Журналов:     Статей:        

Геосферные исследования. 2019; : 35-61

Геохимия, минералогия и генезис редкометалльно-угольного месторождения в пласте XI на юге Кузнецкого бассейна

Арбузов Сергей Иванович, Вергунов Алексей Викторович, Ильенок Сергей Сергеевич, Иванов Владимир Александрович, Иванов Владимир Петрович, Соктоев Булат Ринчинович

https://doi.org/10.17223/25421379/11/3

Аннотация

Выполнено исследование редкометалльных руд Nb-Ta-Zr-Hf-Y-REE-Ga состава, выявленных в пласте XI кемеровской свиты на юге Кузнецкого бассейна. Установлена связь их формирования с наличием в угольном пласте измененных вулканогенных пирокластических горизонтов, контрастно обогащенных редкими элементами. Рудное вещество сконцентрировано преимущественно в тонкодисперсной минеральной фазе, представленной в основном Zr-Nb-Ti-Fe оксидами, тонкодисперсными цирконами, редкоземельными карбонатами (бастнезит) и фосфатами (монацит, ксенотим, гойяцит). Обоснование связи комплексного редкометалльного оруденения с вулканогенной пирокластикой щелочного состава существенно расширяет перспективы выявления подобного оруденения в углях Восточной и Центральной Азии.
Список литературы

1. Андреева И.А., Коваленко В.И. Эволюция магм трахидацитов и пантеллеритов бимодальной ассоциации вулканитов проявления Дзарта Худук, Центральная Монголия: по данным изучения включений в минералах // Петрология. 2011. Т. 19, № 4.С. 363–385.

2. Арбузов С.И., Ершов В.В., Поцелуев Л.Л., Рихванов Л.П. Редкие элементы в углях Кузнецкого бассейна. Кемерово,2000. 248 с.

3. Арбузов С.И., Ершов В.В., Рихванов Л.П., Усова Т.Ю., Кяргин В.В., Булатов А.А., Дубовик Н.Е. Редкометалльный потенциал углей Минусинского бассейна. Новосибирск : Изд-во СО РАН, филиал «Гео», 2003. 347 с.

4. Арбузов С.И., Ершов В.В. Геохимия редких элементов в углях Сибири. Томск , Изд. дом «Д-Принт», 2007. 468 c

5. Арбузов С.И., Машенькин В.С., Рыбалко В.И., Судыко А.Ф. Редкометалльный потенциал углей Северной Азии (Сибирь, Российский Дальний Восток, Монголия) // Геология и минерально-сырьевые ресурсы Сибири. 2014. № 3, ч. 2. С. 41-44

6. Вергунов А.В., Арбузов С.И., Соболенко В.М. Минералогия и геохимия тонштейнов в углях Бейского месторождения Минусинского бассейна // Известия Томского политехнического университета. Инжиниринг георесурсов. 2019. Т. 330, № 2. C. 155-166

7. Григорьев Н.А. Среднее содержание химических элементов в горных породах, слагающих верхнюю часть континентальной коры // Геохимия. 2003. № 7. С. 785-792

8. Крайнов С.Р. Геохимия редких элементов в подземных водах (в связи с геохимическими поисками месторождений). М. , Недра, 1973. 296 с

9. Лепокурова О.Е. Содовые подземные воды юга-востока Западной Сибири, геохимия и условия формирования , дис. ... д-ра геол.-минерал. наук. Томск, 2018. 217 с

10. Середин В.В. Первые данные об аномальных концентрациях ниобия в углях России // Доклады академии наук, 1994. Т. 335, № 5. С. 634-636

11. Середин В.В. Металлоносность углей, условия формирования и перспективы освоения // Угольная база России. Т. VI (сводный, заключительный), Основные закономерности углеобразования и размещения угленосности на территории России. М. , Геоинформмарк, 2004. С. 453-509

12. Угольная база России. Т. II, Угольные бассейны и месторождения Западной Сибири (Кузнецкий, Горловский, ЗападноСибирский бассейны; месторождения Алтайского края и Республики Алтай). М. , Геоинформмарк, 2003. 604 с

