Журналов:     Статей:        

Frontier Materials & Technologies. 2020; : 43-50

ИССЛЕДОВАНИЕ ВЛИЯНИЯ СОДЕРЖАНИЯ ZNCL2 ВО ФЛЮСЕ ДЛЯ ПАЙКИ AL-MG СПЛАВОВ НА ЕГО ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА

Степанов М. А.

https://doi.org/10.18323/2073-5073-2020-4-43-50

Аннотация

Алюминиево-магниевые сплавы - пластичные сплавы, обладающие хорошей свариваемостью, коррозийной стойкостью и высоким уровнем усталостной прочности. В алюминиево-магниевых сплавах содержится до 6 % магния. Чем выше его содержание, тем прочнее сплав. Однако данные сплавы с высоким содержанием магния с трудом поддаются пайке, поэтому стоит задача определить составы флюсов для высокотемпературной пайки данных сплавов, обеспечивающие высокое качество паяных соединений. В работе было исследовано влияние активатора ZnCl2 на технологические свойства флюса. Проведено испытание составов флюса с содержанием ZnCl2 от 0 до 12 %. Испытания проводились на сплаве АМг2 с применением припоя АК12. Оценено влияние содержания ZnCl2 на площадь растекания припоя, равномерность растекания и состояние поверхности растекшейся капли припоя. Выявлено значительное увеличение площади растекания припоя при введении во флюс активатора ZnCl2, введение 4 % хлорида цинка позволило увеличить площадь растекания капли припоя на 50-55 %. Рассмотрены образцы, паянные флюсом, который не содержит ZnCl2, и флюсами с добавкой хлорида цинка. Содержание активатора во флюсе увеличивалось на 4 % до достижения 12 %. Выявлено сильное взаимодействие флюса с основным металлом с выделением газообразных продуктов, приводящих к порообразованию. В результате работы установлено, что ZnCl2 в значительной степени влияет на свойства флюса, позволяя увеличить площадь растекания припоя, однако в результате реакций с образованием газообразных продуктов может приводить к пористости паяного соединения.
Список литературы

1. Sharma A., Lee S.H., Ban H.O., Shim Y.S., Jung J.-P. Effect of Various Factors on the Brazed Joint Properties in Al Brazing Technology // Journal of Welding and Joining. 2016. Vol. 34. № 2. P. 30-35.

2. Xue S.-B., Zhang L., Han Z.-J., Huang X. Reaction mechanism between oxide film on surface of Al-Li alloy and CsF-AlF3 flux // Transactions of Nonferrous Metals Society of China. 2008. Vol. 18. № 1. P. 121-125.

3. Sekulic D.P. Brazing of Aluminum Alloys, Aluminum Science and Technology // ASM Handbook. Vol. 22A: Fundamentals of Modeling for metals processing. Novelty: ASM International, 2018. P. 763-782.

4. Xiao B., Wang D., Cheng F., Wang Y. Development of ZrF4-containing CsF-AlF3 flux for brazing 5052 aluminium alloy with Zn-Al filler metal // Materials & Design. 2016. Vol. 90. P. 610-617.

5. Ferraris S., Perero S., Ubertalli G. Surface Activation and Characterization of Aluminum Alloys for Brazing Optimization // Coatings. 2019. Vol. 9. № 7. Article number 459. doi.org/10.3390/coatings9070459

6. Yao Z., Xue S.B., Zhang J.X. Effect of Various Nanoparticles (GaF3, ZnF2, Zn(BF4)2 and Ga2O3) Additions on the Activity of CsF-RbF-AlF3 Flux and Mechanical Behavior of Al/Steel Brazed Joints // Crystals. 2020. Vol. 10. № 8. Article number 683.

7. Lee S.-J., Jung D.-H., Jung J.-P. Brazing and principle of aluminum // Journal of Microelectronics and Packaging Society. 2017. Vol. 24. № 4. P. 1-7.

8. Zahr J., Oswald S., Turpe M., Ullrich H.J., Fussel U. Characterisation oxide and hydroxide layers on technical aluminum materials using XPS // Vacuum. 2012. Vol. 86. № 9. P. 1216-1219.

9. Zhu Z., Chen Y., LuoA.A., Liu L. First conductive atomic force microscopy investigation on the oxide-film removal mechanism by chloride fluxes in aluminum brazing // Scripta Materialia. 2017. Vol. 138. P. 12-16.

10. Panda E., Jeurgens L.P.H., Mittemeijer E.J. Interface thermodynamics of ultra-thin, amorphous oxide overgrowths on AlMg alloys // Acta Materialia. 2010. Vol. 58. № 5. P. 1770-1781.

