Журналов:     Статей:        

Вестник Томского государственного университета. Биология. 2019; : 174-188

Транскрипция генов десатураз жирных кислот хлоропластов при низкотемпературном закаливании Solanum tuberosum L.

Нарайкина Н. В., Попов В. Н., Миронов К. С., Пчелкин В. П., Трунова Т. И., Мошков И. Е.

https://doi.org/10.17223/19988591/47/9

Аннотация

Исследованы изменения относительного содержания транскриптов генов 9-(SAD), 12-(E4D6) и ω3-(EAD7) десатураз хлоропластной локализации в процессе низкотемпературного закаливания (3°С, 7 сут) растений Solanum tuberosum L., сорт Юбилей Жукова. Среди изученных генов в начале периода закаливания обнаружено почти 3-кратное кратковременное увеличение относительного содержания транскриптов гена EAD6, кодирующего 12-ацил-липидную десатуразу хлоропластов. В процессе закаливания содержание транскриптов гена EAD7, кодирующего и ω3(15)-ацил-липидную десатуразу, поддерживалось на уровне вегетирующих растений, а гена SAD, кодирующего одну из стеароил-АПБ десатураз, - снижалось. Суммарная доля полиненасыщенных жирных кислот липидов хлоропластов в незакаленных растениях достигала почти 90% от общего содержания всех жирных кислот (ЖК) и за время закаливания поддерживалась на высоком конститутивном уровне. Обнаружено увеличение содержания пальмитиновой (CI6J кислоты, что может свидетельствовать о повышении интенсивности синтеза ЖК de novo. Кроме того, показано повышение содержания С16:1 7 кислоты, что также является важным для закаливания, поскольку поддержание текучести мембран определяется в том числе и содержанием ЖК с меньшим числом углеродных атомов. Сделано предположение, что повышение относительного содержания транскриптов гена EAD6 в начале закаливания и поддержание транскрипции EAD7 способствовало сохранению хлоропластных мембран в нативном состоянии и повышению устойчивости растений картофеля к гипотермии в процессе закаливания.

Список литературы

1. Liu Y, Dang P., Liu L., He C. Cold acclimation by the CBF-COR pathway in a changing climate: Lessons from Arabidopsis thaliana // Plant Cell Reports. 2019. Vol. 38. PP. 511— 519. doi: 10.1007/s00299-019-02376-3

2. Трунова Т.И. Растение и низкотемпературный стресс (64-е Тимирязевские чтения). М. : Наука, 2007. 54 с.

3. Титов А.Ф., Акимова Т.В., Таланова В.В., Топчиева Л.В. Устойчивость растений в начальный период действия неблагоприятных температур. М. : Наука, 2006. 143 с.

4. Lyons J.M. Chilling injury in plants // Annu. Rev. Plant. Physiol. 1973. Vol. 24. PP. 445-466.

5. Лось Д.А. Молекулярные механизмы холодоустойчивости растений // Вестник РАН. 2005. Т 75. С. 338-345.

6. Harwood J.L. Lipids: structure and function // The biochemistry of plants / ed. P.K. Stumpf. New York : Acad. Press, 1980. PP. 1-55.

7. Iba K. Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance // Ann. Rev. Plant Biol. 2002. Vol. 53. PP. 225-244. doi: 10.1146/annurev.arplant.53.100201.160729

8. Chi X., Zhang Z., Chen N., Zhang X., Wang M., Chen M., Wang T., Pan L., Chen J., Yang Z., Guan X., Yu S. Isolation and functional analysis of fatty acid desaturase genes from peanut (Arachis hypogaea L.) // PLoS ONE. 2017. Vol. 12(12): e0189759. PP. 1-28. doi: 10.1371/journal.pone.0189759

9. Ishizaki-Nishizawa O., Fujii T., Azuma M., Sekiguchi K., Murata N., Ohtani T., Toguri T. Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase // Nat. Biotechnol. 1996. Vol. 14. PP. 1003-1006.

10. Lee S.H., Ahn S.J., Im YJ., Cho K., Chung C.-C., Cho B.H., Han O. Differential impact of low temperature on fatty acid unsaturation and lipoxygenase activity in figleaf gourd and cucumber roots // Biochem. and Biophys. Research Communications. 2005. Vol. 330. PP. 1194-1198.

11. Miquel М., James D., Dooner H., Browse J. Arabidopsis requires polyunsaturated lipids for low-temperature survival // Proc. Natl. Acad. Sci. USA. 1993. Vol. 90. PP. 6208-6212.