13. Шварцев С.Л. Домрочева Е.В., Рассказов Н.М. Геохимия и формирование содовых вод Кузбасса // Известия Томского политехнического университета. 2011. Т. 318, № 1. С. 128-134

14. Ярмолюк В.В., Козловский А.М., Кузьмин М.И. Позднепалеозойский-раннемезозойский внутриплитный магматизм северной Азии, траппы, рифты, батолиты-гиганты и геодинамика их формирования // Петрология. 2013. Т. 21, № 2. С. 115-142

15. Ярмолюк В.В., Лыхин Д.А., Козловский А.М., Никифоров А.В., Травин А.В. Состав, источники и механизмы формирования редкометалльных гранитоидов позднепалеозойской Восточно-Саянской зоны щелочного магматизма (на примере массива Улан-Тологой) // Петрология. 2016. Т. 24, № 5. С. 515-536

16. Arbuzov S.I., Mezhibor A.M., Spears D.A., Ilenok S.S., Shaldybin M.V., Belaya E.V. Nature of Tonsteins in the Azeisk Deposit of the Irkutsk Coal Basin (Siberia, Russia) // Int. J. of Coal Geology. 2016. V. 152. P. 99-111. DOI, 10.1016/j.coal.2015.12.001

17. Bouska V., Pesek J. Quality parameters of lignite of the North Bogemian Basin in the Czech Republic in comparison with the world average lignite // Int. J. Coal Geol. 1999. V. 40. P. 211-235

18. Crowley S.S., Stanton R.W., Ryer T.A. The effects of volcanic ash on the maceral and chemical composition of the C coal bed, Emery Coal Field, Utah // Organic Geochemistry. 1989. V. 14. P. 315-331

19. Dai S., Zhou Y., Zhang M., Wang X., Wang J., Song X., Jiang Y., Luo Y., Song Z., Yang Z., Ren D. A new type of Nb (Ta)-Zr(Hf)-REE-Ga polymetallic deposit in the late Permian coal-bearing strata, eastern Yunnan, southwestern China, Possible economic significance and genetic implications // Int. J. of Coal Geology. 2010. V. 83. P. 55-63

20. Dai S., Ren D., Chou C.-L., Finkelman R.B., Seredin V.V., Zhou Y. Geochemistry of trace elements in Chinese coals, a review of abundances, genetic types, impacts on human health, and industrial utilization // Int. J. of Coal Geology. 2012. V. 94. P. 3-21

21. Dai S., Luo Y., Seredin V.V., Ward C., Hower J., Zhao L., Liu S., Zhao C., Tian H., Zou J. Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China, Enrichment and occurrence modes of minerals and trace elements // Int. J. of Coal Geology. 2014. V. 122. P. 110-128

22. Dai S., Chekryzhov I., Seredin V., Nechaev V., Graham I., Hower J., Ward C., Ren D., Wang X. Metalliferous coal deposits in East Asia (Primorye of Russia and South China), a review of geodynamic controls and styles of mineralization // Gondwana Res. 2016a. V. 29 (1). P. 60-82. http,//dx.doi.org/10.1016/j.gr.2015.07.001

23. Dai S., Yan X., Ward C.R., Hower J.C., Zhao L., Wang X., Zhao L., Ren D., Finkelman R.B. Valuable elements in Chinese coals, a review // Int. Geology Review. 2016b. DOI, 10.1080/00206814.2016.1197802

24. Dai S., Ward C.R., Graham C.R., French D., Hower J.C., Zhao L., Wang X. Altered volcanic ashes in coal and coal-bearing sequences, A review of their nature and significance // Earth-Science Reviews. 2017. V. 175. P. 44-74

25. Dai S., Yan X., Ward C.R., Hower J.C., Zhao L., Wang X., Zhao L., Ren D., Finkelman R.B. Valuable elements in Chinese coals, a review.// International Geology Review. 2018. V. 60 (5-6). P. 590-620. http,//dx.doi.org/10.1080/00206814.2016.1197802

