почки собаки MDCK и ее дериватов с тетрациклинрегулируемой экспрессией трансмембранных протеаз НАТ и TMPRSS2 наблюдалось образование неинфекционных вирионов с нерасщепленным белком F0. Тетрациклиновая индукция протеаз НАТ и TMPRSS2 в инфицированных клетках приводила к протеолизу F0 > F1 + F2 и образованию высокоинфекционного вируса. При расщеплении протеазой НАТ, помимо F0 (м. м. 65 кД), F1 (50 кД) и F2 (15 кД), у вируса Сендай выявлялся дополнительный фрагмент F3 c м. м. 38 кД, что указывало на наличие второго сайта расщепления в молекуле F1, чувствительного к протеазе НАТ. При размножении вируса Сендай и ВБН в культуре раковых клеток Сасо-2 и Н1299 синтезировался инфекционный вирус, содержащий часть молекул в расщепленной форме F1 + F2. В культуре Н1299 в вирусе Сендай наряду с F0, F1 и F2 обнаруживался также фрагмент 38К. Количество расщепленного белка F1 + F2 и инфекционного вируса в раковых культурах Сасо-2 и Н1299 значительно возрастало на поздних сроках инфекции, что указывало на индукцию клеточных вирусактивирующих протеаз в раковых клетках при вирусной инфекции. ВБН вызывал значительно более быструю гибель раковых клеток Сасо-2 по сравнению с вирусом Сендай. Полученные данные показывают, что раковые клетки в отличие от нормальных клеток могут синтезировать протеазы, активирующие инфекционность парамиксовирусов, и по этой причине они становятся более уязвимыми для парамиксовирусной инфекции по сравнению с нормальными клетками.
Список литературы

1. Lamb R.A., Parks G.D. Paramyxoviridae: their viruses and their replication. In: Fields B.N., Knipe D.M., Howley P.M., eds. Fields Virology. 5th ed. Philadelphia, USA: Wolters Kluwer and Lippincot Williams and Willkins; 2007.

2. Huang Z., Krishnamurthy S., Panda A., Samal S.K. Newcastle disease virus V protein is associated with viral pathogenesis and functions as an alpha interferon antagonist. J. Virol. 2003; 77 (16): 8676-85.

3. Park M.S., Garcia-Sastre A., Cros J.F., Basler C.F., Palese P. Newcastle disease virus V protein is a determinant of host range restriction. J. Virol. 2003; 77 (17): 9522-32.

4. de Leeuw O.S., Koch G., Hartog L., Ravenshorst N., Peeters B.P. Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin-neuraminidase protein. J. Gen. Virol. 2005; 86 (Pt. 6): 1759-69.

5. Morrison T.G. Structure and function of a paramyxovirus fusion protein. Biochim. Biophys. Acta. 2003; 1614 (1): 73-84.

6. Nagai Y., Inocencio N.M., Gotoh B. Paramyxovirus tropism dependent on host proteases activating the viral fusion glycoprotein. Behring. Inst. Mitt. 1991; (89): 35-45.

7. Tayeb S., Zakay-Rones Z., Panet A. Therapeutic potential of oncolytic Newcastle disease virus a critical review. Oncolytic. Virother. 2015; 4: 49-62.

8. Matveeva O.V., Guo Z.S., Senin V.M., Senina A.V., Shabalina S..A, Chumakov P.M. Oncolysis by paramyxoviruses: preclinical and clinical studies. Mol. Ther. Oncolytics. 2015; 2.

9. Ring C.J. Cytolytic viruses as potential anti-cancer agents. J. Gen. Virol. 2002; 83 (Pt. 3): 491-502.

10. Cuadrado-Castano S., Sanchez-Aparicio M.T., García-Sastre A., Villar E. Thetherapeutic effect of death: Newcastle disease virus and its antitumor potential. Virus. Res. 2015; 209: 56-66.

11. Zhirnov O.P., Vorobjeva I.V., Saphonova O.A., Poyarkov S.V., Ovcharenko A.V., Anhlan D. et al. Structural and evolutionary characteristics of HA, NA, NS and M genes of clinical influenza A/H3N2 viruses passaged in human and canine cells. J. Clin. Virol. 2009; 45 (4): 322-33.

12. Böttcher-Friebertshäuser E., Lu Y., Meyer D., Sielaff F., Steinmetzer T., Klenk H.D. et al. Hemagglutinin activating host cell proteases provide promising drug targets for the treatment of influenza A and B virus infections. Vaccine. 2012; 30 (51): 7374-80.

13. Zhirnov O.P., Matrosovich T.Y., Matrosovich M.N., Klenk H.D. Aprotinin, a protease inhibitor, suppresses proteolytic activation of pandemic H1N1v influenza virus. Antivir. Chem. Chemother. 2011; 21 (4): 169-74.

14. Zhirnov O.P., Konakova T.E., Wolff T., Klenk H.D. NS1 protein of influenza A virus down-regulates apoptosis. J. Virol. 2002; 76 (4): 1617-25.

15. Zhirnov O. P., Ikizler M. R., Wright P. Cleavage of influenza A virus hemagglutinin in human respiratory epithelium is cell-associated and sensitive to exogenous antiproteases. J. Virol. 2002; 76 (17): 8682-9.

