Журналов:     Статей:        

Геосферные исследования. 2017; : 28-35

Кристаллохимические и люминесцентные особенности минералов группы турмалина Малханского пегматитового поля (Забайкалье)

Борозновская Н. Н., Корнева А. П., Герасимов В. К.

https://doi.org/10.17223/25421379/5/2

Аннотация

Получены спектры рентгенолюминесценции и результаты энергодисперсионного микронализа для минералов изоморфного ряда эльбаит-лиддикоатит, отобранных из пегматитовых тел Малханского поля. На основании содержания примесных (связанных с вхождением в структуру ионов редкоземельных и других элементов) и собственных (бор-кислород-дырочные центры, вакансии кислорода) дефектов структуры можно судить об условиях среды минералообразования.
Список литературы

1. Борозновская Н.Н. Особенности рентгенолюминесценции полевых шпатов как показатель их генезиса // Записки ВМО. 1989. № 1. С. 110-119

2. Горобец Б.С., Рогожин А.А. Спектры люминесценции минералов : справочник. М. : ВИМС, 2001. 312 с. Загорский В.Е. Малханское месторождение турмалина: типы и природа миарол // Доклады Академии наук. 2010. Т. 431, № 1. С. 181-184

3. Загорский В.Е. Пегматитовое тело Соседка Малханского месторождения цветного турмалина в Забайкалье: состав, внутреннее строение, петрогенезис // Петрология. 2015. Т. 23, № 1. С. 75-100

4. Загорский В.Е., Перетяжко И.С. Пегматиты с самоцветами Центрального Забайкалья. Новосибирск : Наука, 1992. 221 с

5. Кузнецов Г.В., Таращан А.Н. Люминесценция минералов гранитных пегматитов. Киев : Наукова думка, 1988. 177 с

6. Мальчукова E.B., Непомнящих А.И., Буазо Б., Петит Г. Спектроскопическое исследование ионов Eu3+ в алюмоборосиликатных стеклах // Известия вузов. Физика. 2009. Т. 8/2. С. 108-111

7. Цыретарова С.Ю., Еремина Н.С., Кожевникова Н.М., Мокроусов Г.М. Синтез люминофоров красного свечения на основе боросиликатного стекла и фаз переменного состава NаMgSc0.5Lu0.5(MoO4)з:Eu3+ и Na0.5Mg0.5ScLu0.5(MoO4)3:Eu3+ со структурой NASICON // Неорганические материалы. 2015. Т. 51, № 12. С. 1374-1379

8. Gaft М, Reisfeld R., Panczer G. Modern luminescence spectroscopy of minerals and materials. Berlin : Springer-Verlag, 2005. 356 p

9. Henry D.J., Novak M., Hawthorne F.C., Ertl A., Dutrow B.L., Uher P., Pezzotta F. Nomenclature of the tourmaline-supergroup minerals // American Mineralogist. 2011. V. 96. P. 895-913

10. Janek J., Soltys M, Zur L., Pietrasik E., Pisarska J., Pisarski W. A. Luminescence investigations of rare earth doped lead-free borate glasses modified by MO (M = Ca, Sr, Ba) // Materials Chemistry and Physics. 2016. V. 180. P. 237-243

11. London D. Experimental synthesis and stability of tourmaline: a historical overview // The Canadian Mineralogist. 2011. V. 49 (1). P. 117-136

12. Malchukova E., Boizot B., Petite G., Ghaleb D. Optical properties of pristine and y-irradiated Sm-doped borosilicate glasses // Nuclear Instruments and Methods in Physics Research A. 2004. V. 537. P. 411-414

13. Malchukova E., Boizot B., Ghaleb D., Petite G. Structural changes of P-irradiated Gd-doped aluminoborosilicate glasses // Izvestia Vuzov (Russian Physics Journal). 2006. V. 4. P. 89-92

14. Malchukova E., Boizot B. Tunable luminescence from Ce-doped aluminoborosilicate glasses // Journal of Rare Earths. 2014. V. 32 (3). P. 217-220

Geosphere Research. 2017; : 28-35

Chrystallochemical and luminescent characteristics of tourmaline group minerals from Malkhan pegmatite field (Transbaikalia)

Boroznovskaya N. N., Korneva A. P., Gerasimov V. K.

