Журналов:     Статей:        

Вестник Томского государственного университета. Биология. 2017; : 224-243

Особенности летнего распределения рыб в акватории Горнослинкинской зимовальной русловой ямы реки Иртыш

Чемагин А. А.

https://doi.org/ 10.17223/19988591/40/13

Аннотация

Показаны особенности вертикального распределения рыб на р. Иртыш в акватории Горнослинкинской зимовальной русловой ямы (Уватский район Тюменской области). Рассмотрены 4 условных горизонта водной толщи: поверхностно-пелагический (<10 м), 1-й пелагический (10-20 м), 2-й пелагический (20-30 м), придонно-пелагический (>30 м). Исследование выполнено на основе современной гидроакустической методики (PanCor) с борта маломерного судна; обработка полученных данных производилась с помощью специального программного обеспечения. Установлена статистически значимая корреляционная (высокая и заметная) связь между распределением рыб одних семейств в сопредельных слоях водной толщи ямы и распределением рыб различных семейств. Поверхностно-пелагический горизонт наиболее интенсивно осваивается карповыми рыбами всех размеров, 1-й пелагический горизонт - окуневыми, сиговыми и группой нераспознанных рыб. При рассмотрении каждого горизонта отмечена закономерность: снижение доли карповых и увеличение доли сиговых и окуневых рыб от поверхности ко дну. При анализе численности рыб установлено, что для карповых происходит уменьшение численности в направлении от поверхности ко дну, для окуневых, сиговых и группы нераспознанных рыб снижение численности происходит от 1-го пелагического горизонта в сторону поверхности, а затем ко дну. Различия в вертикальном распределении отмечены для рыб различных размеров и различных семейств.
Список литературы

1. Тарадина Д.Г., Павлов Д.С., Лупандин А.И. Связь вертикального распределения молоди рыб при покатной миграции с их плавучестью и турбулентности потока // Вопросы ихтиологии. 1997. № 37 (4). С. 532-538

2. Лупандин А.И., Басов Б.М., Демьяновская А.О., Захарченко А.В., Мусатов С.П., Скоробогатов М.А. Влияние турбулентности на поведение рыб в потоке воды // Информационный бюллетень РФФИ. Биология, медицинская наука. 1996. № 4. URL: http://elibrary.ru/download/elibrary_228840_45775277.htm (дата обращения: 15.03.2017).

3. Смирнов А.К. Влияние наличия пищи в зоне температурного оптимума на поведение молоди речного окуня Perca Fluviatilis L. // Вестник АГТУ Рыбное хозяйство. 2013. № 1. С.75-82

4. Lampert W., McCauley E., Manly B.F.J. Trade-offs in the vertical distribution of zooplankton: ideal free distribution with costs? // Proceedings of the Royal Society of London, Series Biological Sciences. 2003. Vol. 270. PP. 765-773. doi.org/10.1098/rspb.2002.2291

5. Lampert W. Vertical distribution of zooplankton: density dependence and evidence for an ideal free distribution with costs // BMC Biology. 2005. Vol. 3. № 10. PP. 1-12.

6. Fretwell S.D., Lucas H.J. On territorial behavior and other factors influencing habitat distribution in birds // Acta Biotheor. 1970. Vol. 19. PP. 16-36.

7. Tyler J. A., Gilliam J. F. Ideal free distributions of stream fish: a model and test with minnows, Rhinicthys atratulus // Ecology. 1995. Vol. 76. PP. 580-592.

8. Burks R.L., Lodge D.M. Cued in: advances and opportunities in freshwater chemical ecology // Journal of Chemical Ecology. 2002. Vol. 28. PP. 1901-1917.

9. Burks R.L., Lodge D.M., Jeppesen E., Lauridsen T. L. Dial horizontal migration of zooplankton: costs and benefits of inhabiting the littoral // Freshwater Biology. 2002. Vol. 47. PP. 343-365.

10. Stabell O., Ogbebo F., Primicerio R. Inducible defenses in Daphnia depends on latent alarm signals from conspecific prey activated in predators // Chemical Senses. 2003. Vol. 28. PP. 141-153.

