Журналов:     Статей:        

Вестник Томского государственного университета. Биология. 2016; : 107-127

Зависимость морфофизиологических показателей постэмбриональных стадий непарного шелкопряда Lymantria dispar (L.) (Lepidoptera: Lymantriidae) от температурных условий в период эмбрионального развития

Пономарев В. И., Клобуков Г. И., Напалкова В. В.

https://doi.org/10.17223/19988591/35/7

Аннотация

Исследовано влияние суммы летне-осенних эффективных температур (СЭТ), получаемых на эмбриональной стадии развития, на морфофизиологические показатели особей непарного шелкопряда из двух популяций разного широтного происхождения в постэмбриональный период. Актуальность обусловлена необходимостью уточнения адаптационных механизмов выживания насекомых на северной границе ареала в связи с глобальным изменением климата. В лабораторных условиях установлено значительное влияние минимальной летне-осенней СЭТ, необходимой для формирования эмбрионов, на длительность развития гусениц из популяции северного происхождения (зауральской), в отличие от гусениц из популяции южного происхождения (нижневолжской). При уменьшении длительности развития гусениц отмечено увеличение массы куколок. Сделано предположение, что выраженная реакция гусениц популяции из северной части ареала на снижение летне-осенней СЭТ, получаемой эмбрионами, может быть адаптивным признаком, связанным с периодическим риском недополучения потомством летне-осенней СЭТ, необходимой для завершения формирования эмбриона до наступления холодов в этой части ареала. Изменение сроков лёта самцов северной популяции, отмеченное по результатам феромонного мониторинга, может быть обусловлено не только условиями развития личиночной стадии, но и температурными условиями раннеэмбрионального развития.
Список литературы

1. Воронцов А.И. Биологические основы защиты леса. М. : Высшая школа, 1960. 342 с.

2. Lee K.-Y., Horodyski F.M., Valaitis A.P., Denlinger D.L. Molecular characterization of the insect immune protein hemolin and its high induction during embryonic diapause in the gypsy moth, Lymantria dispar // Insect Biochemistry and Molecular Biology. 2002. № 32. P. 1457-1467.

3. Tauber M.J., Tauber C.A., Ruberson J.H., Tauber A.J., Abrahamson L.P. Dormancy in Lymantria dispar (Lepidoptera: Lymantriidae): analysis of photoperiodic and thermal responses // Annals of the Entomological Society of America. 1990. № 83(3). P. 494-503.

4. Кожанчиков И.В. Фауна СССР. М. : АН СССР, 1950. Т. 12. 582 с.

5. Ильинский А.И., Тропин И.В. (ред.) Надзор, учет и прогноз массовых размножений хвое- и листогрызущих насекомых в лесах СССР. М. : Лесн. пром-ть, 1965. 525 с.

6. Мешкова В.Л. Сезонное развитие хвоелистогрызущих насекомых. Харьков : Планетапринт, 2009. 396 с.

7. Giese R.L., Schneider M.L. Cartographic comparisons of Eurasian gypsy moth distribution (Lymantria dispar L. Lepidoptera: Lymantriidae) // Ent. new. 1979. № 90(1). P. 1-16.

8. Vanhanen H., Veteli T.O., Paivinen S., Kellomaki S., Niemela P. Climate change and range shifts in two insect defoliators: gypsy moth and nun moth - a model study // Silva Fennica. 2007. Vol. 41, № 4. P. 621-638.

9. Matsuki M., Kay M., Serin J., Floyd R., Scott J.K. Potential risk of accidental introduction of Asian gypsy moth (Lymantria dispar) to Australasia: effects of climatic conditions and suitability of native plants // Agricultural and Forest Entomology. 2001. № 3(4). P. 305320.

10. KeenaM.A. Comparison of the hatch ofLymantria dispar (Lepidoptera: Lymantriidae) eggs from Russia and the United States after exposure to different temperatures and durations of low temperature // Annals of the Entomological Society of America. 1996. Vol. 89(4). P. 564-572.

11. Пономарев В.И., ИльиныхА.В., Гниненко Ю.И., Соколов Г.И., Андреева Е.М. Непарный шелкопряд в Зауралье и Западной Сибири. Екатеринбург : УрО РАН, 2012. 320 с.

12. Пономарев В.И., Клобуков Г.И. Влияние урбанизированной среды на динамику плотности лесных насекомых-филлофагов // Известия Санкт-Петербургского ГЛТУ. 2013. Вып. 205. С. 42-53.

13. Ильиных А.В. Оптимизированная искусственная питательная среда для культивирования непарного шелкопряда (Ocneria dispar L.) // Биотехнология. 1996. № 1. С. 42-43.

14. Пономарев В.И., Андреева Е.М., Шаталин Н.В., Клобуков Г.И., Стрельская Т.М. Уровень эффективности эндогенных активаторов перекисного окисления липидов мембран у разных возрастов гусениц непарного шелкопряда // Известия Самарского научного центра РАН. 2009. Т. 11, № 1(2). С. 129-131.