26. Dai S., Finkelman R.B. Coal as a promising source of critical elements, Progress and future Prospects // Int. J. of Coal Geology. 2018. V. 186. P. 155-164

27. Hower J.C., Rupport L.F., Cortland F.E. Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky // Int. J. Coal Geol. 1999. V. 39 (1-3). P. 141-153

28. Ketris M.P., Yudovich Ya.E. Estimations of Clarkes for carbonaceous biolithes, world average for trace element contents in black shales and coals // Int. J. of Coal Geology. 2009. V. 78. P.135-148. https,//doi.org/10.1007/s11631-015-0053-7

29. Lin M., Bai G., Duan P., Xu J., Duan D., Li Z. Perspective of comprehensive exploitation of the valuable elements of Chinese coal // Energy exploration & exploitation, 2013. V. 31, Nо. 4. P. 623-627

30. Lyons P.C., Outerbridge W.E., Triplehorn D.M., Evans H.T., Congdon R.D., Capiro M., Hess J.S., Nash W.P. An Application isochron, A caolinized Carboniferous air-fall volcanic-ash deposit (tonstein) // Geol. Soc. Of Amer. Bull. 1992. V. 104. P. 1515-1527

31. McDonough W.F., Sun S. The composition of the Earth // Chemical Geology. 1995. V. 120. P. 223-253

32. Moore D.M., Reynolds R.C. Jr. X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford , Oxford University Press, 1997

33. Qin S.J., Sun Y.Z., Li Y.H., Wang J.X., Zhao C.L., Gao K. Coal deposits as promising alternative sources for gallium // Earth-Sci. Rev. 2015. V. 150. P. 95-101

34. Seredin V.V. From coal science to metal production and environmental protection, A new story of success // Int. J. Coal Geol. 2012. V. 90-91. P. 1-3

35. Seredin V., Dai S. Coal deposits as potential alternative sources for lanthanides and yttrium // Int. J. Coal Geol. 2012. V. 94. P. 67-93

36. Seredin V., Dai S., Sun Y., Chekryzhov I. Coal deposits as promising sources of rare metals for alternative power and energyefficient technologies // Appl. Geochem. 2013. V. 31. P. 1-11

37. Seredin V., Finkelman R. Metalliferous coals: a review of the main genetic and geochemical types // Int. J. Coal Geol. 2008. V. 76. P. 253-289

38. Spears D.A. The origin of tonsteins, an overview, and links with seatearths, fireclays and fragmental clay rocks // Int. J. Coal Geology. 2012. V. 94. P. 22-31

39. Taylor S.R., McLennan S.M. The Continental Crust: Its Composition and Evolution. Oxford ; London ; Edinburgh ; Boston ; Palo Alto ; Melbourne : Blackwell Scientific, 1985. 312 p

40. White J.C., Parker D.F., Ren M. The origin of trachyte and pantellerite from Pantelleria, Italy: Insights from major element, trace element, and thermodynamic modelling // Journal of Volcanology and Geothermal Research. 2009. V. 179. P. 33-55

41. Winchester J.A., Floyd P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements // Chemical Geology. 1977. V. 20. P. 325-343

42. Xin F., Xu H., Tang D., Yang J., Chen Y., Cao L., Qu H. Pore structure evolution of low-rank coal in China // Int. J. of Coal Geol. https://doi.org/10.1016/j.coal.2019.02.013

43. Zhao C., Liu B., Xiao L., Li Y., Liu S., Li Z., Zhao B., Ma J., Chu G., Gao P., Sun Y. Significant enrichment of Ga, Rb, Cs, REEs and Y in the Jurassic No. 6 coal in the Iqe Coalfield, northern Qaidam Basin, China - A hidden gem // Ore Geology Reviews. 2017. V. 83. P. 1-13

44. Zhao L., Dai S., Graham I.T., Li X., Liu H., Song X., Hower J.C., Zhou Y. Cryptic sediment-hosted critical element mineralization from eastern Yunnan Province, southwestern China: mineralogy, geochemistry, relationship to Emeishan alkaline magmatism and possible origin // Ore Geol. Rev. 2017. V. 80. P. 116-140

