Вестник Томского государственного университета. Биология. 2016; : 21-33
Сравнение рельефных моделей в целях повышения качества почвенного картирования в масштабах поля
https://doi.org/10.17223/19988591/36/2Аннотация
Список литературы
1. Wei J.B., Xiao D.N., Zeng H., Fu Y.K. Spatial variability of soil properties in relation to land use and topography in a typical small watershed of the black soil region, northern China. Environ Geol. 2008;53:1663-1672. doi: 10.1007/s00254-007-0773-z
2. Rodriques-Lado L, Martinez-Cortizas A. Modelling and mapping organic carbon content of topsoil in an Atlantic area of southwestern Europe (Galicia, NW-Spain). Geoderma. 2015;245-246:65-73. doi: 10.1016/j.geoderma.2015.01.015
3. McBrantey A.B., Mendoca Santos M.L., Minasny B. On digital soil mapping. Geoderma. 2003;117:3-52. doi: 10.1016/s0016-7061(03)00223-4
4. Minasny B., McBratney A.B. Methodologies for global soil mapping. In: Digital Soil Mapping. Bridging Research, Environmental Application and Operation. Boettinger J.L., Howel D.W., Moore A.C., Hartemink A.E., Kienast-Brown S., editors. Dordrecht: Springer Netherlands; 2010. pp. 429-436. doi: 10.1007/978-90-481-8863-5
5. Behera S.K., Shukla A.K. Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of India. LandDegrad. Develop. 2015;26:71-79. doi: 10.1002/ldr.2306
6. Goovaerts P. Geostatistics for Natural Resources Evaluation (Applied Geostatistics). New York: Oxford University Press; 1997. 497 p.
7. Zare-Mehrjardi M, Taghizadeh-Mehjardi R, Akbarzadeh A. Evaluation of geostatistical techniques for mapping spatial distribution of soil pH, salinity and plant cover affected by environmental factors in Southern Iran. NotSciBiol. 2010;2:92-103.
8. Gouri S.B., Pravat K., Ramkrishna M. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). Journal ofthe Saudi Society of Agricultural Sciences. 2016. In press. doi: 10.1016/j.jssas.2016.02.001
9. Zhang S, Huang Y, Shen C, Ye H, Du Y. Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information. Geoderma. 2012;171-172:35-43. doi: 10.1016/j.geoderma.2011.07.012
10. Li J, Heap A. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance an impact factor. Ecological Informatics. 2011;6(3-4):228-241. doi: 10.1016/j.ecoinf.2010.12.003
11. Shein E.V. Kurs fiziki pochv [Soil physics]. Moscow: Moscow State University Publ.; 2005. 432 p. In Russian
12. Yagodin B.A., Deryugin I.P., Zhukov Yu.P., Demin V.A, Peterburgskiy A.V., Kidin V.V., Slipchik A.F., Kulyukin A.I., Sablina S.M. Praktikum po agrokhimii [Manual on agrochemistry]. Moscow: Agropromizdat Publ.; 1987. 512 p. In Russian
13. Miller B.A., Koszinski S., Wehrhan M., Sommer M. Impact of multi-scale predictor selection for modeling soil properties. Geoderma. 2015:239-240:97-106. doi: 10.1016/j. geoderma.2014.09.018
14. Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Boehner J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015;8:1991-2007. doi: 10.5194/gmd-8-1991-2015
15. Webster R, Oliver M. Geostatistics for Environmental Scientists. Chichester: John Wiley & Sons, Ltd; 2001. 271 p.
16. Robinson T.P., Metternicht G. Comparing the performance of techniques to improve the quality ofyield maps. Agricultural Systems. 2005;85:19-41. doi: 10.1016/j.agsy.2004.07.010