11. Boersma M., Spaak P., De Meester L. Predator-mediated plasticity in morphology, life history, and behavior of Daphnia: the uncoupling of responses // American Naturalist. 1998. Vol. 152. PP. 237-248.

12. Michels E., De Meester L. Inter-clonal variation in phototactic behaviour and key lifehistory traits in a metapopulation of the cyclical parthenogen Daphnia ambigua: the effect of fish kairomones // Hydrobiologia. 2004. Vol. 522. PP. 221-233.

13. Семенченко В.П., Разлуцкий В.И. Факторы, определяющие суточное распределение и перемещения зоопланктона в литоральной зоне пресноводных озер (обзор) // Журн. Сиб. федерального ун-та. Биология. 2009. № 2 (2). С. 191-225.

14. Pettersson L.B., Nilsson P.A., Bronmark C. Predator recognition and defence strategies in crucian carp, Carassius carassius // Oikos. 2000. Vol. 88. PP. 200-212. doi: 10.1034/j.1600-0706.2000.880122.x

15. Mikheev V.N., Wanzenbock J., Pasternak A.F. Effects of predator-induced visual and olfactory cues on 0+ perch (Perca fluviatilis L.) foraging behavior // Ecology of Freshwater Fish. 2006. Vol. 15. PP. 111-117. doi: 10.1111/j.1600-0633.2006.00140.x

16. Clark C.W., Levy D.A. Diel vertical migrations by juvenile sockeye salmon and the antipredation window // American Naturalist. 1988. Vol. 131. PP. 271-290.

17. Thiem J.D., Broadhurst B.T., Lintermans M., Ebner B.C., Clear R.C., Wright D. Seasonal differences in the diel movements of Macquarie perch (Macquaria australasica) in an upland reservoir // Ecol Freshw Fish. 2013. Vol. 22. PP. 145-156. doi: 10.1111/eff.12012

18. Jacobsen L. and Perrow M. R. Predation risk from piscivorous fish influencing the diel use of macrophytes by planktivorous fish in experimental ponds // Ecology of Freshwater Fish. 1998. Vol. 7. PP. 78-86. doi: 10.1111/j.1600-0633.1998.tb00174.x

19. Eklov P. and VanKooten T. Facilitation among piscivorous predators: effects of prey habitat use // Ecology. 2001. Vol. 82. PP. 2486-2494. doi: 10.1890/0012-9658(2001)082[2486:FA PPEO]2.0.CO;2

20. Jeppesen E., Pekcan-Hekim Z., Lauridsen T.L., S0ndergaard M., Jensen J.P. Habitat distribution of fish in late summer: changes along a nutrient gradient in Danish lakes // Ecology of Freshwater Fish. 2006. Vol. 15. PP. 180-190. doi: 10.1111/j.1600-0633.2006.00142.x

21. Юданов К.И., Калихман И.Л., Теслер В.Д. Руководство по проведению гидроакустических сьёмок. М. : ВНИРО, 1984. 1124 с.

22. Borisenko E.S., Degtev A.I., Mochek A.D., Pavlov D.S. Hydroacoustic Characteristics of Mass Fishes of the Ob-Irtysh Basin are investigated // Journal of Ichthyology. 2006. Vol. 46 (2). PP. 227-234.

23. Mehner T., Busch S., Helland I.P., Emmrich M., Freyhof J. Temperature-related nocturnal vertical segregation of coexisting coregonids // Ecology of Freshwater Fish. 2010. Vol. 19. PP. 408-419. doi: 10.1111/j.1600-0633.2010.00424.x

24. Bass A. L., Haugen T. O. and V0llestad L. A. Distribution and movement of European grayling in a subarctic lake revealed by acoustic telemetry // Ecol Freshw Fish. 2014. Vol. 23. PP. 149-160. doi: 10.1111/eff.12056

25. Mous P.J., Van Densen W.L.T., Machiels M.A.M. Vertical distribution patterns of zooplanktivorous fish in a shallow, eutrophic lake, mediated by water transparency // Ecology of Freshwater Fish. 2004. Vol. 13. PP. 61-69. doi: 10.1111/j.0906-6691.2004.00042.x

