Журналов:     Статей:        

Вестник Томского государственного университета. Математика и механика. 2017; 47: 63-74

К вопросу о точности решения прямой задачи внешней баллистики

Королев С. А., Липанов А. М., Русяк И. Г.

https://doi.org/10.17223/19988621/47/7

Аннотация

Статья посвящена исследованию возможности повышения точности решения прямой задачи внешней баллистики за счет решения более полной системы уравнений движения метаемого тела (снаряда) и расчета аэродинамических коэффициентов сил и моментов на основе моделирования гидродинамики его обтекания.
Список литературы

1. Дмитриевский А.А., Лысенко Л.Н. Внешняя баллистика. М.: Машиностроение, 2005. 608 с.

2. Русяк И.Г., Карпов А.И., Королев С.А., Карсканов С.А. Расчет траектории движения снаряда в атмосфере с учетом гидродинамики его обтекания // Вопросы оборонной техники. Серия 14. 2015. Вып. 2. С. 130-141.

3. Ivan Rusyak, Vadim Sufyanov, Stanislav Korolev, Mikhail Ermolaev. Software complex for simulation of internal and external ballistics of artillery shot // International Conference on Military Technologies 2015 (ICMT 2015), Brno, May 19 - 21, 2015: University of Defence, Brno, 2015. P. 9-17. DOI: 10.1109/MILTECHS.2015.7153682.

4. ГОСТ В 24288-80. Снаряды неуправляемые артиллерийские, реактивные, активно-реактивные. Метод расчета траектории полета. М.: Издательство стандартов, 1980. 55 с.

5. Hairer E., Norsett S.P., Wanner G. Solving Ordinary Differential Equations. Vol. 1. Berlin: Springer-Verlag, 1991. 528 p.

6. Королев С.А., Карсканов С.А. Математическое моделирование обтекания тела вращения сверхзвуковым потоком газа // Вестник Удмуртского университета. Серия «Математика. Механика. Компьютерные науки». 2014. №3. С. 123-133.

7. Липанов А.М. Теоретическая гидромеханика ньютоновских сред. М.: Наука, 2011. 551 с.

8. Wilcox D.C. Turbulence Modeling for CFD. California, 1994. 460 p.

9. Launder B.E., Spalding D.B. The numerical computation of turbulent flows // Computer Methods in Applied Mechanics and Engineering. 1974. V. 3. P. 269-289.

10. Sarkar S., Hussaini M.Y. Computation of the sound generated by isotropic turbulence. NASA Contract Report 93-74. NASA Langley Research Center, Hampton, VA, 1993.

Tomsk State University Journal of Mathematics and Mechanics. 2017; 47: 63-74

On the issue of accuracy of the solution of the direct problem of external ballistics

Korolev S. A., Lipanov A. M., Rusyak I. G.

https://doi.org/10.17223/19988621/47/7

Abstract

The paper is devoted to the possibility to increase the accuracy of the solution of the direct problem of external ballistics by means of solving a more comprehensive system of projectile motion equations and calculating the coefficients of aerodynamic forces and moments based on the hydrodynamic simulation of the flow around the projectile. The mathematical modl of external ballistics presented in this article takes into account rotation of the projectile and oscillation of the latter in relation to the center of mass. Simulation of the flow around the projectile has been performed by solving the Favre averaged Navier-Stokes equations (FANS), using the k - s turbulence model including compressibility. The numerical method has been implemented with the application of the ANSYS Fluent computational fluid dynamics module. Calculation of aerodynamic characteristics of the projectiles has been carried out in a wide range of parameters: Mach number, M = 0.5-5.0; angle of attack, a = 0-20°; and rotation speed, юх = 500-2000 rad/s. Based on numerical simulation results, the approximate dependences for coefficients of aerodynamic force and moment have been obtained using the least square method. The effect of the considered factors on the solution of trajectory problem has been investigated for three types of projectiles: the high explosive rotating projectile, the high explosive feathered projectile, and the armor-piercing subcaliber feathered projectile
References

1. Dmitrievskii A.A., Lysenko L.N. Vneshnyaya ballistika. M.: Mashinostroenie, 2005. 608 s.

2. Rusyak I.G., Karpov A.I., Korolev S.A., Karskanov S.A. Raschet traektorii dvizheniya snaryada v atmosfere s uchetom gidrodinamiki ego obtekaniya // Voprosy oboronnoi tekhniki. Seriya 14. 2015. Vyp. 2. S. 130-141.

3. Ivan Rusyak, Vadim Sufyanov, Stanislav Korolev, Mikhail Ermolaev. Software complex for simulation of internal and external ballistics of artillery shot // International Conference on Military Technologies 2015 (ICMT 2015), Brno, May 19 - 21, 2015: University of Defence, Brno, 2015. P. 9-17. DOI: 10.1109/MILTECHS.2015.7153682.

4. GOST V 24288-80. Snaryady neupravlyaemye artilleriiskie, reaktivnye, aktivno-reaktivnye. Metod rascheta traektorii poleta. M.: Izdatel'stvo standartov, 1980. 55 s.

5. Hairer E., Norsett S.P., Wanner G. Solving Ordinary Differential Equations. Vol. 1. Berlin: Springer-Verlag, 1991. 528 p.

6. Korolev S.A., Karskanov S.A. Matematicheskoe modelirovanie obtekaniya tela vrashcheniya sverkhzvukovym potokom gaza // Vestnik Udmurtskogo universiteta. Seriya «Matematika. Mekhanika. Komp'yuternye nauki». 2014. №3. S. 123-133.

7. Lipanov A.M. Teoreticheskaya gidromekhanika n'yutonovskikh sred. M.: Nauka, 2011. 551 s.

8. Wilcox D.C. Turbulence Modeling for CFD. California, 1994. 460 p.

9. Launder B.E., Spalding D.B. The numerical computation of turbulent flows // Computer Methods in Applied Mechanics and Engineering. 1974. V. 3. P. 269-289.

10. Sarkar S., Hussaini M.Y. Computation of the sound generated by isotropic turbulence. NASA Contract Report 93-74. NASA Langley Research Center, Hampton, VA, 1993.