Журналов:     Статей:        

Frontier Materials & Technologies. 2020; : 51-57

ТЕХНОЛОГИИ СОВЕРШЕНСТВОВАНИЯ ПРОЦЕССА СГОРАНИЯ ТОПЛИВНО-ВОЗДУШНЫХ СМЕСЕЙ В ДВС С ИСКРОВЫМ ЗАЖИГАНИЕМ

Шайкин А. П., Галиев И. Р., Павлов Д. А., Сазонов М. В.

https://doi.org/10.18323/2073-5073-2020-4-51-57

Аннотация

В работе рассматривается влияние интенсивности турбулентности и химического состава топлива на скорость распространения пламени в начальной и основной фазах сгорания при изменении состава топливовоздушной смеси. Актуальность исследования обусловлена тем, что в настоящее время улучшение характеристик работы поршневых двигателей внутреннего сгорания достигается в основном за счет совершенствования процесса сгорания горючей смеси. При этом отсутствуют данные о влиянии химических и газодинамических факторов на особенности распространения пламени в начальной и основной фазах сгорания. Объектом исследования являлся газопоршневой двигатель внутреннего сгорания, а предметом исследования - процесс сгорания топлива. Химический состав горючего изменялся за счет использования промотирующей добавки водорода в природный газ и изменения коэффициента избытка воздуха. В результате проведенных экспериментов на моторной установке УИТ-85 (т. е. в условиях, максимально приближенных к условиям двигателя внутреннего сгорания) было выявлено, что промотирующая добавка водорода сильнее влияет на скорость пламени в первой фазе сгорания, по сравнению со второй фазой сгорания, так как в первой фазе очаг горения представляет собой искривленный фронт ламинарного пламени и зависит только от химических и теплофизических свойств топливовоздушной смеси. Анализ экспериментальных данных также показал двойственное влияние интенсивности турбулентности на скорость распространения пламени. В частности, в начале процесса сгорания пульсационная скорость практически не оказывает влияния на скорость распространения пламени, в отличие от основной фазы сгорания, в которой обнаружено увеличение скорости распространения пламени при росте интенсивности турбулентности.
Список литературы

1. Sandalcı T., Isin O., Galata S., Karagoz Y., Guler I. Effect of hythane enrichment on performance, emission and combustion characteristics of an ci engine // International Journal of Hydrogen Energy. 2019. Vol. 44. № 5. P. 3208-3220. DOI: 10.1016/j.ijhydene.2018.12.069.

2. Tangoz S., Kahraman N., Akansu S.O. The effect of hydrogen on the performance and emissions of an SI engine having a high compression ratio fuelled by compressed natural gas // International Journal of Hydrogen Energy. 2017. Vol. 42. № 40. P. 25766-25780. DOI: 10.1016/j.ijhydene.2017.04.076.

3. Щёлкин К.И., Трошин Я.К. О сгорании в турбулентном потоке // Журнал технической физики. 1943. Т. 13. № 9-10. С. 520-530.

4. Karlovitz B., Denniston D., Wells F. Investigation of turbulent flames // Journal of Chemical Physics. 1956. № 4. Р. 541-552.

5. Veynante D., Vervisch L. Turbulent Combustion Modelling // Progress in Energy and Combustion Science. 2002. Vol. 28. № 3. P. 193-266. DOI: 10.1016/S0360-1285(01)00017-X.

6. Subba R.K., Ganesan V., Gopalakrishnan K.V., Murthy B.S. Modelling of combustion process in a spark ignited hydrogen engine // International Journal of Hydrogen Energy. 1983. Vol. 8. № 8. P. 931-933. DOI: 10.1016/0360-3199(83)90118-0.

7. Johansson B., Olsson K. Combustion chambers for natural gas SI engines part 1: Fluid flow and combustion // SAE Technical papers. 1995. № 950469. Р. 1-12. DOI: 10.4271/950469.

8. Olsson K., Johansson B. Combustion chambers for natural gas SI engines part 2: Combustion and emissions // SAE Technical papers. 1995. № 950517. Р. 1-13. DOI: 10.4271/950517.

9. Li H., Gatts H., Liu S., Wayne S., Clark N., Mather D. An Experimental Investigation on the Combustion Process of a Simulated Turbocharged Spark Ignition Natural Gas Engine Operated on Stoichiometric Mixture // Journal of Engineering for Gas Turbines and Power. 2017. Vol. 140. № 9. Article number 091504. DOI: 10.1115/1.4038692.

10. Basshuysen R.V. Internal Combustion Engine Handbook. New York: SAE International, 2016. 1130 p.

11. Shaikin A.P., Galiev I.R. On the Relationship of the Width of the Turbulent Combustion Zone with the Fuel Composition, Pressure, Propagation Speed, and Electrical Conductivity of the Flame // Technical physics. 2020. Vol. 65. № 7. P. 1020-1023. DOI: 10.1134/S106378422007018X.