45. Zhao L., Zhu Q., Jia S., Zou J., Nechaev V., Dai S. Origin of minerals and critical metals in an argillized tuff from the Huay-ingshan Coalfield, southwestern China // Minerals. 2017. V. 7. P. 92. http://dx.doi.org/10.3390/min7060092

46. Zhou Y., Bohor B.F., Ren Y. Trace element geochemistry of altered volcanic ash layers (tonsteins) in Late Permian coal-bearing formations of eastern Yunnan and western Guizhou Province China // Int. J. of Coal Geol. 2000. V. 44. P. 305-324

Geosphere Research. 2019; : 35-61

Geochemistry, mineralogy and genesis of rare-metal coal deposit in the Seam XI, Southern part of the Kuznetsk Basin

Arbuzov Sergey Iv., Vergunov Alexey V., Ilenok Sergey S., Ivanov Vladimir A., Ivanov Vladimir P., Soktoev Bulat R.

https://doi.org/10.17223/25421379/11/3

Abstract

The article presents results of the study of rare metal ores that were identified in the seam XI of the Kemerovo suite in the southern part of the Kuznetsk basin. The coals in the seam XI represent polymetallic ores of of Nb-Ta-Zr-Hf-Y-REE-Ga composition. Their formation is associated with the thick (6-15 ) non-coal layers, contrastively enriched with Nb, Ta, Zr, Hf, Y, REE, Ga, Th, U, Sn and other lithophylic elements, in the coal seam. Geochemical characteristics of these layers and the composition of relict minerals allows connecting these horizons with the input of acid volcanic pyroclastic material of alkaline composition during peat accumulation. The restored composition shows the correspondence of the volcanogenic pyroclastics to comendites-pantellerites. A possible source are pantellerite ashes of Mongolia and south-east of Siberia. They are contrastively enriched with Nb, Ta, Zr, Hf, Y, REE, Ga, Th and U. We have established that the process of coalification was accompanied by redistribution of these elements in the coal seam and the formation of rare metal mineralization. The redistribution occurred in the early stages of coalification with the participation of soda water. Distribution of main ore elements in the vertical section of the coal seam emphasizes their connection with the volcanogenic pyroclastic horizon and reflects the geochemical zonation due to the chemical elements migration with the participation of aqueous solutions. This is particularly evident for REE and well expressed on the chondrite- and upper continental crust normalized diagrams of the elements distribution. Several elements (Ta, Hf, and Ga) of the ore spectrum are characterized by weak migration capacity in these conditions and accumulate in or in the immediate vicinity of the volcanogenic layer. The ore substance is concentrated predominantly in finely dispersed mineral phase, represented mainly with Zr-Nb-Ti-Fe oxides, fine- grained zircon, REE carbonates (bastnesite) and phosphates (monazite, xenotime, goyazite). Some elements are found in the scattered form in organic matter. The epigenetic genesis of most minerals is clearly visible by their distribution in the coal matrix, confinedness to the pore volume, micro-veins and parts directly connected to the volcanic layer. The studies allow to develop a model of formation with similar mineralization in coals and to offer a set of search criteria for its discovery. The characteristic feature of such ores is the layer of volcanic pyroclastic rocks of alkaline composition, characterized by increased radioactivity. This feature allows finding such horizons with gamma-ray logging even at the preliminary stage of coal-bearing areas study. The connection of complex NB-Ta-Zr-Hf-Y-REE-Ga mineralization with volcanogenic pyroclastics of alkaline composition significantly expands the perspectives for the detection of such mineralization in the coals of East and Central Asia. The high volcanic activity of this period along with the manifestation of alkaline magmatism contributed to the formation of metal-bearing ash horizons. At the places of ashes burial in peatlands the complex rare-metal-coal deposits formed. Fragmented locations of such ores, established on a vast territory in China and Russia, give a reason to assume that a systematic study of sedimentary basins of this age can help to find a number of such deposits.
References

1. Andreeva I.A., Kovalenko V.I. Evolyutsiya magm trakhidatsitov i pantelleritov bimodal'noi assotsiatsii vulkanitov proyavleniya Dzarta Khuduk, Tsentral'naya Mongoliya: po dannym izucheniya vklyuchenii v mineralakh // Petrologiya. 2011. T. 19, № 4.S. 363–385.

