Журналов:     Статей:        

Вестник Томского государственного университета. Биология. 2018; : 25-43

Оценка микробного пула растений верховых болот

Головченко А. В., Харлак А. Л., Глухова Т. В.

https://doi.org/ 10.17223/19988591/43/2

Аннотация

Исследование посвящено изучению численности и биомассы микроорганизмов на листьях, стеблях и корнях 6 растений: подбела обыкновенного, багульника болотного, шейхцерии болотной, пушицы влагалищной, осоки черной и росянки круглолистной, произрастающих на верховом болоте в Тверской области. Установлено, что на листьях и стеблях длина грибного мицелия варьировала от 56 до 566 м/г, численность спор и дрожжеподобных клеток - от 3 до 24 млн спор/г, бактерий - от 0,5 до 4 млрд клеток/г. На корнях растений численность спор и дрожжеподобных клеток оказалась ниже, чем на листьях и стеблях, а длина грибного мицелия и численность бактерий - выше. Микробная биомасса на вегетативных органах растений верховых болот составила 0,1-2 мг/г. В её структуре на листьях и стеблях доля бактерий достигала 36%, спор грибов и дрожжеподобных клеток - 60%, на корнях растений доминировал грибной мицелий. Максимальные показатели микробного обилия выявлены у осоки, минимальные - у росянки.
Список литературы

1. Щербаков А.В., Брагина А.В., Кузьмина В.Ю., Берг К., Мунтян А.Н., Макарова Н.М., Мальфанова Н.В., Кардинале М., Берг Г., Чеботарь В.К., Тихонович И.А. Эндофитные бактерии сфагновых мхов как перспективные объекты сельскохозяйственной микробиологии // Микробиология. 2013. Т. 82, № 3. С. 312-322.

2. Тец В.В. Пангеном // Цитология. 2003. Т. 45, № 5. С. 526-531.

3. Saito A., Ikeda S., Ezura H., Minamisawa K. Microbial community analysis of the phytosphere using culture-ndependent methodologies // Microbes and Environments. 2007. Vol. 22, № 2. PP. 93-105.

4. Andrews J.H., Harris R.F. The ecology and biogeography of microorganisms on plant surfaces // Annu. Rev. Phytopathol. 2000. № 38. PP. 145-180.

5. Stadler B., Michalzik B., Mueller T. Linking aphid ecology with nutrient fluxes in a coniferous forest // Ecology. 1998. № 79. PP. 1514-1525.

6. Papen H., Gessler A., Zumbusch E., Rennenberg H. Chemolithoautotrophic nitrifiers in the phyllosphere of a spruce ecosystem receiving high atmospheric nitrogen input // Curr. Microbiol. 2002. № 44. PP. 56-60.

7. Freiberg E. Microclimatic parameters influencing nitrogen fixation in the phyllosphere in a Costa Rican premontane rain forest // Oecologia (Berlin). 1998. № 117. PP. 9-18.

8. Головченко А.В., Добровольская Т.Г., Звягинцев Д.Г. Микробиологические основы оценки торфяника как профильного почвенного тела // Вестник ТГПУ Сер. Биол. науки. 2008. № 4 (78). С. 46-53.

9. Головченко А.В., Кураков А.В., Семёнова Т.А., Звягинцев Д.Г. Обилие, разнообразие, жизнеспособность и факторная экология грибов в торфяниках // Почвоведение. 2013. № 1. С. 80-97.

10. Панкратов Т.А., Белова С.Э., Дедыш С.Н. Оценка филогенетического разнообразия прокариотных микроорганизмов в сфагновых болотах с использованием метода FISH // Микробиология. 2005. Т. 74, № 6. С. 831-837.

11. Качалкин А.В., Глушакова А.М., Юрков А.М., Чернов И.Ю. Особенности дрожжевых группировок в филлосфере сфагновых мхов // Микробиология. 2008. Т. 77, № 4. С. 533-541.

12. Ефимов В.Н. Торфяные почвы и их плодородие. Л. : Агропромиздат, 1986. 269 с.

13. Albino U., Saridakis D.P., Ferreira M.C., Hungria M., Vinuesa P., Andrade G. High diversity of diazotrophic bacteria associated with the carnivorous plant Drosera villosa var. villosa growing in oligotrophic habitats in Brazil // Plant Soil. 2006. Vol. 287. PP. 199-207.