17. Hengl T. A Practical Guide to Geostatistical Mapping. Amsterdam: University of Amsterdam Publ.; 2009. 293 p.
18. Odeh I., McBratney A., Chittleborough D. Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma. 1994;63:197-214. doi: 10.1016/0016-7061(94)90063-9
19. Odeh I., McBratney A., Chittleborough D. Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma. 1995;67:215-226. doi: 10.1016/0016-7061(95)00007-B
20. McBratney A., Odeh I., Bishop T., Dunbar M., Shatar T. An overview of pedometric techniques of use in soil survey. Geoderma. 2000;97:293-327. doi: 10.1016/S0016-7061(00)00043-4
21. Hengl T., Heuvelink G., Stein A. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma. 2004;120:75-93. doi: 10.1016/j. geoderma.2003.08.018
22. James G., Witten D., Hastie T., Tibshirani R. An introduction to statistical learning with applications in R. New York: Springer-Verlag; 2013. 440 p. doi: 10.1007/978-1-4614-7138-7
23. Mevik B., Wehrens R. The pls package: principal component and partial least squares regression in R. Journal of Statistical Software. 2007;18:2:1-23. doi: 10.18637/jss.v018.i02
24. Breiman L. Random Forests. Machine Learning. 2001;45:5-32. doi: 10.1023/A:1010933404324
25. Li J., Heap A.D. A Review of spatial interpolation methods for environmental scientists. Geoscience Australia, Record 2008/23. 137 p.
26. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2016. [Electronic resource]. Available at: http:// www.R-project.org/ (accessed 05.10.2016)
27. Mevik B.-H., Wehrens R., Liland K.H. Partial Least Squares and Principal Component Regression. R package version 2.5-0.; 2015. [Electronic resource]. Available at: https:// cran.r-project.org/web/packages/pls/index.html (accessed 05.10.2016)
28. Liaw A., Wiener M. Classification and Regression by random Forest. R News. 2002;2(3):18-22.
29. Cambardella C., Moorman T., Novak J., Parkin T., Karlen D., Turco R., Konopka A. Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am. J. 1994;58:1501-1511. doi: 10.2136/sssaj1994.03615995005800050033x
Tomsk State University Journal of Biology. 2016; : 21-33
Comparison of terrain-based drift models to improve the quality of soil predictive mapping at a field scale
Ryazanov S. S., Sahabiev I. A.
https://doi.org/10.17223/19988591/36/2Abstract
References
1. Wei J.B., Xiao D.N., Zeng H., Fu Y.K. Spatial variability of soil properties in relation to land use and topography in a typical small watershed of the black soil region, northern China. Environ Geol. 2008;53:1663-1672. doi: 10.1007/s00254-007-0773-z
2. Rodriques-Lado L, Martinez-Cortizas A. Modelling and mapping organic carbon content of topsoil in an Atlantic area of southwestern Europe (Galicia, NW-Spain). Geoderma. 2015;245-246:65-73. doi: 10.1016/j.geoderma.2015.01.015
3. McBrantey A.B., Mendoca Santos M.L., Minasny B. On digital soil mapping. Geoderma. 2003;117:3-52. doi: 10.1016/s0016-7061(03)00223-4
4. Minasny B., McBratney A.B. Methodologies for global soil mapping. In: Digital Soil Mapping. Bridging Research, Environmental Application and Operation. Boettinger J.L., Howel D.W., Moore A.C., Hartemink A.E., Kienast-Brown S., editors. Dordrecht: Springer Netherlands; 2010. pp. 429-436. doi: 10.1007/978-90-481-8863-5
5. Behera S.K., Shukla A.K. Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of India. LandDegrad. Develop. 2015;26:71-79. doi: 10.1002/ldr.2306
6. Goovaerts P. Geostatistics for Natural Resources Evaluation (Applied Geostatistics). New York: Oxford University Press; 1997. 497 p.
7. Zare-Mehrjardi M, Taghizadeh-Mehjardi R, Akbarzadeh A. Evaluation of geostatistical techniques for mapping spatial distribution of soil pH, salinity and plant cover affected by environmental factors in Southern Iran. NotSciBiol. 2010;2:92-103.