12. Шайкин А.П., Галиев И.Р. Исследование связи скорости распространения пламени метановодородного топлива ДВС с параметрами ионизационного тока и концентрацией водорода // Известия высших учебных заведений. Авиационная техника. 2016. № 2. С. 87-91.

13. Verma G., Prasad R.K., Agarwal R.A., Jain S., Agarwal A.K. Experimental investigations of combustion, performance and emission characteristics of a hydrogen enriched natural gas fuelled prototype spark ignition engine // Fuel. 2016. Vol. 178. P. 209-217. DOI: 10.1016/j.fuel.2016.03.022.

14. Pastor J.V., Olmeda P., Martin J., Lewiski F. Methodology for Optical Engine Characterization by Means of the Combination of Experimental and Modeling Techniques // Applied Sciences (Switzerland). 2018. Vol. 8. № 12. Article number 2571. DOI: 10.3390/app8122571.

15. Khudhair O., Shahad H.A.K. A Review of Laminar Burning Velocity and Flame Speed of Gases and Liquid Fuels // International Journal of Current Engineering and Technology. 2017. Vol. 7. № 1. P. 183-197.

16. Giusti A., Mastorakos E. Turbulent Combustion Modelling and Experiments: Recent Trends and Developments // Flow, Turbulence and Combustion. 2019. Vol. 103. № 4. Р. 847-869. DOI: 10.1007/s10494-019-00072-6.

17. Cutcher H.C., Barlow R.S., Magnotti G., Masri A.R. Statistics of scalar dissipation and reaction progress in turbulent flames with compositional inhomogeneities // Combustion and Flame. 2018. Vol. 194. Р. 439-451. DOI: 10.1016/j.combustflame.2018.05.030.

18. Giusti A., Mastorakos E., Hassa C., Heinze J., Magens E., Zedda M. Investigation of flame structure and soot formation in a single sector model combustor using experiments and numerical simulations based on the large eddy Simulation/Conditional moment closure approach // Journal of engineering for gas Turbines and Power. 2018. Vol. 140. № 6. Article number 061506. DOI: 10.1115/1.4038025.

19. Evans M.J., Sidey J.A.M., Ye J., Medwell P.R., Dally B.B., Mastorakos E. Temperature and reaction zone imaging in turbulent swirling dual-fuel flames // Proceedings of the Combustion Institute. 2018. Vol. 37. № 2. Р. 2159-2166. DOI: 10.1016/j.proci.2018.07.076.

20. Shaikin A.P., Galiev I.R. Specific features of combustion of methane-hydrogen mixtures in piston power plants and engines // Bezopasnost’ Truda v Promyshlennosti. 2020. Vol. 2020. № 1. Р. 21-25. DOI: 10.24000/0409-2961-2020-1-21-25.

Frontier Materials & Technologies. 2020; : 51-57

THE TECHNOLOGIES OF IMPROVING THE PROCESS OF AIR-FUEL MIXTURE COMBUSTION IN SPARK IGNITION ENGINES

Shaikin A. P., Galiev I. R., Pavlov D. A., Sazonov M. V.

https://doi.org/10.18323/2073-5073-2020-4-51-57

Abstract

The paper considers the turbulence intensity and the fuel chemical composition impact on the flame propagation velocity at the initial and main combustion phases when changing the air-fuel mixture composition. The relevance of the study is caused by the fact that currently, the improvement of conventional engine operation characteristics is mainly achieved through the improvement of the fuel mixture combustion process. However, there are no data on the influence of chemical and gas-dynamic factors on the peculiarities of flame propagation at the initial and main combustion phases. The gas reciprocating internal combustion engine was the object of the research, and the subject of the study was the fuel combustion process. Fuel chemical composition changed due to the promoting addition of hydrogen to the natural gas and variations of the excess-air coefficient. The experiments carried out on the UIT-85 power plant (i.e. under the simulated internal combustion engine conditions) show that the promoting addition of hydrogen stronger influences the flame velocity in the initial combustion phase compared to the second combustion phase, as a combustion source in the first phase is a laminar flame bent front and depends only on chemical and thermo-physical properties of the fuel-air mixture. The analysis of experimental data showed the dual impact of turbulence intensity on the flame propagation velocity. In particular, at the beginning of the combustion process, the fluctuating velocity scarcely influences the flame propagation velocity, as opposed to the main combustion phase, where the flame propagation velocity increases at the increase of turbulence intensity.
References

1. Sandalcı T., Isin O., Galata S., Karagoz Y., Guler I. Effect of hythane enrichment on performance, emission and combustion characteristics of an ci engine // International Journal of Hydrogen Energy. 2019. Vol. 44. № 5. P. 3208-3220. DOI: 10.1016/j.ijhydene.2018.12.069.

2. Tangoz S., Kahraman N., Akansu S.O. The effect of hydrogen on the performance and emissions of an SI engine having a high compression ratio fuelled by compressed natural gas // International Journal of Hydrogen Energy. 2017. Vol. 42. № 40. P. 25766-25780. DOI: 10.1016/j.ijhydene.2017.04.076.