14. Stępniewska Z., Goraj W., Kuźniar A., Łopacka N., Małysza M. Enrichment culture and identification of endophytic methanotrophs isolated from peatland plants // Folia Microbiol. 2017. Vol. 62. PP. 381-391.

15. Dake XU, Xiuying XIA, Na XU, Lijia AN. Isolation and identification of a novel endophytic bacterial strain with antifungal activity from the wild blueberry Vaccinium uliginosum // Annals of Microbiology. 2007. Vol. 57, № 4. PP. 673-676.

16. Качалкин А.В., Глушакова А.М., Чернов И.Ю. Специфичность эпифитных дрожжевых сообществ торфяно-болотных почв // Доклады по экологическому почвоведению. 2009. Т. 2, № 12. С. 20-36.

17. Филиппова Н.В. К изучению сообществ грибов верховых болот таежной зоны Западной Сибири: 2. Микромицеты на опаде болотных растений // Микология и фитопатология. 2015. Т. 49, № 3. C. 164-172.

18. Thormann M.N., Bayley S.E., Currah R.S. Microcosm tests of the effects of temperature and microbial species number on the decomposition of Carex aquatilis and Sphagnum fuscum litter from southern boreal peatlands // Can. J. Microbiol. 2004. Vol. 50. PP. 793-802.

19. Wainwright M. Origin of fungal colonies on dilution and soil plates determining using nonanoic acid // Trans. Brit. Soc. 1989. Vol. 79, № 1. PP. 178-179.

20. Методы почвенной биохимии и микробиологии / под ред. Д.Г. Звягинцева. М. : Изд-во Московского университета, 1991. 304 с.

21. Кожевин П.А., Полянская Л.М., Звягинцев Д.Г. Динамика развития различных микроорганизмов в почве // Микробиология. 1979. Т. 48, № 4. С. 490-494.

22. Полянская Л.М., Головченко А.В., Звягинцев Д.Г. Микробная биомасса в почвах // Доклады Академии наук. 1995. Т. 344, № 6. С. 846-848.

23. Saito A., Ikeda S., Ezura H., Minamisawa K. Microbial Community Analysis of the Phytosphere Using Culture-Independent Methodologies // Microbes and Environments. 2007. Vol. 22, № 2. PP. 93-105.

24. Beattie G.A., Lindow S.E. The secret life of foliar bacterial pathogens on leaves // Annu. Rev. Phytopathol. 2005. № 33. PP. 145-172.

25. Звягинцев Д.Г., Добровольская Т.Г., Лысак Л.В. Растения как центры формирования бактериальных сообществ // Журнал общей биологии. 1993. Т. 54, № 2. С. 183-200.

26. Бабьева И.П., Чернов И.Ю. Биология дрожжей. М. : Товарищество научных изданий КМК, 2004. С. 102-104.

27. Мигловец М.Н., Загирова C.B., Михайлов O.A. Эмиссия метана в растительных сообществах мезоолиготрофного болота средней тайги // Теоретическая и прикладная экология. 2014. № 1. С. 93-98.

28. Saarnio S., Wittenmayer L., Merbach W. Rhizospheric exudation of Eriophorum vaginatum L. - potential link to methanogenesis // Plant and Soil. 2004. № 267. PP. 343-355.

29. Kumar S., Gautam S., Sharma A. Antimutagenic and antioxidant properties of plumbagin and other naphthoquinones // Mutation Research / Genetic Toxicology and Environmental Mutagenesis. 2013. Vol. 755, № 1. PP. 30-41.

30. Вернер А.Р. О связи между фитонцидной активностью и эпифитной микрофлорой растений // Фитонциды в народном хозяйстве. Киев : Наукова думка, 1964. С. 56-58.

31. Косых Н.П., Миронычева-Токарева Н.П., Паршина Е.К. Бюджет химических элементов в болотных экосистемах средней тайги Западной Сибири // Динамика окружающей среды и глобальное изменение климата. 2010. Т. 1, № 1. С. 85-95.

