Журналов:     Статей:        

Вестник Томского государственного университета. Биология. 2016; : 21-33

Сравнение рельефных моделей в целях повышения качества почвенного картирования в масштабах поля

Рязанов С. С., Сахабиев И. А.

https://doi.org/10.17223/19988591/36/2

Аннотация

Экологические, экономические и сельскохозяйственные выгоды точной интерполяции пространственного распределения почвенных свойств не вызывают сомнения. В данной работе представлен анализ и сравнение различных подходов построения дрифт-моделей при применении регрессионного кригинга для оценки пространственной изменчивости содержания гумуса и физической глины в верхнем горизонте почвы. Отбор почвенных образцов произведен согласно схеме, применяемой при агрохимическом обследовании с/х полей: на территории поля выделялось 60 секций, в каждой из которых ручным буром отобрано 12-15 почвенных образцов с глубины 10-20 см для получения смешанной пробы. Для пространственного прогноза распределения гумуса и физической глины использовались три рельефные модели: регрессия на главные компоненты, частные наименьшие квадраты и модель randomForest. Оценка точности интерполяции произведена с помощью перекрестной проверки, по результатам который вычислены: средняя ошибка (mean error, ME), среднеквадратичная ошибка (root mean square error, RMSE), среднеквадратичная стандартизированная ошибка (root mean square standardized error, RMSSE) и соотношение наблюдаемой и прогнозируемой дисперсий (RVar). Согласно полученным результатам, метод ординарного кригинга превосходит остальные при наличии сильной пространственной зависимости исследуемого параметра. Во всех остальных случаях подход с применением PLS модели имеет наибольшую точность пространственного прогноза.
Список литературы

1. Wei J.B., Xiao D.N., Zeng H., Fu Y.K. Spatial variability of soil properties in relation to land use and topography in a typical small watershed of the black soil region, northern China. Environ Geol. 2008;53:1663-1672. doi: 10.1007/s00254-007-0773-z

2. Rodriques-Lado L, Martinez-Cortizas A. Modelling and mapping organic carbon content of topsoil in an Atlantic area of southwestern Europe (Galicia, NW-Spain). Geoderma. 2015;245-246:65-73. doi: 10.1016/j.geoderma.2015.01.015

3. McBrantey A.B., Mendoca Santos M.L., Minasny B. On digital soil mapping. Geoderma. 2003;117:3-52. doi: 10.1016/s0016-7061(03)00223-4

4. Minasny B., McBratney A.B. Methodologies for global soil mapping. In: Digital Soil Mapping. Bridging Research, Environmental Application and Operation. Boettinger J.L., Howel D.W., Moore A.C., Hartemink A.E., Kienast-Brown S., editors. Dordrecht: Springer Netherlands; 2010. pp. 429-436. doi: 10.1007/978-90-481-8863-5

5. Behera S.K., Shukla A.K. Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of India. LandDegrad. Develop. 2015;26:71-79. doi: 10.1002/ldr.2306

6. Goovaerts P. Geostatistics for Natural Resources Evaluation (Applied Geostatistics). New York: Oxford University Press; 1997. 497 p.

7. Zare-Mehrjardi M, Taghizadeh-Mehjardi R, Akbarzadeh A. Evaluation of geostatistical techniques for mapping spatial distribution of soil pH, salinity and plant cover affected by environmental factors in Southern Iran. NotSciBiol. 2010;2:92-103.

8. Gouri S.B., Pravat K., Ramkrishna M. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). Journal ofthe Saudi Society of Agricultural Sciences. 2016. In press. doi: 10.1016/j.jssas.2016.02.001

9. Zhang S, Huang Y, Shen C, Ye H, Du Y. Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information. Geoderma. 2012;171-172:35-43. doi: 10.1016/j.geoderma.2011.07.012

10. Li J, Heap A. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance an impact factor. Ecological Informatics. 2011;6(3-4):228-241. doi: 10.1016/j.ecoinf.2010.12.003

11. Shein E.V. Kurs fiziki pochv [Soil physics]. Moscow: Moscow State University Publ.; 2005. 432 p. In Russian

12. Yagodin B.A., Deryugin I.P., Zhukov Yu.P., Demin V.A, Peterburgskiy A.V., Kidin V.V., Slipchik A.F., Kulyukin A.I., Sablina S.M. Praktikum po agrokhimii [Manual on agrochemistry]. Moscow: Agropromizdat Publ.; 1987. 512 p. In Russian

13. Miller B.A., Koszinski S., Wehrhan M., Sommer M. Impact of multi-scale predictor selection for modeling soil properties. Geoderma. 2015:239-240:97-106. doi: 10.1016/j. geoderma.2014.09.018

14. Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Boehner J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015;8:1991-2007. doi: 10.5194/gmd-8-1991-2015

15. Webster R, Oliver M. Geostatistics for Environmental Scientists. Chichester: John Wiley & Sons, Ltd; 2001. 271 p.

16. Robinson T.P., Metternicht G. Comparing the performance of techniques to improve the quality ofyield maps. Agricultural Systems. 2005;85:19-41. doi: 10.1016/j.agsy.2004.07.010

17. Hengl T. A Practical Guide to Geostatistical Mapping. Amsterdam: University of Amsterdam Publ.; 2009. 293 p.

18. Odeh I., McBratney A., Chittleborough D. Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma. 1994;63:197-214. doi: 10.1016/0016-7061(94)90063-9

19. Odeh I., McBratney A., Chittleborough D. Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma. 1995;67:215-226. doi: 10.1016/0016-7061(95)00007-B

20. McBratney A., Odeh I., Bishop T., Dunbar M., Shatar T. An overview of pedometric techniques of use in soil survey. Geoderma. 2000;97:293-327. doi: 10.1016/S0016-7061(00)00043-4

21. Hengl T., Heuvelink G., Stein A. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma. 2004;120:75-93. doi: 10.1016/j. geoderma.2003.08.018

22. James G., Witten D., Hastie T., Tibshirani R. An introduction to statistical learning with applications in R. New York: Springer-Verlag; 2013. 440 p. doi: 10.1007/978-1-4614-7138-7

23. Mevik B., Wehrens R. The pls package: principal component and partial least squares regression in R. Journal of Statistical Software. 2007;18:2:1-23. doi: 10.18637/jss.v018.i02

24. Breiman L. Random Forests. Machine Learning. 2001;45:5-32. doi: 10.1023/A:1010933404324

25. Li J., Heap A.D. A Review of spatial interpolation methods for environmental scientists. Geoscience Australia, Record 2008/23. 137 p.

26. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2016. [Electronic resource]. Available at: http:// www.R-project.org/ (accessed 05.10.2016)

27. Mevik B.-H., Wehrens R., Liland K.H. Partial Least Squares and Principal Component Regression. R package version 2.5-0.; 2015. [Electronic resource]. Available at: https:// cran.r-project.org/web/packages/pls/index.html (accessed 05.10.2016)

28. Liaw A., Wiener M. Classification and Regression by random Forest. R News. 2002;2(3):18-22.

29. Cambardella C., Moorman T., Novak J., Parkin T., Karlen D., Turco R., Konopka A. Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am. J. 1994;58:1501-1511. doi: 10.2136/sssaj1994.03615995005800050033x

Tomsk State University Journal of Biology. 2016; : 21-33

Comparison of terrain-based drift models to improve the quality of soil predictive mapping at a field scale

Ryazanov S. S., Sahabiev I. A.

https://doi.org/10.17223/19988591/36/2

Abstract

The ecological, economic, and agricultural benefits of accurate interpolation of spatial distribution patterns of soil properties are well recognized. In the present study different approaches to build the drift model for the regression kriging are analyzed and compared for estimating the spatial variation of humus and physical clay at soil depth (0-20 cm) in Tatarstan, Russian Federation. The soil sampling was performed according to an agrochemical sampling design: the field was divided into 60 sections; within each section 12-15 sampling points were taken using a hand auger at the depth of 10-20 cm to produce one mixed sample. Three terrain-based drift models: principal component regression (PCR), partial least squares (PLS), and random forest were used to predict the spatial distribution of humus and physical clay. Cross-validation was applied to evaluate the accuracy of interpolation methods through mean error (ME), root mean square error (RMSE), root mean square standardized error (RMSSE), and ratio of the observed and the predicted variances (RVar). The results indicate that ordinary kriging (OK) is superior when the data have strong spatial dependence. But in other cases, the PLS approach had the best prediction performance.
References

1. Wei J.B., Xiao D.N., Zeng H., Fu Y.K. Spatial variability of soil properties in relation to land use and topography in a typical small watershed of the black soil region, northern China. Environ Geol. 2008;53:1663-1672. doi: 10.1007/s00254-007-0773-z

2. Rodriques-Lado L, Martinez-Cortizas A. Modelling and mapping organic carbon content of topsoil in an Atlantic area of southwestern Europe (Galicia, NW-Spain). Geoderma. 2015;245-246:65-73. doi: 10.1016/j.geoderma.2015.01.015

3. McBrantey A.B., Mendoca Santos M.L., Minasny B. On digital soil mapping. Geoderma. 2003;117:3-52. doi: 10.1016/s0016-7061(03)00223-4

4. Minasny B., McBratney A.B. Methodologies for global soil mapping. In: Digital Soil Mapping. Bridging Research, Environmental Application and Operation. Boettinger J.L., Howel D.W., Moore A.C., Hartemink A.E., Kienast-Brown S., editors. Dordrecht: Springer Netherlands; 2010. pp. 429-436. doi: 10.1007/978-90-481-8863-5

5. Behera S.K., Shukla A.K. Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of India. LandDegrad. Develop. 2015;26:71-79. doi: 10.1002/ldr.2306

6. Goovaerts P. Geostatistics for Natural Resources Evaluation (Applied Geostatistics). New York: Oxford University Press; 1997. 497 p.