12. Crosatti C., Rizza F., Badeck F.W., Mazzucotelli E., Cattivelli L. Harden the chloroplast to protect the plant // Physiologia Plantarum. 2013. Vol. 147. PP. 55-63. doi: 10.1111/j.1399-3054.2012.01689.x

13. Лось Д.А. Десатуразы жирных кислот. М. : Научный мир, 2014. 372 с.

14. Анисимов Б.В., Еланский С.Н., Зейрук В.Н., Кузнецова М.А. Сорта картофеля, возделываемые в России: справочное издание. М. : Агроспас, 2013. 144 с.

15. Rao X., Huang X., Zhou Z., Lin X. An improvement of the AACT method for quantitative real-time polymerase chain reaction data analysis // Biostat. Bioinforma. Biomath. 2013. Vol. 3. PP. 71-85.

16. Lang E.G.E., Mueller S.J., Hoernstein S.N.W., Porankiewicz-Asplund J., Vervliet-Scheebaum M., Reski R. Simultaneous isolation of pure and intact chloroplasts and mitochondria from moss as theb for sub-cellular proteomics // Plant Cell Rep. 2011. Vol. 30. PP. 205-215. doi: 10.1007/s00299-010-0935-4

17. Маали Амири Р, Голденкова-Павлова И.В., Юрьева Н.О., Пчелкин В.П., Цыдендамбаев В.Д., Верещагин А.Г., Дерябин А.Н., Трунова Т.И., Лось Д.А., Носов А.М. Жирнокислотный состав липидов растений картофеля, трансформированных геном Д12-десатуразы цианобактерий // Физиология растений. 2007. T. 54. C. 678-685. doi: 10.1134/S1021443707050056

18. Сидоров Р.А., Жуков А.В., Верещагин А.Г., Цыдендамбаев В.Д. Низшие алкиловые эфиры жирных кислот из плодов бересклета // Физиология растений. 2012. T. 59. C. 362-368. doi: 10.1134/S1021443712030156

19. Koc I., Vatansever R., Ozyigit I. I., Filiz E. Identification of differentially expressed genes in chilling-Induced potato (Solanum tuberosum L.); a data analysis study // Appl. Biochem. Biotechnol. 2015. Vol. 177. PP. 792-811. doi: 10.1007/s12010-015-1778-9

20. Kachroo A., Shanklin J., Whittle E., Lapchyk L., Hildebrand D., Kachroo P The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis // Plant Mol. Biol. 2007. Vol. 63. PP 257-271. doi: 10.1007/s11103-006-9086-y

21. Жуков А.В. Жирные кислоты с очень длинной цепью в составе мембранных липидов растений // Физиология растений. 2018. Т. 65. С. 418-437. doi: 10.1134/S1021443718050187

22. Лаврова В.В., Сысоева М.И., Матвеева Е.М. Жирнокислотный состав липидов листьев картофеля в условиях периодической и длительной гипотермии // Труды Карельского научного центра РАН. 2012. № 2. С. 91.

23. Верещагин А.Г. Липиды в жизни растений (66-е Тимирязевские чтения). М. : Наука, 2007. 78 с.

24. Нарайкина Н.В., Синькевич М.С., Дёмин И.Н., Селиванов А.А., Мошков И.Е., Трунова Т.И. Изменения активности изоформ СОД при низкотемпературной адаптации у растений картофеля (Solanum tuberosum L.) дикого типа и трансформированных геном Д12-ацил-липидной десатуразы // Физиология растений. 2014. T. 61. C. 359366.

25. Нарайкина Н.В., Астахова Н.В., Дерябин А.Н., Синькевич М.С., Трунова Т.И. Адаптивные изменения ультраструктуры хлоропластов, содержания пигментов и сахаров при низкотемпературном закаливании растений картофеля: роль Д12-ациллипидной десатуразы // Известия РАН. Серия биологическая. 2018. № 6. С. 635-642.