32. Добровольская Т.Г., Головченко А.В., Звягинцев Д.Г., Инишева Л.И., Кураков А.В., Смагин А.В., Зенова Г.М., Лысак Л.В., Семенова Т. А., Степанов А.Л., Глушакова А.М., Початкова Т.Н., Кухаренко О.С., Качалкин А.В., Поздняков Л.А., Богданова О.Ю. Функционирование микробных комплексов верховых торфяников - анализ причин медленной деструкции торфа. М. : Товарищество научных изданий КМК, 2013. 128 с.

Tomsk State University Journal of Biology. 2018; : 25-43

Assessment of the microbial pool of raised bog plants

Golovchenko A. V., Harlak A. L., Gluhova T. V.

https://doi.org/ 10.17223/19988591/43/2

Abstract

Microbial communities of raised bogs were mainly examined in Sphagnum moss and peaty layers. Such choice is understandable and can be explained by the fact that Sphagnum moss plays an essential role in raised bogs' peat accumulating. Raised bogs are rich in unique prostrate shrubs and herbaceous plants that are more adapted to survival in oligotrophic conditions. These plant species have their own specificities and decomposition rate that differs from Sphagnum. The major aim of this work was to assess raised bogs' prostrate shrubs and herbaceous plants' microbial pool. In spring 2016, we took six samples of bog plants in a pine forest: two prostrate shrub species, namely Andromeda polifolia L., Ledum palustre L. and four herbaceous plants: Scheuchzeria palustris L., Eriophorum vaginatum L., Carex nigra (L.) Reichard and Drosera rotundifolia L. These plant samples (10 units of each plant) were taken at four sites spread at a distance from 50 to 100 meters. We analyzed vegetative organs, such as leaves, stems and roots. An average sample was prepared for each vegetative organ of all analyzed species. A weight sample of 10 grams was taken from the average sample and put into a 100-ml flask with sterile water. Samples were processed in ultrasonic disperser 'Bandelin Sonopuls HD 2017' (Germany) for 2 minutes at a 50% power and then diluted 10 times. The resultant suspension was put on a microscope slide by a micropipette (0.01 ml for accounting of bacterial cells; 0.02 ml for accounting of fungal mycelium length and the number of fungal spores and yeast-like cells) and was distributed evenly on the area of 4 m2. 12 specimens were prepared for each sample. Specimens were then dried at room temperature and then fixed by light heating on a gas-burner flame. In order to conduct bacteria quantitative calculation, microscope slides were stained by acridine orange solution (1:10000; exposure time was 3 minutes). Calcofluor white was used to calculate fungal spores and mycelium (1:10000; exposure time was 10 minutes). Stained specimens were examined using 'LYUMAM-IZ' (Russia) luminescent microscope (optical filters ZHS-19, ZHS-18, x 90 L lens, x 4 or x 5 eyepieces). 20 microscope fields of view were analyzed in order to calculate the number of bacterial cells on each specimen, and 50 were analyzed to make an account of fungal spores and mycelia. Fungi, bacteria and yeast-like cells were detected in examined plants. We found both fungal spores and fungal mycelium. Plant species as well asits vegetative part determined microbial population density (See Table 1). The fungal mycelium length on examined plants' leaves and stems varied from 56 to 566 m/g, the number of spores and yeast-like cells varied from 3 to 24 million spores per gram, the bacterial number varied from 0.5 to 4 billion cells per gram (See Fig. 1-3). The fungal mycelium length and bacterial number on plant roots exceeded the same indicators on leaves and stems. On the contrary, fungal spores and the number of yeast-like cells on plant roots was lower than their number on leaves and stems. We established that Carex has the biggest quantity among the majority of microorganism groups and Drosera has the smallest one. Microbial biomass on vegetative parts of raised bog plants varied from 0.10 to 2 mg/g. Microbial biomass calculation on leaves and stems of the majority of examined plants gave close values. The biomass of the examined plant roots did not exceed a factor of two. This biomass calculation proved true for all plant species except for Carex. The microbial biomass of Carex roots was three to five times more than root biomass of other plant species (See Table 2). Bacteria, fungal spores and yeast-like cells proportion in the microbial biomass structure on leaves and stems was quite high (up to 96%), the fungal mycelium dominated in microbial biomass structure on plant roots (See Fig. 4). The paper contains 4 Figures, 2 Tables and 32 References.
References

1. Shcherbakov A.V., Bragina A.V., Kuz'mina V.Yu., Berg K., Muntyan A.N., Makarova N.M., Mal'fanova N.V., Kardinale M., Berg G., Chebotar' V.K., Tikhonovich I.A. Endofitnye bakterii sfagnovykh mkhov kak perspektivnye ob\"ekty sel'skokhozyaistvennoi mikrobiologii // Mikrobiologiya. 2013. T. 82, № 3. S. 312-322.

