Журналов:     Статей:        

Вестник Томского государственного университета. Биология. 2017; : 181-201

Фитоценотическая оценка местообитаний в местах схода селей и лавин в верховьях р. Актру

Николаева С. А., Белова (Диркс) М. Н.

https://doi.org/10.17223/19988591/40/11

Аннотация

В верховьях р. Актру (Горный Алтай) проведена фитоценотическая оценка местообитаний растительности в местах схода лавин и селей. Установлено, что состав растительных сообществ (экологические группы, жизненные формы) и характеристики их экотопов (увлажнение, трофность, аэрируемость и холодность субстрата) наиболее сильно зависят от высотного пояса (лесной пояс или лесотундровый экотон) и в меньшей мере - от геоморфологических особенностей участков склона. Увеличение частоты и / или мощности лавин и селей приводит к (1) исчезновению древесного яруса, снижению покрытия мохового, увеличению покрытия кустарникового яруса (зона аккумуляции лавины), (2) снижению проективного покрытия всех нижних ярусов (зона транзита селя), (3) увеличению участия (по количеству и / или покрытию) отдельных экологических групп растений в составе сообществ: психрофитов, мезогигрофитов, гигрофитов и отчасти петрофитов, (4) локальным изменениям параметров среды. Ряд участков по степени воздействия геоморфологических факторов на экосистемы следующий: ненарушенные - селевые (зона аккумуляции) - лавинные (зона аккумуляции) - селевые (зона транзита).
Список литературы

1. Горчаковский П.Л., Шиятов С.Г. Фитоиндикация условий среды и природных процессов в высокогорьях. М. : Наука, 1985. 209 с.

2. Корженевский В.В., Квитницкая А.А. Фитоиндикация рельефообразования и опыт ее применения // Бюллетень Никитского ботанического сада. 2011. Вып. 100. С. 5-28.

3. Huggel C., Clague J.J., Korup O. Is climate change responsible for changing landslide activity in high mountains? // Earth Surface Processes and Landforms. 2011. Vol. 37. PP. 77-91.

4. Мальнева И.В., Кононова Н.К. Активность селей на территории России и ближнего зарубежья в XXI в. // Геориск. 2012. № 4. С. 48-54.

5. География лавин / под ред. С.М. Мягкова, Л.А. Канаева. М. : МГУ 1992. 334 с.

6. Simonson S.E., Greene E.M., Fassnacht S.R., Stohlgren T.J., Landry C.C. Practical methods for using vegetation patterns to estimate avalanche frequency and magnitude // International Snow Science Workshop Proceedings. Lake Tahoe, CF, 2010. PP. 548-555.

7. Bebi P., Kulakowki D., Rixen Ch. Snow avalanche disturbances in forest ecosystems - State of research and implications for management // Forest Ecology and Management. 2009. Vol. 257. PP. 1883-1892.

8. Gecy J.L., Wilson M.V. Initial establishment of riparian vegetation after disturbance by debris flows in Oregon // American Midland Naturalist. 1990. Vol. 123. PP. 282-291.

9. Bowers J.E., Webb R.H., Pierson E.A. Succession of desert plants on debris flow terraces, Grand Canyon, Arizona, U.S.A. // Journal of Arid Environments. 1997. № 36. PP. 67-86.

10. Pabst R.J., Spies T.A. Ten years of vegetation succession on a debris flow deposit in Oregon // Journal of the American Water Resources Association. 2001. Vol. 37, № 6. PP. 1693-1708.

11. Петрушина М.Н. Влияние селевых потоков и снежных лавин на высокогорные ландшафты // Материалы гляциологических исследований. 2001. Вып. 91. С. 96-104.

12. Patten R.S., Knight D.H. Snow avalanche and vegetation pattern in Cascade Canyon, Grand Teton National Park, Wyoming, U.S.A. // Arctic, Antarctic and Alpine Research. 1994. Vol. 26, №. 1. PP. 35-41.

13. Rixen Ch., Haag S., Kulakowski D., Bebi P. Natural avalanche disturbance shapes plant diversity and species composition in subalpine forest belt // Journal of Vegetation Science. 2007. Vol. 18. PP. 735-742.