16. Жирнов О.П., Букринская А.Г. Изучение белков вируса Сендай: протеолитическая активность в составе вирусных частиц. Вопросы вирусологии. 1977; (5): 571-8.

17. Zhirnov O.P., Ovcharenko A.G., Bukrinskaya A.G. Myxovirus replication in chicken embryos can be suppressed by aprotinin due to the blockage of viral glycoprotein cleavage. J. Gen. Virol. 1985; 66 (Pt. 7): 1633-8.

18. Szabo R., Bugge T.H. Membrane-anchored serine proteases in vertebrate cell and developmental biology. Annu. Rev. Cell. Dev. Biol. 2011; 27: 213-35.

19. Murray A.S., Varela F.A., List K. Type II transmembrane serine proteases as potential targets for cancer therapy. Biol. Chem. 2016; 397 (9): 815-26.

20. Naik S., Russell S.J. Engineering oncolytic viruses to exploit tumor specific defects in innate immune signaling pathways. Expert. Opin. Biol. Ther. 2009; 9 (9): 1163-76.

21. Linge C., Gewert D., Rossmann C., Bishop J.A., Crowe J.S. Interferon system defects in human malignant melanoma. Cancer Res. 1995; 55 (18): 4099-104.

22. Abd-Elrahman I., Hershko K., Neuman T., Nachmias B., Perlman R., Ben-Yehuda D. The inhibitor of apoptosis protein Livin (ML-IAP) plays a dual role in tumorigenicity. Cancer Res. 2009; 69 (13): 5475-80.

23. Gurpinar E., Vousden K.H. Hitting cancers’ weak spots: vulnerabilities imposed by p53 mutation. Trends Cell. Biol. 2015; 25 (8): 486-95.

24. Goldar S., Khaniani M.S., Derakhshan S.M., Baradaran B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian. Pac. J. Cancer Prev. 2015; 16 (6): 2129-44.

25. Xu D.W., Zhang G.Q., Wang Z.W., Xu X.Y., Liu T.X. Autophagy in tumorigenesis and cancer treatment. Asian. Pac. J. Cancer Prev. 2015; 16 (6): 2167-75.

26. Zhirnov O.P., Klenk H.D. Human influenza viruses are proteolytically activated and do not induce apoptosis in CACO-2 cells. Virology. 2003; 313 (1): 198-212.

Problems of Virology. 2017; 62: 65-72

Paramyxoviruses activation by host proteases in cultures of normal and cancer cells

Zhirnov O. P.

https://doi.org/10.18821/0507-4088-2017-62-2-65-72

Abstract

Multiplication of paramyxovirus Sendai and Newcastle disease virus (NDV) was studied in cultures of normal and tumor cells. Production of noninfectious virus with uncleaved F0 was observed in canine kidney cell line MDCK (line H) and its derivatives carrying tetracycline-regulated expression of transmembrane protease HAT or TMPRSS2 with trypsin-like cleavage specificity. Under tetracycline induction, a cleavage F0 (65 kD)>F1 (50 kD)+F2(15 kD) and production of infectious virus were observed in these cell cultures. Under tetracycline induction, the additional subunit 38K (m.w. 38 kDa) of the F protein was detected both in infected MDCK-HAT cells and in newly synthesized Sendai virus in addition to F0, F1 and F2, indicating thereby a second HAT-sensitive proteolytic site in the F0 molecule. Highly infectious virus containing cleaved F1+F2 was produced in cultures of cancer cells Caco-2 and H1299. Virus Sendai synthesized in H1299 cells contained 38 K subunit indicating a cleavage of the F0 at a second site by H1299 host cell proteases. Levels of cleaved F1+F2 and infectious virions were higher at the late stage of infection in cancer cells, suggesting thus the induction of virus-activating proteases in Caco-2 and H1299 cells under infection with paramyxoviruses. NDV virus was found to induce more rapid death of cancer cells Caco-2 than Sendai virus. Cooperatively, the obtained data show that cancer cells in distinction to nonmalignant cells can synthesize protease(s) activating infectivity of paramyxoviruses. Thus, they are more vulnerable to paramyxovirus infection than normal cells.
References

1. Lamb R.A., Parks G.D. Paramyxoviridae: their viruses and their replication. In: Fields B.N., Knipe D.M., Howley P.M., eds. Fields Virology. 5th ed. Philadelphia, USA: Wolters Kluwer and Lippincot Williams and Willkins; 2007.

2. Huang Z., Krishnamurthy S., Panda A., Samal S.K. Newcastle disease virus V protein is associated with viral pathogenesis and functions as an alpha interferon antagonist. J. Virol. 2003; 77 (16): 8676-85.

3. Park M.S., Garcia-Sastre A., Cros J.F., Basler C.F., Palese P. Newcastle disease virus V protein is a determinant of host range restriction. J. Virol. 2003; 77 (17): 9522-32.