26. Kahl U., Radke R.J. Habitat and food resource use of perch and roach in a deep mesotrophic reservoir: enough space to avoid competition? // Ecology of Freshwater Fish. 2006. Vol. 15. PP. 48-56. doi: 10.1111/j.1600-0633.2005.00120.x

27. Stoll S., Fischer P., Klahold P., Scheifhacken N., Hofmann H., Rothhaupt K.-O. Effects of water depth and hydrodynamics on the growth and distribution of juvenile cyprinids in the littoral zone of a large pre-alpine lake // Journal of Fish Biology. 2008. Vol. 72. PP. 10011022. doi: 10.1111/j.1095-8649.2007.01780.x

28. Kjellman J., Eloranta A. Field estimations of temperature-dependent processes: Case growth of young burbot // Hydrobiologia. 2002. Vol. 481. PP. 187-192.

29. Anderson M., Giannico G., Jacobs, S. Seasonal migrations of adult and sub-adult redband trout in a high desert basin of Eastern Oregon, USA // Ecology of Freshwater Fish. 2011. Vol. 20. PP. 409-420. doi: 10.1111/j.1600-0633.2011.00488.x

30. Jurvelius J., Marjomaki T.J. Night, day, sunrise, sunset: do fish under snow and ice recognize the difference? // Freshwater Biology. 2008. Vol. 53. PP. 2287-2294. doi: 10.1111/j.1365-2427.2008.02055.x

31. Morgan M.J. Ration level and temperature preference of American plaice // Marine Behavior & Physiology. 1993. Vol. 24. PP. 117-122.

32. Дудакова Д.С., Родионова Н.В., Протопопова Е.В., Капустина Л.Л., Бардинский Д.С. Состав и динамика гидробионтов литорали бухты Петрокрепость Ладожского озера // Труды Карельского научного центра РАН. 2015. № 2. С. 53-70.

33. Reichard M., Jurajda P., Simkova A., Matejusova I. Size-related habitat use by bitterling (Rhodeus sericeus) in a regulated lowland river // Ecology of Freshwater Fish. 2002. Vol. 11. PP. 112-122. doi: 10.1034/j.1600-0633.2002.00002.x

34. Polacek M.C., James P.W. Diel microhabitat use of age-0 bull trout in Indian Creek, Washington // Ecology of Freshwater Fish. 2003. Vol. 12. PP. 81-86. doi: 10.1034/j.1600-0633.2003.00004.x

35. Riley W.D., Ives M.J., Pawson M.G., Maxwell D.L. Seasonal variation in habitat use by salmon, Salmo salar, trout, Salmo trutta and grayling, Thymallus thymallus, in a chalk stream // Fisheries Management and Ecology. 2006. Vol. 13. PP. 221-236. doi: 10.1111/j.1365-2400.2006.00496.x

36. Beier U. Temperature- and light-dependent ratio of energy gain to metabolic costs explains spatial and temporal habitat use of zooplanktivorous fish // Ecol Freshw Fish. 2017. № 26. РР. 506-516. doi: 10.1111/eff.12290

Tomsk State University Journal of Biology. 2017; : 224-243

Patterns of summer distribution of fish in the water area of the Gornoslinkinskaya wintering riverbed depression of the Irtysh River

Chemagin A. A.