2. Arbuzov S.I., Ershov V.V., Potseluev L.L., Rikhvanov L.P. Redkie elementy v uglyakh Kuznetskogo basseina. Kemerovo,2000. 248 s.

3. Arbuzov S.I., Ershov V.V., Rikhvanov L.P., Usova T.Yu., Kyargin V.V., Bulatov A.A., Dubovik N.E. Redkometall'nyi potentsial uglei Minusinskogo basseina. Novosibirsk : Izd-vo SO RAN, filial «Geo», 2003. 347 s.

4. Arbuzov S.I., Ershov V.V. Geokhimiya redkikh elementov v uglyakh Sibiri. Tomsk , Izd. dom «D-Print», 2007. 468 c

5. Arbuzov S.I., Mashen'kin V.S., Rybalko V.I., Sudyko A.F. Redkometall'nyi potentsial uglei Severnoi Azii (Sibir', Rossiiskii Dal'nii Vostok, Mongoliya) // Geologiya i mineral'no-syr'evye resursy Sibiri. 2014. № 3, ch. 2. S. 41-44

6. Vergunov A.V., Arbuzov S.I., Sobolenko V.M. Mineralogiya i geokhimiya tonshteinov v uglyakh Beiskogo mestorozhdeniya Minusinskogo basseina // Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2019. T. 330, № 2. C. 155-166

7. Grigor'ev N.A. Srednee soderzhanie khimicheskikh elementov v gornykh porodakh, slagayushchikh verkhnyuyu chast' kontinental'noi kory // Geokhimiya. 2003. № 7. S. 785-792

8. Krainov S.R. Geokhimiya redkikh elementov v podzemnykh vodakh (v svyazi s geokhimicheskimi poiskami mestorozhdenii). M. , Nedra, 1973. 296 s

9. Lepokurova O.E. Sodovye podzemnye vody yuga-vostoka Zapadnoi Sibiri, geokhimiya i usloviya formirovaniya , dis. ... d-ra geol.-mineral. nauk. Tomsk, 2018. 217 s

10. Seredin V.V. Pervye dannye ob anomal'nykh kontsentratsiyakh niobiya v uglyakh Rossii // Doklady akademii nauk, 1994. T. 335, № 5. S. 634-636

11. Seredin V.V. Metallonosnost' uglei, usloviya formirovaniya i perspektivy osvoeniya // Ugol'naya baza Rossii. T. VI (svodnyi, zaklyuchitel'nyi), Osnovnye zakonomernosti ugleobrazovaniya i razmeshcheniya uglenosnosti na territorii Rossii. M. , Geoinformmark, 2004. S. 453-509

12. Ugol'naya baza Rossii. T. II, Ugol'nye basseiny i mestorozhdeniya Zapadnoi Sibiri (Kuznetskii, Gorlovskii, ZapadnoSibirskii basseiny; mestorozhdeniya Altaiskogo kraya i Respubliki Altai). M. , Geoinformmark, 2003. 604 s

13. Shvartsev S.L. Domrocheva E.V., Rasskazov N.M. Geokhimiya i formirovanie sodovykh vod Kuzbassa // Izvestiya Tomskogo politekhnicheskogo universiteta. 2011. T. 318, № 1. S. 128-134

14. Yarmolyuk V.V., Kozlovskii A.M., Kuz'min M.I. Pozdnepaleozoiskii-rannemezozoiskii vnutriplitnyi magmatizm severnoi Azii, trappy, rifty, batolity-giganty i geodinamika ikh formirovaniya // Petrologiya. 2013. T. 21, № 2. S. 115-142