15. Пономарев В.И., Андреева Е.М., Шаталин Н.В. Эффект группы у непарного шелкопряда (Lymantria dispar (L.) (Lepidoptera: Lymantriidae) в зависимости от состава корма и популяционных характеристик // Зоологический журнал. 2009. Т. 88, № 4. С. 446-453.

16. Метеостанции Волгограда и Екатеринбурга. Сайт «Погода и климат». URL: http:// www.pogodaiklimat.ru

17. Ландсберг Г.Е. Климат города. Л. : Гидрометеоиздат, 1983. 248 с.

18. Бухарина И.Л., Поварницина Т.М., Ведерников К.Е. Эколого-биологические особенности древесных растений в урбанизированной среде. Ижевск : ФГОУ ВПО Ижевская ГСХА, 2007. 216 с.

19. Куклина Т.Э. Весеннее развитие березы повислой и березы пушистой в озеленении города Томска и пригороде // Лесное хозяйство и зеленое строительство в Западной Сибири: III Международный интернет-семинар, 1-31 мая 2007. Материалы III Междунар. интернет-семинара. Томск : ТГУ, 2007. С. 168-186.

20. Пантюхов Г.А. Влияние положительных температур на различные географические популяции златогузки Euproctis chrysorrhoea L. и непарного шелкопряда Lymantria dispar L. (Lepidoptera, Orgyidae) // Энтомологическое обозрение. 1962. Вып. 2. С. 274-284.

Tomsk State University Journal of Biology. 2016; : 107-127

The dependence of the morphological and physiological indices of Lymantria dispar (L.) (Lepidoptera: Lymantriidae) postembryonic stages from temperature conditions during embryogenesis

Ponomarev V. I., Klobukov G. I., Napalkova V. V.

https://doi.org/10.17223/19988591/35/7

Abstract

In the light of global climatic changes the urgency of refining the adaptive mechanisms of insect survival in the northern part of their range increases. Gypsy Moth Lymantria dispar (L.) is considered to be a spring-summer phyllophagous-insect species. Individuals of this species overwinter in the embryonic stage inside the eggshells. It is classically considered that summer-autumn development of the gypsy moth embryo requires about 300 grade days with a threshold above 7°С. The summer-autumn sum of effective temperatures (SET) that is received by embryos may significantly vary both with weather conditions of summer season and for different populations or inside the range of one population. The aim of this work was to determine the possible effect of this factor on development indices of gypsy moth larvae and to analyze the possible causes in case of such effect. In this work we used egg masses from the Trans-Ural and the Lower-Volga populations of gypsy moth.We collected clutches of the Trans-Urals population in Sverdlovsk oblast in birch plantations (56°28'16'N, 61°36'39"E) in late July 2011. Clutches of the Lower Volga population were collected in Volgograd oblast in poplar plantations of the Volga-Akhtuba floodplain near Repino village (48°33'22"N, 44°47'43"E) in early August 2012 and in early July 2013. The collected egg masses were divided into two variants for getting different sums of summer-autumn effective temperatures at +24°С, following which egg masses were placed in refrigerator at 0...+2°С for passing through the cold reactivation of diapause. After diapause completion we carried out laboratory rearing of larvae from these egg masses in climatic chambers at +24°С and humidity of 60% with using artificial diet for rearing. Under natural conditions we assessed the seasonal distribution of gypsy moth male flight in 2010-2013 using pheromone-baited milk-carton traps with dispensers that contained 500 mkg (+)-dusparlure (produced in the USA). For calculation of the sum of effective temperatures of natural populations' development we used weather stations' data of daily average temperatures in Yekaterinburg and in Volgograd. The biometric methods with using elementary descriptive statistics in the StatSoft STATISTICA 6.0 software package were used for statistical processing of collected data. We analyzed the effect of the sum of summer-autumn effective temperatures, received at gypsy moth embryonic stage of development, on larvae development duration after overwintering, depending on latitudinal origination of population (northern border of the area - the Trans-Ural population and the central part of the area - the Lower-Volga population). We showed that the lowest sum of summer-autumn temperatures had the most significant influence on gypsy moth development in the northern population. We suggested that a significant response of larvae of the Trans-Ural population to the decreasing of the sum of summer-autumn effective temperatures can exist due to the fact that it is highly probable that embryos receive the sum of summer-autumn effective temperatures which are not sufficient to complete the development on the northern border of gypsy moth area that can result in extinction and subsequent area reduction. From these positions we analyzed the results of a six-year monitoring of gypsy moth flight period on the northern border of the area - the Trans-Ural population, urban and rural micropopulations of Yekaterinburg, and laboratory rearing of larvae from these micropopulations. We concluded that findings do not contradict the previously stated assumption.
References

1. Vorontsov A.I. Biologicheskie osnovy zashchity lesa. M. : Vysshaya shkola, 1960. 342 s.

2. Lee K.-Y., Horodyski F.M., Valaitis A.P., Denlinger D.L. Molecular characterization of the insect immune protein hemolin and its high induction during embryonic diapause in the gypsy moth, Lymantria dispar // Insect Biochemistry and Molecular Biology. 2002. № 32. P. 1457-1467.