2. Tets V.V. Pangenom // Tsitologiya. 2003. T. 45, № 5. S. 526-531.

3. Saito A., Ikeda S., Ezura H., Minamisawa K. Microbial community analysis of the phytosphere using culture-ndependent methodologies // Microbes and Environments. 2007. Vol. 22, № 2. PP. 93-105.

4. Andrews J.H., Harris R.F. The ecology and biogeography of microorganisms on plant surfaces // Annu. Rev. Phytopathol. 2000. № 38. PP. 145-180.

5. Stadler B., Michalzik B., Mueller T. Linking aphid ecology with nutrient fluxes in a coniferous forest // Ecology. 1998. № 79. PP. 1514-1525.

6. Papen H., Gessler A., Zumbusch E., Rennenberg H. Chemolithoautotrophic nitrifiers in the phyllosphere of a spruce ecosystem receiving high atmospheric nitrogen input // Curr. Microbiol. 2002. № 44. PP. 56-60.

7. Freiberg E. Microclimatic parameters influencing nitrogen fixation in the phyllosphere in a Costa Rican premontane rain forest // Oecologia (Berlin). 1998. № 117. PP. 9-18.

8. Golovchenko A.V., Dobrovol'skaya T.G., Zvyagintsev D.G. Mikrobiologicheskie osnovy otsenki torfyanika kak profil'nogo pochvennogo tela // Vestnik TGPU Ser. Biol. nauki. 2008. № 4 (78). S. 46-53.

9. Golovchenko A.V., Kurakov A.V., Semenova T.A., Zvyagintsev D.G. Obilie, raznoobrazie, zhiznesposobnost' i faktornaya ekologiya gribov v torfyanikakh // Pochvovedenie. 2013. № 1. S. 80-97.

10. Pankratov T.A., Belova S.E., Dedysh S.N. Otsenka filogeneticheskogo raznoobraziya prokariotnykh mikroorganizmov v sfagnovykh bolotakh s ispol'zovaniem metoda FISH // Mikrobiologiya. 2005. T. 74, № 6. S. 831-837.

11. Kachalkin A.V., Glushakova A.M., Yurkov A.M., Chernov I.Yu. Osobennosti drozhzhevykh gruppirovok v fillosfere sfagnovykh mkhov // Mikrobiologiya. 2008. T. 77, № 4. S. 533-541.

12. Efimov V.N. Torfyanye pochvy i ikh plodorodie. L. : Agropromizdat, 1986. 269 s.

13. Albino U., Saridakis D.P., Ferreira M.C., Hungria M., Vinuesa P., Andrade G. High diversity of diazotrophic bacteria associated with the carnivorous plant Drosera villosa var. villosa growing in oligotrophic habitats in Brazil // Plant Soil. 2006. Vol. 287. PP. 199-207.

14. Stępniewska Z., Goraj W., Kuźniar A., Łopacka N., Małysza M. Enrichment culture and identification of endophytic methanotrophs isolated from peatland plants // Folia Microbiol. 2017. Vol. 62. PP. 381-391.

15. Dake XU, Xiuying XIA, Na XU, Lijia AN. Isolation and identification of a novel endophytic bacterial strain with antifungal activity from the wild blueberry Vaccinium uliginosum // Annals of Microbiology. 2007. Vol. 57, № 4. PP. 673-676.

16. Kachalkin A.V., Glushakova A.M., Chernov I.Yu. Spetsifichnost' epifitnykh drozhzhevykh soobshchestv torfyano-bolotnykh pochv // Doklady po ekologicheskomu pochvovedeniyu. 2009. T. 2, № 12. S. 20-36.