15. Yarmolyuk V.V., Lykhin D.A., Kozlovskii A.M., Nikiforov A.V., Travin A.V. Sostav, istochniki i mekhanizmy formirovaniya redkometall'nykh granitoidov pozdnepaleozoiskoi Vostochno-Sayanskoi zony shchelochnogo magmatizma (na primere massiva Ulan-Tologoi) // Petrologiya. 2016. T. 24, № 5. S. 515-536

16. Arbuzov S.I., Mezhibor A.M., Spears D.A., Ilenok S.S., Shaldybin M.V., Belaya E.V. Nature of Tonsteins in the Azeisk Deposit of the Irkutsk Coal Basin (Siberia, Russia) // Int. J. of Coal Geology. 2016. V. 152. P. 99-111. DOI, 10.1016/j.coal.2015.12.001

17. Bouska V., Pesek J. Quality parameters of lignite of the North Bogemian Basin in the Czech Republic in comparison with the world average lignite // Int. J. Coal Geol. 1999. V. 40. P. 211-235

18. Crowley S.S., Stanton R.W., Ryer T.A. The effects of volcanic ash on the maceral and chemical composition of the C coal bed, Emery Coal Field, Utah // Organic Geochemistry. 1989. V. 14. P. 315-331

19. Dai S., Zhou Y., Zhang M., Wang X., Wang J., Song X., Jiang Y., Luo Y., Song Z., Yang Z., Ren D. A new type of Nb (Ta)-Zr(Hf)-REE-Ga polymetallic deposit in the late Permian coal-bearing strata, eastern Yunnan, southwestern China, Possible economic significance and genetic implications // Int. J. of Coal Geology. 2010. V. 83. P. 55-63

20. Dai S., Ren D., Chou C.-L., Finkelman R.B., Seredin V.V., Zhou Y. Geochemistry of trace elements in Chinese coals, a review of abundances, genetic types, impacts on human health, and industrial utilization // Int. J. of Coal Geology. 2012. V. 94. P. 3-21

21. Dai S., Luo Y., Seredin V.V., Ward C., Hower J., Zhao L., Liu S., Zhao C., Tian H., Zou J. Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China, Enrichment and occurrence modes of minerals and trace elements // Int. J. of Coal Geology. 2014. V. 122. P. 110-128

22. Dai S., Chekryzhov I., Seredin V., Nechaev V., Graham I., Hower J., Ward C., Ren D., Wang X. Metalliferous coal deposits in East Asia (Primorye of Russia and South China), a review of geodynamic controls and styles of mineralization // Gondwana Res. 2016a. V. 29 (1). P. 60-82. http,//dx.doi.org/10.1016/j.gr.2015.07.001

23. Dai S., Yan X., Ward C.R., Hower J.C., Zhao L., Wang X., Zhao L., Ren D., Finkelman R.B. Valuable elements in Chinese coals, a review // Int. Geology Review. 2016b. DOI, 10.1080/00206814.2016.1197802

24. Dai S., Ward C.R., Graham C.R., French D., Hower J.C., Zhao L., Wang X. Altered volcanic ashes in coal and coal-bearing sequences, A review of their nature and significance // Earth-Science Reviews. 2017. V. 175. P. 44-74

25. Dai S., Yan X., Ward C.R., Hower J.C., Zhao L., Wang X., Zhao L., Ren D., Finkelman R.B. Valuable elements in Chinese coals, a review.// International Geology Review. 2018. V. 60 (5-6). P. 590-620. http,//dx.doi.org/10.1080/00206814.2016.1197802

26. Dai S., Finkelman R.B. Coal as a promising source of critical elements, Progress and future Prospects // Int. J. of Coal Geology. 2018. V. 186. P. 155-164

27. Hower J.C., Rupport L.F., Cortland F.E. Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky // Int. J. Coal Geol. 1999. V. 39 (1-3). P. 141-153

28. Ketris M.P., Yudovich Ya.E. Estimations of Clarkes for carbonaceous biolithes, world average for trace element contents in black shales and coals // Int. J. of Coal Geology. 2009. V. 78. P.135-148. https,//doi.org/10.1007/s11631-015-0053-7