11. Panda E., Jeurgens L.P.H., Richter G., Mittemeijer E.J. The amorphous to crystalline transition of ultrathin (Al, Mg)-oxide films grown by thermal oxidation of AlMg alloys: a high-resolution transmission electron microscopy investigation // Journal of Materials Research. 2010. Vol. 25. № 5. P. 871-879.

12. Zahi S., Daud A.R. Phase diagram, thermodynamics and microstructure of Al-Mg system // Proceedings of the IEEE/CPMT International Electronic Manufacturing Technology (IEMT) Symposium. 2010. Article number 574613.

13. Xiao B., Wang D., Cheng F., Wang Y. Oxide film on 5052 aluminium alloy: Its structure and removal mechanism by activated CsF-AlF3 flux in brazing // Applied Surface Science. 2015. Vol. 337. P. 208-215.

14. Cheng F.J., Yao J.F., Yang Z.W., Wang Y., Xiao B. Structure and composition of oxide film on 5083 alloy at brazing temperature // Materials Science and Technology (United Kingdom). 2015. Vol. 31. № 11. P. 1282-1287.

15. Cheng F., Zhao H., Wang Y., Xiao B. Evolution of surface oxide film of typical aluminum alloy during medium-temperature brazing process // Transactions of Tianjin University. 2014. Vol. 20. № 1. P. 54-59.

16. Cheng F.-J., Qi S.-M., Yang Z.-W., Yao J.-F., Zhao H. Self-brazing Mechanism of Aluminum Alloy at Medium Temperature // Cailiao Gongcheng/Journal of Materials Engineering. 2018. Vol. 46. № 1. P. 31-36.

17. Dai W., Xue S.-B., Lou J.-Y., Lou Y.-B., Wang S.-Q. Torch brazing 3003 aluminum alloy with Zn-Al filler metal // Transactions of Nonferrous Metals Society of China. 2012. Vol. 22. № 1. P. 30-35.

18. Xiao B., Wang D., Cheng F., Wang Y. Development of ZrF4-containing CsF-AlF3 flux for brazing 5052 aluminium alloy with Zn-Al filler metal // Materials and Design. 2016. Vol. 90. P. 610-617.

19. Hu J., Zhang Q. Investigation of pseudo-ternary system AlF3-KF-KCl // Thermochimica Acta. 2003. Vol. 404. № 1-2. P. 3-7.

20. Khorunov V.F., Sabadash O.M. 9 - Brazing of aluminium and aluminium to steel // Advances in Brazing. Science, Technology and Applications. Cambridge: Woodhead Publishing, 2013. P. 249-279.

Frontier Materials & Technologies. 2020; : 43-50

THE STUDY OF THE INFLUENCE OF ZNCL2 CONTENT IN A FLUX FOR BRAZING OF AL-MG ALLOYS ON ITS TECHNOLOGICAL PROPERTIES

Stepanov M. A.

https://doi.org/10.18323/2073-5073-2020-4-43-50

Abstract

Aluminum-magnesium alloys are ductile alloys with good weldability, corrosion resistance, and a high fatigue strength level. Aluminum-magnesium alloys contain up to 6 % magnesium. The higher its content, the stronger is the alloy. However, these alloys with high magnesium content are difficult to solder. Therefore, the task is to create flux compositions for high-temperature brazing of these alloys providing high-quality brazed joints. The work investigated the influence of the ZnCl2 activator on the technological properties of the flux. The authors tested the flux compositions with ZnCl2 content of 0 to 12 %. The tests were carried out on the AMg2 alloy using the AK12 solder. The authors evaluated the influence of ZnCl2 content on the spreading area of solder, the spreading uniformity, and the surface condition. The study revealed a significant increase in the spreading area of solder when introducing the ZnCl2 activator into the flux and the introduction of 4 % zinc chloride made it possible to increase the spreading zone of a solder drop by 50-55 %. The authors considered the samples brazed with a flux that did not contain ZnCl2 and using flux with the addition of 4 % ZnCl2. Activator content in the flux increased by 4 % before reaching 12 %. The study identified the strong interaction between the flux and the base metal with the release of gaseous products leading to the pore formation. As a result of the work, it was revealed that ZnCl2 significantly affects the flux properties, allowing increasing the solder spreading area; however, in the result of reactions with the formation of gaseous products, it can lead to the porosity of the brazed joint.
References

1. Sharma A., Lee S.H., Ban H.O., Shim Y.S., Jung J.-P. Effect of Various Factors on the Brazed Joint Properties in Al Brazing Technology // Journal of Welding and Joining. 2016. Vol. 34. № 2. P. 30-35.

2. Xue S.-B., Zhang L., Han Z.-J., Huang X. Reaction mechanism between oxide film on surface of Al-Li alloy and CsF-AlF3 flux // Transactions of Nonferrous Metals Society of China. 2008. Vol. 18. № 1. P. 121-125.