https://doi.org/10.17223/25421379/5/2

Abstract

Characteristics of luminescence of tourmaline group minerals aren't studied profoundly enough still. They are given in seldom publications. The purpose of the work is to show luminescence analysis possibilities in complex approach to tourmaline group minerals study. Studied samples were taken from Sosedka pegmatite body and piles of Mokhovaya pegmatite body of Malkhan pegmatite field in Transbaikalia. According to energy dispersive X-ray microanalysis results studied tourmalines belong to elbaite-liddicoatite isomor-phous series and have 10-35% of rossmanite component. X-ray luminescence (XRL) spectra of studied samples were obtained in optical range of wave lengths (200-800 nm). For Sosedka vein tourmalines (especially for calcium ones) appearing of luminescence bands related to rare earth elements presence in their XRL spectra is rather typical. Appearance of such luminescence bands as ones caused by Ce3+ (340-360 nm), Eu2+ (380-480 nm), Dy3+ (500-600 nm), Sm2+ (680-750 nm) presence may be an evidence of reductive conditions which had place in time of miaroles generation. On the contrary, Eu3+ (620-625 nm) and Sm3+ (600-670 nm) luminescence bands indicate a possible change from reductive conditions to oxidative ones and alkalinity increase, which could take place as a result of depres-surization of miarolitic cavities. Besides REE there is a possibility of Cr3+-related bands appearing at 690-820 nm in tourmaline XRL spectra. Fe3+-related band may appear in 700-750 nm range as a consequence of depressurization and an increase of alkalinity and oxidation potential. Most of intrinsic defects in borosilicates are holes trapped by oxygen atoms, which are, in turn, bonded with boron. For instance, such defects presence causes 650-660 luminescence band appearing. It is possible that excitons, vacancies, internodal oxygen and molecular oxygen also take part in luminescence (the latter two probably would indicate oxidative conditions). 280 nm band is related to oxygen vacancies, which may point that there was some oxygen deficiency in the mineral forming environment. There is a wide band with intensity maximum at 345-355 nm appearing in many spectra. It's probably caused by hole centers presence. Further investigations should be carried out for more precise intrinsic defects definition, but still. At the present moment it may be considered that all of intrinsic luminescence centers in Malkhan field tourmalines are oxygen excited states. XRL spectra of Malkhan pegmatite field tourmalines are rather diverse. XRL analysis results allow concluding that there were reductive and acidic conditions of minerals formation. Samples taken from adjacent miaroles may have different luminescence spectra due to initial differences between compositions of separate melt parts, which turned to miaroles.
References

1. Boroznovskaya N.N. Osobennosti rentgenolyuminestsentsii polevykh shpatov kak pokazatel' ikh genezisa // Zapiski VMO. 1989. № 1. S. 110-119

2. Gorobets B.S., Rogozhin A.A. Spektry lyuminestsentsii mineralov : spravochnik. M. : VIMS, 2001. 312 s. Zagorskii V.E. Malkhanskoe mestorozhdenie turmalina: tipy i priroda miarol // Doklady Akademii nauk. 2010. T. 431, № 1. S. 181-184

3. Zagorskii V.E. Pegmatitovoe telo Sosedka Malkhanskogo mestorozhdeniya tsvetnogo turmalina v Zabaikal'e: sostav, vnutrennee stroenie, petrogenezis // Petrologiya. 2015. T. 23, № 1. S. 75-100

4. Zagorskii V.E., Peretyazhko I.S. Pegmatity s samotsvetami Tsentral'nogo Zabaikal'ya. Novosibirsk : Nauka, 1992. 221 s

5. Kuznetsov G.V., Tarashchan A.N. Lyuminestsentsiya mineralov granitnykh pegmatitov. Kiev : Naukova dumka, 1988. 177 s

6. Mal'chukova E.B., Nepomnyashchikh A.I., Buazo B., Petit G. Spektroskopicheskoe issledovanie ionov Eu3+ v alyumoborosilikatnykh steklakh // Izvestiya vuzov. Fizika. 2009. T. 8/2. S. 108-111

7. Tsyretarova S.Yu., Eremina N.S., Kozhevnikova N.M., Mokrousov G.M. Sintez lyuminoforov krasnogo svecheniya na osnove borosilikatnogo stekla i faz peremennogo sostava NaMgSc0.5Lu0.5(MoO4)z:Eu3+ i Na0.5Mg0.5ScLu0.5(MoO4)3:Eu3+ so strukturoi NASICON // Neorganicheskie materialy. 2015. T. 51, № 12. S. 1374-1379

8. Gaft M, Reisfeld R., Panczer G. Modern luminescence spectroscopy of minerals and materials. Berlin : Springer-Verlag, 2005. 356 p

9. Henry D.J., Novak M., Hawthorne F.C., Ertl A., Dutrow B.L., Uher P., Pezzotta F. Nomenclature of the tourmaline-supergroup minerals // American Mineralogist. 2011. V. 96. P. 895-913

10. Janek J., Soltys M, Zur L., Pietrasik E., Pisarska J., Pisarski W. A. Luminescence investigations of rare earth doped lead-free borate glasses modified by MO (M = Ca, Sr, Ba) // Materials Chemistry and Physics. 2016. V. 180. P. 237-243

11. London D. Experimental synthesis and stability of tourmaline: a historical overview // The Canadian Mineralogist. 2011. V. 49 (1). P. 117-136

12. Malchukova E., Boizot B., Petite G., Ghaleb D. Optical properties of pristine and y-irradiated Sm-doped borosilicate glasses // Nuclear Instruments and Methods in Physics Research A. 2004. V. 537. P. 411-414

13. Malchukova E., Boizot B., Ghaleb D., Petite G. Structural changes of P-irradiated Gd-doped aluminoborosilicate glasses // Izvestia Vuzov (Russian Physics Journal). 2006. V. 4. P. 89-92

14. Malchukova E., Boizot B. Tunable luminescence from Ce-doped aluminoborosilicate glasses // Journal of Rare Earths. 2014. V. 32 (3). P. 217-220