3. Tauber M.J., Tauber C.A., Ruberson J.H., Tauber A.J., Abrahamson L.P. Dormancy in Lymantria dispar (Lepidoptera: Lymantriidae): analysis of photoperiodic and thermal responses // Annals of the Entomological Society of America. 1990. № 83(3). P. 494-503.

4. Kozhanchikov I.V. Fauna SSSR. M. : AN SSSR, 1950. T. 12. 582 s.

5. Il'inskii A.I., Tropin I.V. (red.) Nadzor, uchet i prognoz massovykh razmnozhenii khvoe- i listogryzushchikh nasekomykh v lesakh SSSR. M. : Lesn. prom-t', 1965. 525 s.

6. Meshkova V.L. Sezonnoe razvitie khvoelistogryzushchikh nasekomykh. Khar'kov : Planetaprint, 2009. 396 s.

7. Giese R.L., Schneider M.L. Cartographic comparisons of Eurasian gypsy moth distribution (Lymantria dispar L. Lepidoptera: Lymantriidae) // Ent. new. 1979. № 90(1). P. 1-16.

8. Vanhanen H., Veteli T.O., Paivinen S., Kellomaki S., Niemela P. Climate change and range shifts in two insect defoliators: gypsy moth and nun moth - a model study // Silva Fennica. 2007. Vol. 41, № 4. P. 621-638.

9. Matsuki M., Kay M., Serin J., Floyd R., Scott J.K. Potential risk of accidental introduction of Asian gypsy moth (Lymantria dispar) to Australasia: effects of climatic conditions and suitability of native plants // Agricultural and Forest Entomology. 2001. № 3(4). P. 305320.

10. KeenaM.A. Comparison of the hatch ofLymantria dispar (Lepidoptera: Lymantriidae) eggs from Russia and the United States after exposure to different temperatures and durations of low temperature // Annals of the Entomological Society of America. 1996. Vol. 89(4). P. 564-572.

11. Ponomarev V.I., Il'inykhA.V., Gninenko Yu.I., Sokolov G.I., Andreeva E.M. Neparnyi shelkopryad v Zaural'e i Zapadnoi Sibiri. Ekaterinburg : UrO RAN, 2012. 320 s.

12. Ponomarev V.I., Klobukov G.I. Vliyanie urbanizirovannoi sredy na dinamiku plotnosti lesnykh nasekomykh-fillofagov // Izvestiya Sankt-Peterburgskogo GLTU. 2013. Vyp. 205. S. 42-53.

13. Il'inykh A.V. Optimizirovannaya iskusstvennaya pitatel'naya sreda dlya kul'tivirovaniya neparnogo shelkopryada (Ocneria dispar L.) // Biotekhnologiya. 1996. № 1. S. 42-43.

14. Ponomarev V.I., Andreeva E.M., Shatalin N.V., Klobukov G.I., Strel'skaya T.M. Uroven' effektivnosti endogennykh aktivatorov perekisnogo okisleniya lipidov membran u raznykh vozrastov gusenits neparnogo shelkopryada // Izvestiya Samarskogo nauchnogo tsentra RAN. 2009. T. 11, № 1(2). S. 129-131.

15. Ponomarev V.I., Andreeva E.M., Shatalin N.V. Effekt gruppy u neparnogo shelkopryada (Lymantria dispar (L.) (Lepidoptera: Lymantriidae) v zavisimosti ot sostava korma i populyatsionnykh kharakteristik // Zoologicheskii zhurnal. 2009. T. 88, № 4. S. 446-453.

16. Meteostantsii Volgograda i Ekaterinburga. Sait «Pogoda i klimat». URL: http:// www.pogodaiklimat.ru

17. Landsberg G.E. Klimat goroda. L. : Gidrometeoizdat, 1983. 248 s.

18. Bukharina I.L., Povarnitsina T.M., Vedernikov K.E. Ekologo-biologicheskie osobennosti drevesnykh rastenii v urbanizirovannoi srede. Izhevsk : FGOU VPO Izhevskaya GSKhA, 2007. 216 s.

19. Kuklina T.E. Vesennee razvitie berezy povisloi i berezy pushistoi v ozelenenii goroda Tomska i prigorode // Lesnoe khozyaistvo i zelenoe stroitel'stvo v Zapadnoi Sibiri: III Mezhdunarodnyi internet-seminar, 1-31 maya 2007. Materialy III Mezhdunar. internet-seminara. Tomsk : TGU, 2007. S. 168-186.

20. Pantyukhov G.A. Vliyanie polozhitel'nykh temperatur na razlichnye geograficheskie populyatsii zlatoguzki Euproctis chrysorrhoea L. i neparnogo shelkopryada Lymantria dispar L. (Lepidoptera, Orgyidae) // Entomologicheskoe obozrenie. 1962. Vyp. 2. S. 274-284.