17. Filippova N.V. K izucheniyu soobshchestv gribov verkhovykh bolot taezhnoi zony Zapadnoi Sibiri: 2. Mikromitsety na opade bolotnykh rastenii // Mikologiya i fitopatologiya. 2015. T. 49, № 3. C. 164-172.

18. Thormann M.N., Bayley S.E., Currah R.S. Microcosm tests of the effects of temperature and microbial species number on the decomposition of Carex aquatilis and Sphagnum fuscum litter from southern boreal peatlands // Can. J. Microbiol. 2004. Vol. 50. PP. 793-802.

19. Wainwright M. Origin of fungal colonies on dilution and soil plates determining using nonanoic acid // Trans. Brit. Soc. 1989. Vol. 79, № 1. PP. 178-179.

20. Metody pochvennoi biokhimii i mikrobiologii / pod red. D.G. Zvyagintseva. M. : Izd-vo Moskovskogo universiteta, 1991. 304 s.

21. Kozhevin P.A., Polyanskaya L.M., Zvyagintsev D.G. Dinamika razvitiya razlichnykh mikroorganizmov v pochve // Mikrobiologiya. 1979. T. 48, № 4. S. 490-494.

22. Polyanskaya L.M., Golovchenko A.V., Zvyagintsev D.G. Mikrobnaya biomassa v pochvakh // Doklady Akademii nauk. 1995. T. 344, № 6. S. 846-848.

23. Saito A., Ikeda S., Ezura H., Minamisawa K. Microbial Community Analysis of the Phytosphere Using Culture-Independent Methodologies // Microbes and Environments. 2007. Vol. 22, № 2. PP. 93-105.

24. Beattie G.A., Lindow S.E. The secret life of foliar bacterial pathogens on leaves // Annu. Rev. Phytopathol. 2005. № 33. PP. 145-172.

25. Zvyagintsev D.G., Dobrovol'skaya T.G., Lysak L.V. Rasteniya kak tsentry formirovaniya bakterial'nykh soobshchestv // Zhurnal obshchei biologii. 1993. T. 54, № 2. S. 183-200.

26. Bab'eva I.P., Chernov I.Yu. Biologiya drozhzhei. M. : Tovarishchestvo nauchnykh izdanii KMK, 2004. S. 102-104.

27. Miglovets M.N., Zagirova C.B., Mikhailov O.A. Emissiya metana v rastitel'nykh soobshchestvakh mezooligotrofnogo bolota srednei taigi // Teoreticheskaya i prikladnaya ekologiya. 2014. № 1. S. 93-98.

28. Saarnio S., Wittenmayer L., Merbach W. Rhizospheric exudation of Eriophorum vaginatum L. - potential link to methanogenesis // Plant and Soil. 2004. № 267. PP. 343-355.

29. Kumar S., Gautam S., Sharma A. Antimutagenic and antioxidant properties of plumbagin and other naphthoquinones // Mutation Research / Genetic Toxicology and Environmental Mutagenesis. 2013. Vol. 755, № 1. PP. 30-41.

30. Verner A.R. O svyazi mezhdu fitontsidnoi aktivnost'yu i epifitnoi mikrofloroi rastenii // Fitontsidy v narodnom khozyaistve. Kiev : Naukova dumka, 1964. S. 56-58.

31. Kosykh N.P., Mironycheva-Tokareva N.P., Parshina E.K. Byudzhet khimicheskikh elementov v bolotnykh ekosistemakh srednei taigi Zapadnoi Sibiri // Dinamika okruzhayushchei sredy i global'noe izmenenie klimata. 2010. T. 1, № 1. S. 85-95.

32. Dobrovol'skaya T.G., Golovchenko A.V., Zvyagintsev D.G., Inisheva L.I., Kurakov A.V., Smagin A.V., Zenova G.M., Lysak L.V., Semenova T. A., Stepanov A.L., Glushakova A.M., Pochatkova T.N., Kukharenko O.S., Kachalkin A.V., Pozdnyakov L.A., Bogdanova O.Yu. Funktsionirovanie mikrobnykh kompleksov verkhovykh torfyanikov - analiz prichin medlennoi destruktsii torfa. M. : Tovarishchestvo nauchnykh izdanii KMK, 2013. 128 s.