29. Lin M., Bai G., Duan P., Xu J., Duan D., Li Z. Perspective of comprehensive exploitation of the valuable elements of Chinese coal // Energy exploration & exploitation, 2013. V. 31, No. 4. P. 623-627

30. Lyons P.C., Outerbridge W.E., Triplehorn D.M., Evans H.T., Congdon R.D., Capiro M., Hess J.S., Nash W.P. An Application isochron, A caolinized Carboniferous air-fall volcanic-ash deposit (tonstein) // Geol. Soc. Of Amer. Bull. 1992. V. 104. P. 1515-1527

31. McDonough W.F., Sun S. The composition of the Earth // Chemical Geology. 1995. V. 120. P. 223-253

32. Moore D.M., Reynolds R.C. Jr. X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford , Oxford University Press, 1997

33. Qin S.J., Sun Y.Z., Li Y.H., Wang J.X., Zhao C.L., Gao K. Coal deposits as promising alternative sources for gallium // Earth-Sci. Rev. 2015. V. 150. P. 95-101

34. Seredin V.V. From coal science to metal production and environmental protection, A new story of success // Int. J. Coal Geol. 2012. V. 90-91. P. 1-3

35. Seredin V., Dai S. Coal deposits as potential alternative sources for lanthanides and yttrium // Int. J. Coal Geol. 2012. V. 94. P. 67-93

36. Seredin V., Dai S., Sun Y., Chekryzhov I. Coal deposits as promising sources of rare metals for alternative power and energyefficient technologies // Appl. Geochem. 2013. V. 31. P. 1-11

37. Seredin V., Finkelman R. Metalliferous coals: a review of the main genetic and geochemical types // Int. J. Coal Geol. 2008. V. 76. P. 253-289

38. Spears D.A. The origin of tonsteins, an overview, and links with seatearths, fireclays and fragmental clay rocks // Int. J. Coal Geology. 2012. V. 94. P. 22-31

39. Taylor S.R., McLennan S.M. The Continental Crust: Its Composition and Evolution. Oxford ; London ; Edinburgh ; Boston ; Palo Alto ; Melbourne : Blackwell Scientific, 1985. 312 p

40. White J.C., Parker D.F., Ren M. The origin of trachyte and pantellerite from Pantelleria, Italy: Insights from major element, trace element, and thermodynamic modelling // Journal of Volcanology and Geothermal Research. 2009. V. 179. P. 33-55

41. Winchester J.A., Floyd P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements // Chemical Geology. 1977. V. 20. P. 325-343

42. Xin F., Xu H., Tang D., Yang J., Chen Y., Cao L., Qu H. Pore structure evolution of low-rank coal in China // Int. J. of Coal Geol. https://doi.org/10.1016/j.coal.2019.02.013

43. Zhao C., Liu B., Xiao L., Li Y., Liu S., Li Z., Zhao B., Ma J., Chu G., Gao P., Sun Y. Significant enrichment of Ga, Rb, Cs, REEs and Y in the Jurassic No. 6 coal in the Iqe Coalfield, northern Qaidam Basin, China - A hidden gem // Ore Geology Reviews. 2017. V. 83. P. 1-13

44. Zhao L., Dai S., Graham I.T., Li X., Liu H., Song X., Hower J.C., Zhou Y. Cryptic sediment-hosted critical element mineralization from eastern Yunnan Province, southwestern China: mineralogy, geochemistry, relationship to Emeishan alkaline magmatism and possible origin // Ore Geol. Rev. 2017. V. 80. P. 116-140

45. Zhao L., Zhu Q., Jia S., Zou J., Nechaev V., Dai S. Origin of minerals and critical metals in an argillized tuff from the Huay-ingshan Coalfield, southwestern China // Minerals. 2017. V. 7. P. 92. http://dx.doi.org/10.3390/min7060092

46. Zhou Y., Bohor B.F., Ren Y. Trace element geochemistry of altered volcanic ash layers (tonsteins) in Late Permian coal-bearing formations of eastern Yunnan and western Guizhou Province China // Int. J. of Coal Geol. 2000. V. 44. P. 305-324