https://doi.org/ 10.17223/19988591/40/13

Abstract

In winter, the role of wintering riverbed depressions is reduced to the usual wintering of various fish species. In this regard, currently relevant questions are: functioning of riverbed depressions in the period of open water, relationship of fish in the predator-prey system, and dependence of horizontal and vertical distribution of fish of different families in river areas and their value. The aim of this work was to reveal the patterns of vertical and horizontal distribution of fish in the wintering riverbed depression on the Irtysh river in the period of open water. We conducted a research during the summer period (June 23, 2015) in the Gornoslinkinskaya wintering riverbed depression situated on the Irtysh river in the territory of Uvatsky district, Tyumen region, 58°43'35,58''N, 68°41'45,75''E. The maximum depth is more than 41 m. To determine the average density of fish and their number, we performed hydroacoustic surveys by the ''PanCor'' complex, which is based on the sonar ''Furuno'', analog-digital converter and GPS-location. On the investigated water area, we used a boat to move along a grid of tacks (zigzagging). We processed the hydroacoustic survey files in the laboratory using special applications: ''PanCor'', ''Taxonomy''. For analysis, the water column was conventionally divided into 4 horizons: surface-pelagic (<10 m), 2 pelagic (10-20, 20-30 m) and bottom-pelagic (> 30 m). To analyze the correlations of fish distribution of different taxonomic groups, the nonparametric method, Spearman rank correlation, was used. The degree of statistical significance of differences in the distribution of fish in the different horizons of the water column was carried out using the sign test. In the distribution of representatives of percidae and coregonidae, which were represented only by predatory fish species in the area of our research, we found regularity: their proportion increased with depth for percidae from 15.07 to 35.89%, for coregonidae from 4.6 to 9.26% from the surface to horizons of 20-30 m; at the depth of more than 30 m the proportion of corigonidae remained about the same - 8.09% (See Figure 1). Cyprinidae dominated throughout the entire water column of the investigated water area, in terms of numbers: at the depth of less than 10 m - 77.64%, 10-20 m -64.70%, 20-30 m - 59.77%, at the depth of more than 30 m, their proportion was the lowest - 51.31% (See Figure 1). From cyprinidae in all horizons of the water column, juvenile fish with body length up to 15 cm dominated. From the surface to the bottom, the proportion of these fish in the layers of water was decreasing. For percidae, the maximum distribution values for the majority of the size groups of fish characterized the 1-st pelagic layer. The distribution of coregonidae and not identified fish was similar to that of percidae. The distribution of fish is determined by the dominance of juvenile cyprinidae in the surface-pelagic horizon, and fish of other families, predominantly carnivorous, in the 1-st pelagic layer, which is the window of ''anti-predation'' in the watercourse - a strategy of defensive behavior and survival (See Figure 2). In the vertical aspect, a significant correlation (high and moderate) is revealed between individuals of the same family and representatives of predators and prey in the conjugated horizons of the water column, reflecting the mechanism of proportional distribution of some species and simultaneous reduction of their intra - and interspecific competition, as well as trophic behavior, which is also noted in the horizontal aspect - in fish of different families. (See Tables 1, 2). The article contains 2 Figures, 2 Tables and 36 References.
References

1. Taradina D.G., Pavlov D.S., Lupandin A.I. Svyaz' vertikal'nogo raspredeleniya molodi ryb pri pokatnoi migratsii s ikh plavuchest'yu i turbulentnosti potoka // Voprosy ikhtiologii. 1997. № 37 (4). S. 532-538

2. Lupandin A.I., Basov B.M., Dem'yanovskaya A.O., Zakharchenko A.V., Musatov S.P., Skorobogatov M.A. Vliyanie turbulentnosti na povedenie ryb v potoke vody // Informatsionnyi byulleten' RFFI. Biologiya, meditsinskaya nauka. 1996. № 4. URL: http://elibrary.ru/download/elibrary_228840_45775277.htm (data obrashcheniya: 15.03.2017).

3. Smirnov A.K. Vliyanie nalichiya pishchi v zone temperaturnogo optimuma na povedenie molodi rechnogo okunya Perca Fluviatilis L. // Vestnik AGTU Rybnoe khozyaistvo. 2013. № 1. S.75-82

4. Lampert W., McCauley E., Manly B.F.J. Trade-offs in the vertical distribution of zooplankton: ideal free distribution with costs? // Proceedings of the Royal Society of London, Series Biological Sciences. 2003. Vol. 270. PP. 765-773. doi.org/10.1098/rspb.2002.2291

5. Lampert W. Vertical distribution of zooplankton: density dependence and evidence for an ideal free distribution with costs // BMC Biology. 2005. Vol. 3. № 10. PP. 1-12.

6. Fretwell S.D., Lucas H.J. On territorial behavior and other factors influencing habitat distribution in birds // Acta Biotheor. 1970. Vol. 19. PP. 16-36.