14. Быков Н.И. Растительность лавиносборов Алтая и возможности фитоиндикации лавинных процессов // География и природопользование Сибири. Барнаул : Изд-во Алтайск. ун-та, 2013. Вып. 15. С. 23-31.

15. Ревякин В.С., Кравцова В.И. Снежный покров и лавины Алтая. Томск : Изд-во Том. гос. ун-та, 1977. 215 с.

16. Gentili R., Armiraglio S., Sgorbati S., Baroni C. Geomorphological disturbance affects ecological driving forces and plant turnover along an altitudinal stress gradient on alpine slopes // Plant Ecology. 2013. Vol. 214. PP. 571-586.

17. Титова З.А., Петкевич М.В. Наблюдения над конусами аккумуляции в долине реки Актру // Гляциология Алтая. Томск : Изд-во Том. гос. ун-та, 1963. Вып. 3. С. 115- 141.

18. Душкин М.А. Лавины в верховьях долины Актру // Гляциология Алтая. Томск : Изд-во Том. гос. ун-та, 1974. Вып. 8. С. 39-59.

19. Николаева С.А., Савчук Д.А., Кузнецов А.С. Особенности датирования селей, лавин и камнепадов в верховьях р. Актру (Северо-Чуйский хребет, Центральный Алтай) по травмам деревьев // Геоэкология. Инженерная геология. Гидрогеология. Геокриология. 2017. № 4. С. 35-47.

20. Полевая геоботаника / под ред. А.А. Корчагина, Е.М. Лавренко, В.М. Понятовской. М. ; Л. : Наука, 1964. Т. 3. 531 с.

21. Цаценкин И.А., Савченко И.В., Дмитриева С.И. Методические указания по экологической оценке кормовых угодий тундровой и лесной зон Сибири и Дальнего Востока по растительному покрову. М. : ВНИИ кормов, 1978. 301 с.

22. Куминова А.В. Растительный покров Алтая. Новосибирск : Изд-во СО АН СССР, 1960. 450 с.

23. Ревякина Н.В. Современная приледниковая флора Алтае-Саянской горной области (происхождение, становление, адаптации). Барнаул : НИИ горного природопользования, 1996. 287 с.

24. Пяк А.И. Петрофиты Русского Алтая. Томск : Изд-во Том. ун-та, 2003. 202 с.

25. Определитель растений Республики Алтай / И.М. Красноборов, А.И. Артемов, А.А. Ачимова и др. ; отв. ред. И.М. Красноборов, И.А. Артемов. Новосибирск : Изд-во СО РАН, 2012. 701 с.

26. Игнатов М.С., Игнатова Е.А. Флора мхов средней части европейской России. М. : КМК, 2003-2004. Т. 1-2. 944 с.

27. Зверев А.А. Информационные технологии в исследованиях растительного покрова : учеб. пособие. Томск : ТМЛ-Пресс, 2007. 304 с.

28. Timoshok E.E., Timoshok E.N., Nikolaeva S.A., Savchuk D.A., Filimonova E.O., Skorokhodov S.N., Bocharov A.Yu. Monitoring of high altitudinal terrestrial ecosystems in the Altai Mountains // IOP Conf. Series: Earth and Environmental Science. 2016. Vol. 48. PP. 1-9.

29. Тимошок Е.Е., Скороходов С.Н., Тимошок Е.Н. Эколого-ценотическая характеристика кедра сибирского (Pinus sibirica Du Tour) на верхней границе его распространения в Центральном Алтае // Вестник Томского государственного университета. Биология. 2012. № 4 (20). С. 171-184.

30. Erschbamer B. Vegetation on avalanche path in the Alps // Vegetatio. 1989. Vol. 80, № 2. PP. 139-146.

31. Голубев В.Н. Морфологические признаки растений как индикаторы условий среды // Теоретические вопросы фитоиндикации. Л. : Наука, 1971. С. 137-142.