7. Zare-Mehrjardi M, Taghizadeh-Mehjardi R, Akbarzadeh A. Evaluation of geostatistical techniques for mapping spatial distribution of soil pH, salinity and plant cover affected by environmental factors in Southern Iran. NotSciBiol. 2010;2:92-103.

8. Gouri S.B., Pravat K., Ramkrishna M. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). Journal ofthe Saudi Society of Agricultural Sciences. 2016. In press. doi: 10.1016/j.jssas.2016.02.001

9. Zhang S, Huang Y, Shen C, Ye H, Du Y. Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information. Geoderma. 2012;171-172:35-43. doi: 10.1016/j.geoderma.2011.07.012

10. Li J, Heap A. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance an impact factor. Ecological Informatics. 2011;6(3-4):228-241. doi: 10.1016/j.ecoinf.2010.12.003

11. Shein E.V. Kurs fiziki pochv [Soil physics]. Moscow: Moscow State University Publ.; 2005. 432 p. In Russian

12. Yagodin B.A., Deryugin I.P., Zhukov Yu.P., Demin V.A, Peterburgskiy A.V., Kidin V.V., Slipchik A.F., Kulyukin A.I., Sablina S.M. Praktikum po agrokhimii [Manual on agrochemistry]. Moscow: Agropromizdat Publ.; 1987. 512 p. In Russian

13. Miller B.A., Koszinski S., Wehrhan M., Sommer M. Impact of multi-scale predictor selection for modeling soil properties. Geoderma. 2015:239-240:97-106. doi: 10.1016/j. geoderma.2014.09.018

14. Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Boehner J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015;8:1991-2007. doi: 10.5194/gmd-8-1991-2015

15. Webster R, Oliver M. Geostatistics for Environmental Scientists. Chichester: John Wiley & Sons, Ltd; 2001. 271 p.

16. Robinson T.P., Metternicht G. Comparing the performance of techniques to improve the quality ofyield maps. Agricultural Systems. 2005;85:19-41. doi: 10.1016/j.agsy.2004.07.010

17. Hengl T. A Practical Guide to Geostatistical Mapping. Amsterdam: University of Amsterdam Publ.; 2009. 293 p.

18. Odeh I., McBratney A., Chittleborough D. Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma. 1994;63:197-214. doi: 10.1016/0016-7061(94)90063-9

19. Odeh I., McBratney A., Chittleborough D. Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma. 1995;67:215-226. doi: 10.1016/0016-7061(95)00007-B

20. McBratney A., Odeh I., Bishop T., Dunbar M., Shatar T. An overview of pedometric techniques of use in soil survey. Geoderma. 2000;97:293-327. doi: 10.1016/S0016-7061(00)00043-4

21. Hengl T., Heuvelink G., Stein A. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma. 2004;120:75-93. doi: 10.1016/j. geoderma.2003.08.018

22. James G., Witten D., Hastie T., Tibshirani R. An introduction to statistical learning with applications in R. New York: Springer-Verlag; 2013. 440 p. doi: 10.1007/978-1-4614-7138-7

23. Mevik B., Wehrens R. The pls package: principal component and partial least squares regression in R. Journal of Statistical Software. 2007;18:2:1-23. doi: 10.18637/jss.v018.i02

24. Breiman L. Random Forests. Machine Learning. 2001;45:5-32. doi: 10.1023/A:1010933404324

25. Li J., Heap A.D. A Review of spatial interpolation methods for environmental scientists. Geoscience Australia, Record 2008/23. 137 p.

26. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2016. [Electronic resource]. Available at: http:// www.R-project.org/ (accessed 05.10.2016)

27. Mevik B.-H., Wehrens R., Liland K.H. Partial Least Squares and Principal Component Regression. R package version 2.5-0.; 2015. [Electronic resource]. Available at: https:// cran.r-project.org/web/packages/pls/index.html (accessed 05.10.2016)

28. Liaw A., Wiener M. Classification and Regression by random Forest. R News. 2002;2(3):18-22.

29. Cambardella C., Moorman T., Novak J., Parkin T., Karlen D., Turco R., Konopka A. Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am. J. 1994;58:1501-1511. doi: 10.2136/sssaj1994.03615995005800050033x