7. Tyler J. A., Gilliam J. F. Ideal free distributions of stream fish: a model and test with minnows, Rhinicthys atratulus // Ecology. 1995. Vol. 76. PP. 580-592.

8. Burks R.L., Lodge D.M. Cued in: advances and opportunities in freshwater chemical ecology // Journal of Chemical Ecology. 2002. Vol. 28. PP. 1901-1917.

9. Burks R.L., Lodge D.M., Jeppesen E., Lauridsen T. L. Dial horizontal migration of zooplankton: costs and benefits of inhabiting the littoral // Freshwater Biology. 2002. Vol. 47. PP. 343-365.

10. Stabell O., Ogbebo F., Primicerio R. Inducible defenses in Daphnia depends on latent alarm signals from conspecific prey activated in predators // Chemical Senses. 2003. Vol. 28. PP. 141-153.

11. Boersma M., Spaak P., De Meester L. Predator-mediated plasticity in morphology, life history, and behavior of Daphnia: the uncoupling of responses // American Naturalist. 1998. Vol. 152. PP. 237-248.

12. Michels E., De Meester L. Inter-clonal variation in phototactic behaviour and key lifehistory traits in a metapopulation of the cyclical parthenogen Daphnia ambigua: the effect of fish kairomones // Hydrobiologia. 2004. Vol. 522. PP. 221-233.

13. Semenchenko V.P., Razlutskii V.I. Faktory, opredelyayushchie sutochnoe raspredelenie i peremeshcheniya zooplanktona v litoral'noi zone presnovodnykh ozer (obzor) // Zhurn. Sib. federal'nogo un-ta. Biologiya. 2009. № 2 (2). S. 191-225.

14. Pettersson L.B., Nilsson P.A., Bronmark C. Predator recognition and defence strategies in crucian carp, Carassius carassius // Oikos. 2000. Vol. 88. PP. 200-212. doi: 10.1034/j.1600-0706.2000.880122.x

15. Mikheev V.N., Wanzenbock J., Pasternak A.F. Effects of predator-induced visual and olfactory cues on 0+ perch (Perca fluviatilis L.) foraging behavior // Ecology of Freshwater Fish. 2006. Vol. 15. PP. 111-117. doi: 10.1111/j.1600-0633.2006.00140.x

16. Clark C.W., Levy D.A. Diel vertical migrations by juvenile sockeye salmon and the antipredation window // American Naturalist. 1988. Vol. 131. PP. 271-290.

17. Thiem J.D., Broadhurst B.T., Lintermans M., Ebner B.C., Clear R.C., Wright D. Seasonal differences in the diel movements of Macquarie perch (Macquaria australasica) in an upland reservoir // Ecol Freshw Fish. 2013. Vol. 22. PP. 145-156. doi: 10.1111/eff.12012

18. Jacobsen L. and Perrow M. R. Predation risk from piscivorous fish influencing the diel use of macrophytes by planktivorous fish in experimental ponds // Ecology of Freshwater Fish. 1998. Vol. 7. PP. 78-86. doi: 10.1111/j.1600-0633.1998.tb00174.x

19. Eklov P. and VanKooten T. Facilitation among piscivorous predators: effects of prey habitat use // Ecology. 2001. Vol. 82. PP. 2486-2494. doi: 10.1890/0012-9658(2001)082[2486:FA PPEO]2.0.CO;2

20. Jeppesen E., Pekcan-Hekim Z., Lauridsen T.L., S0ndergaard M., Jensen J.P. Habitat distribution of fish in late summer: changes along a nutrient gradient in Danish lakes // Ecology of Freshwater Fish. 2006. Vol. 15. PP. 180-190. doi: 10.1111/j.1600-0633.2006.00142.x

21. Yudanov K.I., Kalikhman I.L., Tesler V.D. Rukovodstvo po provedeniyu gidroakusticheskikh s'emok. M. : VNIRO, 1984. 1124 s.

22. Borisenko E.S., Degtev A.I., Mochek A.D., Pavlov D.S. Hydroacoustic Characteristics of Mass Fishes of the Ob-Irtysh Basin are investigated // Journal of Ichthyology. 2006. Vol. 46 (2). PP. 227-234.