32. Fischer A. Long term vegetation development in Bavarian Mountain Forest ecosystems following natural destruction. // Vegetatio. 1992. Vol. 103. PP. 93-104.

33. Sinickas A., Jamieson B. Validating the Space-Time model for infrequent snow avalanche events using field observations from the Columbia and Rocky Mountains, Canada // Arctic, Antarctic and Alpine Research. 2016. Vol. 48, № 1. PP. 177-197.

34. Webb R.H., Steiger J.W., Turner R.M. Dynamics of Mojave desert shrub assemblages in the Panamint mountains, California // Ecology. 1987. Vol. 68, № 3. PP. 478-490.

Tomsk State University Journal of Biology. 2017; : 181-201

Phytocoenotic assessment of ecotopes on avalanche tracks and debris flow deposits in the Aktru river upper reaches

Nikolaeva S. A., Belova (Dirks) M. N.

https://doi.org/10.17223/19988591/40/11

Abstract

In the Altai Mountains, according to forecasts, there will be an increase in avalanche and debris flow activity in the first quarter of the 21st century, which affects mountain ecosystems. The aim of the study was a phytocoenotic assessment of ecotopes on the avalanche tracks and debris flow deposits in the Aktru river upper reaches (the central Altai Mountains, 50°04'N, 87°45'E). We collected data in the lower slope of the valley (2150-2340 m a.s.l.) at the treeline. Geobotanical descriptions of vegetation are given according to AA Korchagin in 2015. The area of inventory plots under the forest canopy was 625 m2 (25x25), and that of non-forest communities or forest fragments was 100-150 m2. On the basis of geobotanical descriptions of communities, we determined humidity and trophicity of ecotopes according to ecological scales (Tsatsenkin IA et al., 1978). At the same time, the description status was calculated using the weighted average considering amplitudes of species tolerance. The mediated ordination of communities was carried out according to phytoindication statuses. A comparative analysis of the lists of vascular plant and moss species is presented according to ecological groups using the data of AV Kuminova with additions and groups of growth forms according to IG Serebryakov. The names of vascular plant species are mainly given according to "Identification book..", those of mosses are according to MS Ignatov and EA Ignatova (See Figure 1, Table). It was revealed that the total number of species, participation (number and/or cover) of the species of most ecological groups (xerophytes, xeromesophytes, mesophytes, hygromesophytes, psychrophytes and petrophytes) and the most representative species of growth forms (taproot, short- and long-rhizome perennial herbs) increased from the forest belt to the forest-tundra ecotone, whereas hygrophytes decreased (See Figure 1, Table). The trophicity, aeratibility, and coldness of the ecotopes increased, and humidification decreased. In the zone of avalanche accumulation, the absence of a tree layer and a well-developed shrub layer were indicators of frequent avalanches (more than once in 10 years). Here, the projective cover of the moss layer was lower and the role of psychrophytes and hygrophytes was higher in comparison with undisturbed communities (See Figure 1 B). In general, the parameters of ecotopes varied slightly. A relatively increased coldness and humidity and reduced trophicity of substrates were typical of birch (Betula fruticosa, B. rotundifolia) communities, and a lower humidity and increased trophicity of ecotopes were common for meadows. In the zone of debris flow accumulation, a 170-200-year-old tree stand had survived, the cover of herbaceous-dwarf shrub and mossy layers was lower, and the number of hygrophytes and psychrophytes, and short-rhizome herbs was higher, as compared with undisturbed communities. The ground cover composition was similar to that of the undisturbed forest 32 years after the debris flow event. The transit zone of the debris flow is, currently, a channel of temporary streamflow. A low similarity in species composition and cover and the highest number of hygrophytes, psychrophytes, petrophytes, and short-rhizome herbs were observed here, in comparison with all other communities (See Figure 1e, f, g). The vegetation parameters indicated colder poorly developed and periodically waterlogged ecotopes, in comparison with undisturbed communities. These ecotopes seem to be influenced by frequent external impacts at present: regular and short-term flows of melted spring and heavy rainfall water and mudflows or debris flows (once in 10 years) from the higher parts of the slope. A number of sites in terms of the degree of impact of geomorphological factors on vegetation and their ecotopes are as follows: undisturbed - debris flow (accumulation zone) - avalanche (accumulation zone) - debris flow (transit zone). The article contains 2 Figures, 1 Table and 34 References.
References

1. Gorchakovskii P.L., Shiyatov S.G. Fitoindikatsiya uslovii sredy i prirodnykh protsessov v vysokogor'yakh. M. : Nauka, 1985. 209 s.