4. de Leeuw O.S., Koch G., Hartog L., Ravenshorst N., Peeters B.P. Virulence of Newcastle disease virus is determined by the cleavage site of the fusion protein and by both the stem region and globular head of the haemagglutinin-neuraminidase protein. J. Gen. Virol. 2005; 86 (Pt. 6): 1759-69.

5. Morrison T.G. Structure and function of a paramyxovirus fusion protein. Biochim. Biophys. Acta. 2003; 1614 (1): 73-84.

6. Nagai Y., Inocencio N.M., Gotoh B. Paramyxovirus tropism dependent on host proteases activating the viral fusion glycoprotein. Behring. Inst. Mitt. 1991; (89): 35-45.

7. Tayeb S., Zakay-Rones Z., Panet A. Therapeutic potential of oncolytic Newcastle disease virus a critical review. Oncolytic. Virother. 2015; 4: 49-62.

8. Matveeva O.V., Guo Z.S., Senin V.M., Senina A.V., Shabalina S..A, Chumakov P.M. Oncolysis by paramyxoviruses: preclinical and clinical studies. Mol. Ther. Oncolytics. 2015; 2.

9. Ring C.J. Cytolytic viruses as potential anti-cancer agents. J. Gen. Virol. 2002; 83 (Pt. 3): 491-502.

10. Cuadrado-Castano S., Sanchez-Aparicio M.T., García-Sastre A., Villar E. Thetherapeutic effect of death: Newcastle disease virus and its antitumor potential. Virus. Res. 2015; 209: 56-66.

11. Zhirnov O.P., Vorobjeva I.V., Saphonova O.A., Poyarkov S.V., Ovcharenko A.V., Anhlan D. et al. Structural and evolutionary characteristics of HA, NA, NS and M genes of clinical influenza A/H3N2 viruses passaged in human and canine cells. J. Clin. Virol. 2009; 45 (4): 322-33.

12. Böttcher-Friebertshäuser E., Lu Y., Meyer D., Sielaff F., Steinmetzer T., Klenk H.D. et al. Hemagglutinin activating host cell proteases provide promising drug targets for the treatment of influenza A and B virus infections. Vaccine. 2012; 30 (51): 7374-80.

13. Zhirnov O.P., Matrosovich T.Y., Matrosovich M.N., Klenk H.D. Aprotinin, a protease inhibitor, suppresses proteolytic activation of pandemic H1N1v influenza virus. Antivir. Chem. Chemother. 2011; 21 (4): 169-74.

14. Zhirnov O.P., Konakova T.E., Wolff T., Klenk H.D. NS1 protein of influenza A virus down-regulates apoptosis. J. Virol. 2002; 76 (4): 1617-25.

15. Zhirnov O. P., Ikizler M. R., Wright P. Cleavage of influenza A virus hemagglutinin in human respiratory epithelium is cell-associated and sensitive to exogenous antiproteases. J. Virol. 2002; 76 (17): 8682-9.

16. Zhirnov O.P., Bukrinskaya A.G. Izuchenie belkov virusa Sendai: proteoliticheskaya aktivnost' v sostave virusnykh chastits. Voprosy virusologii. 1977; (5): 571-8.

17. Zhirnov O.P., Ovcharenko A.G., Bukrinskaya A.G. Myxovirus replication in chicken embryos can be suppressed by aprotinin due to the blockage of viral glycoprotein cleavage. J. Gen. Virol. 1985; 66 (Pt. 7): 1633-8.

18. Szabo R., Bugge T.H. Membrane-anchored serine proteases in vertebrate cell and developmental biology. Annu. Rev. Cell. Dev. Biol. 2011; 27: 213-35.

19. Murray A.S., Varela F.A., List K. Type II transmembrane serine proteases as potential targets for cancer therapy. Biol. Chem. 2016; 397 (9): 815-26.

20. Naik S., Russell S.J. Engineering oncolytic viruses to exploit tumor specific defects in innate immune signaling pathways. Expert. Opin. Biol. Ther. 2009; 9 (9): 1163-76.

21. Linge C., Gewert D., Rossmann C., Bishop J.A., Crowe J.S. Interferon system defects in human malignant melanoma. Cancer Res. 1995; 55 (18): 4099-104.

22. Abd-Elrahman I., Hershko K., Neuman T., Nachmias B., Perlman R., Ben-Yehuda D. The inhibitor of apoptosis protein Livin (ML-IAP) plays a dual role in tumorigenicity. Cancer Res. 2009; 69 (13): 5475-80.

23. Gurpinar E., Vousden K.H. Hitting cancers’ weak spots: vulnerabilities imposed by p53 mutation. Trends Cell. Biol. 2015; 25 (8): 486-95.

24. Goldar S., Khaniani M.S., Derakhshan S.M., Baradaran B. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian. Pac. J. Cancer Prev. 2015; 16 (6): 2129-44.

25. Xu D.W., Zhang G.Q., Wang Z.W., Xu X.Y., Liu T.X. Autophagy in tumorigenesis and cancer treatment. Asian. Pac. J. Cancer Prev. 2015; 16 (6): 2167-75.

26. Zhirnov O.P., Klenk H.D. Human influenza viruses are proteolytically activated and do not induce apoptosis in CACO-2 cells. Virology. 2003; 313 (1): 198-212.