3. Sekulic D.P. Brazing of Aluminum Alloys, Aluminum Science and Technology // ASM Handbook. Vol. 22A: Fundamentals of Modeling for metals processing. Novelty: ASM International, 2018. P. 763-782.

4. Xiao B., Wang D., Cheng F., Wang Y. Development of ZrF4-containing CsF-AlF3 flux for brazing 5052 aluminium alloy with Zn-Al filler metal // Materials & Design. 2016. Vol. 90. P. 610-617.

5. Ferraris S., Perero S., Ubertalli G. Surface Activation and Characterization of Aluminum Alloys for Brazing Optimization // Coatings. 2019. Vol. 9. № 7. Article number 459. doi.org/10.3390/coatings9070459

6. Yao Z., Xue S.B., Zhang J.X. Effect of Various Nanoparticles (GaF3, ZnF2, Zn(BF4)2 and Ga2O3) Additions on the Activity of CsF-RbF-AlF3 Flux and Mechanical Behavior of Al/Steel Brazed Joints // Crystals. 2020. Vol. 10. № 8. Article number 683.

7. Lee S.-J., Jung D.-H., Jung J.-P. Brazing and principle of aluminum // Journal of Microelectronics and Packaging Society. 2017. Vol. 24. № 4. P. 1-7.

8. Zahr J., Oswald S., Turpe M., Ullrich H.J., Fussel U. Characterisation oxide and hydroxide layers on technical aluminum materials using XPS // Vacuum. 2012. Vol. 86. № 9. P. 1216-1219.

9. Zhu Z., Chen Y., LuoA.A., Liu L. First conductive atomic force microscopy investigation on the oxide-film removal mechanism by chloride fluxes in aluminum brazing // Scripta Materialia. 2017. Vol. 138. P. 12-16.

10. Panda E., Jeurgens L.P.H., Mittemeijer E.J. Interface thermodynamics of ultra-thin, amorphous oxide overgrowths on AlMg alloys // Acta Materialia. 2010. Vol. 58. № 5. P. 1770-1781.

11. Panda E., Jeurgens L.P.H., Richter G., Mittemeijer E.J. The amorphous to crystalline transition of ultrathin (Al, Mg)-oxide films grown by thermal oxidation of AlMg alloys: a high-resolution transmission electron microscopy investigation // Journal of Materials Research. 2010. Vol. 25. № 5. P. 871-879.

12. Zahi S., Daud A.R. Phase diagram, thermodynamics and microstructure of Al-Mg system // Proceedings of the IEEE/CPMT International Electronic Manufacturing Technology (IEMT) Symposium. 2010. Article number 574613.

13. Xiao B., Wang D., Cheng F., Wang Y. Oxide film on 5052 aluminium alloy: Its structure and removal mechanism by activated CsF-AlF3 flux in brazing // Applied Surface Science. 2015. Vol. 337. P. 208-215.

14. Cheng F.J., Yao J.F., Yang Z.W., Wang Y., Xiao B. Structure and composition of oxide film on 5083 alloy at brazing temperature // Materials Science and Technology (United Kingdom). 2015. Vol. 31. № 11. P. 1282-1287.

15. Cheng F., Zhao H., Wang Y., Xiao B. Evolution of surface oxide film of typical aluminum alloy during medium-temperature brazing process // Transactions of Tianjin University. 2014. Vol. 20. № 1. P. 54-59.

16. Cheng F.-J., Qi S.-M., Yang Z.-W., Yao J.-F., Zhao H. Self-brazing Mechanism of Aluminum Alloy at Medium Temperature // Cailiao Gongcheng/Journal of Materials Engineering. 2018. Vol. 46. № 1. P. 31-36.

17. Dai W., Xue S.-B., Lou J.-Y., Lou Y.-B., Wang S.-Q. Torch brazing 3003 aluminum alloy with Zn-Al filler metal // Transactions of Nonferrous Metals Society of China. 2012. Vol. 22. № 1. P. 30-35.

18. Xiao B., Wang D., Cheng F., Wang Y. Development of ZrF4-containing CsF-AlF3 flux for brazing 5052 aluminium alloy with Zn-Al filler metal // Materials and Design. 2016. Vol. 90. P. 610-617.

19. Hu J., Zhang Q. Investigation of pseudo-ternary system AlF3-KF-KCl // Thermochimica Acta. 2003. Vol. 404. № 1-2. P. 3-7.

20. Khorunov V.F., Sabadash O.M. 9 - Brazing of aluminium and aluminium to steel // Advances in Brazing. Science, Technology and Applications. Cambridge: Woodhead Publishing, 2013. P. 249-279.