2. Korzhenevskii V.V., Kvitnitskaya A.A. Fitoindikatsiya rel'efoobrazovaniya i opyt ee primeneniya // Byulleten' Nikitskogo botanicheskogo sada. 2011. Vyp. 100. S. 5-28.

3. Huggel C., Clague J.J., Korup O. Is climate change responsible for changing landslide activity in high mountains? // Earth Surface Processes and Landforms. 2011. Vol. 37. PP. 77-91.

4. Mal'neva I.V., Kononova N.K. Aktivnost' selei na territorii Rossii i blizhnego zarubezh'ya v XXI v. // Georisk. 2012. № 4. S. 48-54.

5. Geografiya lavin / pod red. S.M. Myagkova, L.A. Kanaeva. M. : MGU 1992. 334 s.

6. Simonson S.E., Greene E.M., Fassnacht S.R., Stohlgren T.J., Landry C.C. Practical methods for using vegetation patterns to estimate avalanche frequency and magnitude // International Snow Science Workshop Proceedings. Lake Tahoe, CF, 2010. PP. 548-555.

7. Bebi P., Kulakowki D., Rixen Ch. Snow avalanche disturbances in forest ecosystems - State of research and implications for management // Forest Ecology and Management. 2009. Vol. 257. PP. 1883-1892.

8. Gecy J.L., Wilson M.V. Initial establishment of riparian vegetation after disturbance by debris flows in Oregon // American Midland Naturalist. 1990. Vol. 123. PP. 282-291.

9. Bowers J.E., Webb R.H., Pierson E.A. Succession of desert plants on debris flow terraces, Grand Canyon, Arizona, U.S.A. // Journal of Arid Environments. 1997. № 36. PP. 67-86.

10. Pabst R.J., Spies T.A. Ten years of vegetation succession on a debris flow deposit in Oregon // Journal of the American Water Resources Association. 2001. Vol. 37, № 6. PP. 1693-1708.

11. Petrushina M.N. Vliyanie selevykh potokov i snezhnykh lavin na vysokogornye landshafty // Materialy glyatsiologicheskikh issledovanii. 2001. Vyp. 91. S. 96-104.

12. Patten R.S., Knight D.H. Snow avalanche and vegetation pattern in Cascade Canyon, Grand Teton National Park, Wyoming, U.S.A. // Arctic, Antarctic and Alpine Research. 1994. Vol. 26, №. 1. PP. 35-41.

13. Rixen Ch., Haag S., Kulakowski D., Bebi P. Natural avalanche disturbance shapes plant diversity and species composition in subalpine forest belt // Journal of Vegetation Science. 2007. Vol. 18. PP. 735-742.

14. Bykov N.I. Rastitel'nost' lavinosborov Altaya i vozmozhnosti fitoindikatsii lavinnykh protsessov // Geografiya i prirodopol'zovanie Sibiri. Barnaul : Izd-vo Altaisk. un-ta, 2013. Vyp. 15. S. 23-31.

15. Revyakin V.S., Kravtsova V.I. Snezhnyi pokrov i laviny Altaya. Tomsk : Izd-vo Tom. gos. un-ta, 1977. 215 s.

16. Gentili R., Armiraglio S., Sgorbati S., Baroni C. Geomorphological disturbance affects ecological driving forces and plant turnover along an altitudinal stress gradient on alpine slopes // Plant Ecology. 2013. Vol. 214. PP. 571-586.

17. Titova Z.A., Petkevich M.V. Nablyudeniya nad konusami akkumulyatsii v doline reki Aktru // Glyatsiologiya Altaya. Tomsk : Izd-vo Tom. gos. un-ta, 1963. Vyp. 3. S. 115- 141.