23. Mehner T., Busch S., Helland I.P., Emmrich M., Freyhof J. Temperature-related nocturnal vertical segregation of coexisting coregonids // Ecology of Freshwater Fish. 2010. Vol. 19. PP. 408-419. doi: 10.1111/j.1600-0633.2010.00424.x

24. Bass A. L., Haugen T. O. and V0llestad L. A. Distribution and movement of European grayling in a subarctic lake revealed by acoustic telemetry // Ecol Freshw Fish. 2014. Vol. 23. PP. 149-160. doi: 10.1111/eff.12056

25. Mous P.J., Van Densen W.L.T., Machiels M.A.M. Vertical distribution patterns of zooplanktivorous fish in a shallow, eutrophic lake, mediated by water transparency // Ecology of Freshwater Fish. 2004. Vol. 13. PP. 61-69. doi: 10.1111/j.0906-6691.2004.00042.x

26. Kahl U., Radke R.J. Habitat and food resource use of perch and roach in a deep mesotrophic reservoir: enough space to avoid competition? // Ecology of Freshwater Fish. 2006. Vol. 15. PP. 48-56. doi: 10.1111/j.1600-0633.2005.00120.x

27. Stoll S., Fischer P., Klahold P., Scheifhacken N., Hofmann H., Rothhaupt K.-O. Effects of water depth and hydrodynamics on the growth and distribution of juvenile cyprinids in the littoral zone of a large pre-alpine lake // Journal of Fish Biology. 2008. Vol. 72. PP. 10011022. doi: 10.1111/j.1095-8649.2007.01780.x

28. Kjellman J., Eloranta A. Field estimations of temperature-dependent processes: Case growth of young burbot // Hydrobiologia. 2002. Vol. 481. PP. 187-192.

29. Anderson M., Giannico G., Jacobs, S. Seasonal migrations of adult and sub-adult redband trout in a high desert basin of Eastern Oregon, USA // Ecology of Freshwater Fish. 2011. Vol. 20. PP. 409-420. doi: 10.1111/j.1600-0633.2011.00488.x

30. Jurvelius J., Marjomaki T.J. Night, day, sunrise, sunset: do fish under snow and ice recognize the difference? // Freshwater Biology. 2008. Vol. 53. PP. 2287-2294. doi: 10.1111/j.1365-2427.2008.02055.x

31. Morgan M.J. Ration level and temperature preference of American plaice // Marine Behavior & Physiology. 1993. Vol. 24. PP. 117-122.

32. Dudakova D.S., Rodionova N.V., Protopopova E.V., Kapustina L.L., Bardinskii D.S. Sostav i dinamika gidrobiontov litorali bukhty Petrokrepost' Ladozhskogo ozera // Trudy Karel'skogo nauchnogo tsentra RAN. 2015. № 2. S. 53-70.

33. Reichard M., Jurajda P., Simkova A., Matejusova I. Size-related habitat use by bitterling (Rhodeus sericeus) in a regulated lowland river // Ecology of Freshwater Fish. 2002. Vol. 11. PP. 112-122. doi: 10.1034/j.1600-0633.2002.00002.x

34. Polacek M.C., James P.W. Diel microhabitat use of age-0 bull trout in Indian Creek, Washington // Ecology of Freshwater Fish. 2003. Vol. 12. PP. 81-86. doi: 10.1034/j.1600-0633.2003.00004.x

35. Riley W.D., Ives M.J., Pawson M.G., Maxwell D.L. Seasonal variation in habitat use by salmon, Salmo salar, trout, Salmo trutta and grayling, Thymallus thymallus, in a chalk stream // Fisheries Management and Ecology. 2006. Vol. 13. PP. 221-236. doi: 10.1111/j.1365-2400.2006.00496.x

36. Beier U. Temperature- and light-dependent ratio of energy gain to metabolic costs explains spatial and temporal habitat use of zooplanktivorous fish // Ecol Freshw Fish. 2017. № 26. RR. 506-516. doi: 10.1111/eff.12290