3. Shchelkin K.I., Troshin Ya.K. O sgoranii v turbulentnom potoke // Zhurnal tekhnicheskoi fiziki. 1943. T. 13. № 9-10. S. 520-530.

4. Karlovitz B., Denniston D., Wells F. Investigation of turbulent flames // Journal of Chemical Physics. 1956. № 4. R. 541-552.

5. Veynante D., Vervisch L. Turbulent Combustion Modelling // Progress in Energy and Combustion Science. 2002. Vol. 28. № 3. P. 193-266. DOI: 10.1016/S0360-1285(01)00017-X.

6. Subba R.K., Ganesan V., Gopalakrishnan K.V., Murthy B.S. Modelling of combustion process in a spark ignited hydrogen engine // International Journal of Hydrogen Energy. 1983. Vol. 8. № 8. P. 931-933. DOI: 10.1016/0360-3199(83)90118-0.

7. Johansson B., Olsson K. Combustion chambers for natural gas SI engines part 1: Fluid flow and combustion // SAE Technical papers. 1995. № 950469. R. 1-12. DOI: 10.4271/950469.

8. Olsson K., Johansson B. Combustion chambers for natural gas SI engines part 2: Combustion and emissions // SAE Technical papers. 1995. № 950517. R. 1-13. DOI: 10.4271/950517.

9. Li H., Gatts H., Liu S., Wayne S., Clark N., Mather D. An Experimental Investigation on the Combustion Process of a Simulated Turbocharged Spark Ignition Natural Gas Engine Operated on Stoichiometric Mixture // Journal of Engineering for Gas Turbines and Power. 2017. Vol. 140. № 9. Article number 091504. DOI: 10.1115/1.4038692.

10. Basshuysen R.V. Internal Combustion Engine Handbook. New York: SAE International, 2016. 1130 p.

11. Shaikin A.P., Galiev I.R. On the Relationship of the Width of the Turbulent Combustion Zone with the Fuel Composition, Pressure, Propagation Speed, and Electrical Conductivity of the Flame // Technical physics. 2020. Vol. 65. № 7. P. 1020-1023. DOI: 10.1134/S106378422007018X.

12. Shaikin A.P., Galiev I.R. Issledovanie svyazi skorosti rasprostraneniya plameni metanovodorodnogo topliva DVS s parametrami ionizatsionnogo toka i kontsentratsiei vodoroda // Izvestiya vysshikh uchebnykh zavedenii. Aviatsionnaya tekhnika. 2016. № 2. S. 87-91.

13. Verma G., Prasad R.K., Agarwal R.A., Jain S., Agarwal A.K. Experimental investigations of combustion, performance and emission characteristics of a hydrogen enriched natural gas fuelled prototype spark ignition engine // Fuel. 2016. Vol. 178. P. 209-217. DOI: 10.1016/j.fuel.2016.03.022.

14. Pastor J.V., Olmeda P., Martin J., Lewiski F. Methodology for Optical Engine Characterization by Means of the Combination of Experimental and Modeling Techniques // Applied Sciences (Switzerland). 2018. Vol. 8. № 12. Article number 2571. DOI: 10.3390/app8122571.

15. Khudhair O., Shahad H.A.K. A Review of Laminar Burning Velocity and Flame Speed of Gases and Liquid Fuels // International Journal of Current Engineering and Technology. 2017. Vol. 7. № 1. P. 183-197.

16. Giusti A., Mastorakos E. Turbulent Combustion Modelling and Experiments: Recent Trends and Developments // Flow, Turbulence and Combustion. 2019. Vol. 103. № 4. R. 847-869. DOI: 10.1007/s10494-019-00072-6.

17. Cutcher H.C., Barlow R.S., Magnotti G., Masri A.R. Statistics of scalar dissipation and reaction progress in turbulent flames with compositional inhomogeneities // Combustion and Flame. 2018. Vol. 194. R. 439-451. DOI: 10.1016/j.combustflame.2018.05.030.

18. Giusti A., Mastorakos E., Hassa C., Heinze J., Magens E., Zedda M. Investigation of flame structure and soot formation in a single sector model combustor using experiments and numerical simulations based on the large eddy Simulation/Conditional moment closure approach // Journal of engineering for gas Turbines and Power. 2018. Vol. 140. № 6. Article number 061506. DOI: 10.1115/1.4038025.

19. Evans M.J., Sidey J.A.M., Ye J., Medwell P.R., Dally B.B., Mastorakos E. Temperature and reaction zone imaging in turbulent swirling dual-fuel flames // Proceedings of the Combustion Institute. 2018. Vol. 37. № 2. R. 2159-2166. DOI: 10.1016/j.proci.2018.07.076.

20. Shaikin A.P., Galiev I.R. Specific features of combustion of methane-hydrogen mixtures in piston power plants and engines // Bezopasnost’ Truda v Promyshlennosti. 2020. Vol. 2020. № 1. R. 21-25. DOI: 10.24000/0409-2961-2020-1-21-25.