18. Dushkin M.A. Laviny v verkhov'yakh doliny Aktru // Glyatsiologiya Altaya. Tomsk : Izd-vo Tom. gos. un-ta, 1974. Vyp. 8. S. 39-59.

19. Nikolaeva S.A., Savchuk D.A., Kuznetsov A.S. Osobennosti datirovaniya selei, lavin i kamnepadov v verkhov'yakh r. Aktru (Severo-Chuiskii khrebet, Tsentral'nyi Altai) po travmam derev'ev // Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya. 2017. № 4. S. 35-47.

20. Polevaya geobotanika / pod red. A.A. Korchagina, E.M. Lavrenko, V.M. Ponyatovskoi. M. ; L. : Nauka, 1964. T. 3. 531 s.

21. Tsatsenkin I.A., Savchenko I.V., Dmitrieva S.I. Metodicheskie ukazaniya po ekologicheskoi otsenke kormovykh ugodii tundrovoi i lesnoi zon Sibiri i Dal'nego Vostoka po rastitel'nomu pokrovu. M. : VNII kormov, 1978. 301 s.

22. Kuminova A.V. Rastitel'nyi pokrov Altaya. Novosibirsk : Izd-vo SO AN SSSR, 1960. 450 s.

23. Revyakina N.V. Sovremennaya prilednikovaya flora Altae-Sayanskoi gornoi oblasti (proiskhozhdenie, stanovlenie, adaptatsii). Barnaul : NII gornogo prirodopol'zovaniya, 1996. 287 s.

24. Pyak A.I. Petrofity Russkogo Altaya. Tomsk : Izd-vo Tom. un-ta, 2003. 202 s.

25. Opredelitel' rastenii Respubliki Altai / I.M. Krasnoborov, A.I. Artemov, A.A. Achimova i dr. ; otv. red. I.M. Krasnoborov, I.A. Artemov. Novosibirsk : Izd-vo SO RAN, 2012. 701 s.

26. Ignatov M.S., Ignatova E.A. Flora mkhov srednei chasti evropeiskoi Rossii. M. : KMK, 2003-2004. T. 1-2. 944 s.

27. Zverev A.A. Informatsionnye tekhnologii v issledovaniyakh rastitel'nogo pokrova : ucheb. posobie. Tomsk : TML-Press, 2007. 304 s.

28. Timoshok E.E., Timoshok E.N., Nikolaeva S.A., Savchuk D.A., Filimonova E.O., Skorokhodov S.N., Bocharov A.Yu. Monitoring of high altitudinal terrestrial ecosystems in the Altai Mountains // IOP Conf. Series: Earth and Environmental Science. 2016. Vol. 48. PP. 1-9.

29. Timoshok E.E., Skorokhodov S.N., Timoshok E.N. Ekologo-tsenoticheskaya kharakteristika kedra sibirskogo (Pinus sibirica Du Tour) na verkhnei granitse ego rasprostraneniya v Tsentral'nom Altae // Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya. 2012. № 4 (20). S. 171-184.

30. Erschbamer B. Vegetation on avalanche path in the Alps // Vegetatio. 1989. Vol. 80, № 2. PP. 139-146.

31. Golubev V.N. Morfologicheskie priznaki rastenii kak indikatory uslovii sredy // Teoreticheskie voprosy fitoindikatsii. L. : Nauka, 1971. S. 137-142.

32. Fischer A. Long term vegetation development in Bavarian Mountain Forest ecosystems following natural destruction. // Vegetatio. 1992. Vol. 103. PP. 93-104.

33. Sinickas A., Jamieson B. Validating the Space-Time model for infrequent snow avalanche events using field observations from the Columbia and Rocky Mountains, Canada // Arctic, Antarctic and Alpine Research. 2016. Vol. 48, № 1. PP. 177-197.

34. Webb R.H., Steiger J.W., Turner R.M. Dynamics of Mojave desert shrub assemblages in the Panamint mountains, California // Ecology. 1987. Vol. 68, № 3. PP. 478-490.