8. Gouri S.B., Pravat K., Ramkrishna M. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). Journal ofthe Saudi Society of Agricultural Sciences. 2016. In press. doi: 10.1016/j.jssas.2016.02.001
9. Zhang S, Huang Y, Shen C, Ye H, Du Y. Spatial prediction of soil organic matter using terrain indices and categorical variables as auxiliary information. Geoderma. 2012;171-172:35-43. doi: 10.1016/j.geoderma.2011.07.012
10. Li J, Heap A. A review of comparative studies of spatial interpolation methods in environmental sciences: Performance an impact factor. Ecological Informatics. 2011;6(3-4):228-241. doi: 10.1016/j.ecoinf.2010.12.003
11. Shein E.V. Kurs fiziki pochv [Soil physics]. Moscow: Moscow State University Publ.; 2005. 432 p. In Russian
12. Yagodin B.A., Deryugin I.P., Zhukov Yu.P., Demin V.A, Peterburgskiy A.V., Kidin V.V., Slipchik A.F., Kulyukin A.I., Sablina S.M. Praktikum po agrokhimii [Manual on agrochemistry]. Moscow: Agropromizdat Publ.; 1987. 512 p. In Russian
13. Miller B.A., Koszinski S., Wehrhan M., Sommer M. Impact of multi-scale predictor selection for modeling soil properties. Geoderma. 2015:239-240:97-106. doi: 10.1016/j. geoderma.2014.09.018
14. Conrad O, Bechtel B, Bock M, Dietrich H, Fischer E, Gerlitz L, Wehberg J, Wichmann V, Boehner J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015;8:1991-2007. doi: 10.5194/gmd-8-1991-2015
15. Webster R, Oliver M. Geostatistics for Environmental Scientists. Chichester: John Wiley & Sons, Ltd; 2001. 271 p.
16. Robinson T.P., Metternicht G. Comparing the performance of techniques to improve the quality ofyield maps. Agricultural Systems. 2005;85:19-41. doi: 10.1016/j.agsy.2004.07.010
17. Hengl T. A Practical Guide to Geostatistical Mapping. Amsterdam: University of Amsterdam Publ.; 2009. 293 p.
18. Odeh I., McBratney A., Chittleborough D. Spatial prediction of soil properties from landform attributes derived from a digital elevation model. Geoderma. 1994;63:197-214. doi: 10.1016/0016-7061(94)90063-9
19. Odeh I., McBratney A., Chittleborough D. Further results on prediction of soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma. 1995;67:215-226. doi: 10.1016/0016-7061(95)00007-B
20. McBratney A., Odeh I., Bishop T., Dunbar M., Shatar T. An overview of pedometric techniques of use in soil survey. Geoderma. 2000;97:293-327. doi: 10.1016/S0016-7061(00)00043-4
21. Hengl T., Heuvelink G., Stein A. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma. 2004;120:75-93. doi: 10.1016/j. geoderma.2003.08.018
22. James G., Witten D., Hastie T., Tibshirani R. An introduction to statistical learning with applications in R. New York: Springer-Verlag; 2013. 440 p. doi: 10.1007/978-1-4614-7138-7
23. Mevik B., Wehrens R. The pls package: principal component and partial least squares regression in R. Journal of Statistical Software. 2007;18:2:1-23. doi: 10.18637/jss.v018.i02
24. Breiman L. Random Forests. Machine Learning. 2001;45:5-32. doi: 10.1023/A:1010933404324
25. Li J., Heap A.D. A Review of spatial interpolation methods for environmental scientists. Geoscience Australia, Record 2008/23. 137 p.
26. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2016. [Electronic resource]. Available at: http:// www.R-project.org/ (accessed 05.10.2016)
27. Mevik B.-H., Wehrens R., Liland K.H. Partial Least Squares and Principal Component Regression. R package version 2.5-0.; 2015. [Electronic resource]. Available at: https:// cran.r-project.org/web/packages/pls/index.html (accessed 05.10.2016)
28. Liaw A., Wiener M. Classification and Regression by random Forest. R News. 2002;2(3):18-22.
29. Cambardella C., Moorman T., Novak J., Parkin T., Karlen D., Turco R., Konopka A. Field-Scale Variability of Soil Properties in Central Iowa Soils. Soil Sci. Soc. Am. J. 1994;58:1501-1511. doi: 10.2136/sssaj1994.03615995005800050033x
События
-
К платформе Elpub присоединился журнал «The BRICS Health Journal» >>>
10 июн 2025 | 12:52 -
Журнал «Неотложная кардиология и кардиоваскулярные риски» присоединился к Elpub >>>
6 июн 2025 | 09:45 -
К платформе Elpub присоединился «Медицинский журнал» >>>
5 июн 2025 | 09:41 -
НЭИКОН принял участие в конференции НИИ Организации здравоохранения и медицинского менеджмента >>>
30 мая 2025 | 10:32 -
Журнал «Творчество и современность» присоединился к Elpub! >>>
27 мая 2025 | 12:38