Tomsk State University Journal of Biology. 2019; : 174-188

Fatty acid desaturase gene transcription at Solanum tuberosum L. cold adaptation

Naraikina N. V., Popov V. N., Mironov K. S., Pchelkin V. P., Trunova T. I., Moshkov I. E.

https://doi.org/10.17223/19988591/47/9

Abstract

The problem of the survival of plants under low temperatures becomes more relevant in the light of global climate change and the growing needs of the population. In this regard, studies of the impact of hypothermia on plants are not only fundamental, but also applied. Potatoes are an important food crop, ranking fourth in the world in terms of growing. The actual yield of potatoes is significantly lower than its potential productivity, and one of the limiting factors is the lack of resistance of many modern varieties to spring frosts. Decoding of the potato genome made it possible to use advances in molecular biology to study the role of individual genes and identify key proteins that can increase resistance to low temperature. It is widely known that under the action of low temperatures, there is a phase transition of membrane lipids, which is accompanied by a decrease in membrane fluidity and loss of their barrier properties and, as a result, by inactivation of enzymes. In response to changes in physical properties of membranes, cells activate protection systems, among which an important role is played by the cold-induced increase in the degree of unsaturation of fatty acids of membrane lipids. Therefore, one of the main goals of adaptation is the stabilization of membranes, for example, due to the work of enzymes, fatty acid desaturase (encoded by genes FAD), catalyzing the conversion of saturated fatty acids (FA) into unsaturated. Among all plant cell membranes, chloroplast membranes play a special role in the formation of plant resistance to low temperatures, since it is in chloroplasts that photosynthesis, the main source of energy necessary for the restructuring of metabolism during the adaptation period, takes place. The aim of the research was to study the role of chloroplast localized  ∆9-,  ∆12 - and ω3(15)-desaturases in adaptive transformations of the fatty acid composition of chloroplast membranes when forming potato plant cold resistance during hardening.

The object of the study was potato plants (Solanum tuberosum L., cultivar Jubilee Zhukov), 3 weeks of age, grown in soil culture at a temperature of 22°C, illumination of 100 µmol/(m2 c) and 16-h photoperiod. Hardening of plants was carried out in the climatic chamber KBW-240 “Binder” (Germany) under 16-h photoperiod and illumination of 100 µmol/(m2c) at a temperature of 3°C for 7 days. Controls were nonhardened plants. To assess the effectiveness of adaptation, whole plants were frozen at a temperature of 2°C for 18 hours in the climatic chamber MIR-153 “Sanyo” (Japan), and then transferred to the growing conditions to determine survival. The following genes of FA desaturases were selected for the study: SAD (encodes one of the soluble  ∆9-ACP-), FAD6 (encodes membrane-bound acyl-lipid  ∆12-), FAD7 (encodes membrane-bound acyl-lipid A15(ro3)-desaturase). Protein products of these genes are localized in chloroplasts. Total RNA from leaves was isolated using Spectrum Plant Total RNA Kit “Sigma” (USA). The reverse transcription reaction was performed using a set of reagents and the Protocol MMLV RT Kit “Eurogen” (Russia). The resulting cDNA wasused for real-time PCR (q-PCR) using the amplifier CFX96 Touch Real-Time PCR Detection System “Bio-Rad” (USA), using a set of reagents qPCRmix-HS SYBR kit “Eurogen” (Russia). The relative transcript content was calculated by calculating the normalized expression (∆∆CT). Primers for the genes of FA desaturases were selected using the database NCBI and Internet resource Primer3Plus. Intact chloroplasts were isolated by centrifugation in a percol step gradient. Chloroplast lipids were methylated by boiling in a mixture of CH3OH and CH3COCl. The obtained LC methyl esters were analyzed by GL-MS using Agilent 7890A GC (USA). The experiments were conducted in 5-6 biological replicates and 3-4 analytical ones. Statistical data processing was performed using the program SigmaPlot 11. The data are presented as means and their standard errors.

We showed that the hardened potato plants survived after -2°C for 18 h, which indicates the successful hardening of S. tuberosum, Jubilee Zhukov cultivar (See Fig. 1). Among the studied genes 9-, 12- and ωЗ-desaturases of chloroplasts, a short-term (after 2 h of adaptation) increase in the transcripts of the FAD6 gene encoding acyl-lipid A12-desaturase was found. The relative content of FAD7 gene transcripts encoding ω3-desaturase remained stable and maintained at the level of control. The character of SAD gene expression encoding 9-АСР desaturase differed from the others: the relative transcript content decreased during adaptation (See Fig. 2). It should be noted that potatoes have 13 soluble 9-ACP-desaturase genes forming the first double bond, whose proteins are localized in the stroma of chloroplasts. Perhaps, the studied gene is not cold-inducible. The total percentage of polyunsaturated fatty acids (PUFA) of lipids in chloroplasts of potato was high and constitutive in non-hardened plants accounted for almost 90% of the total content of all FA (See Table). Probably, therefore, in the process of adaptation there was no noticeable increase in the relative content of the transcripts of the studied genes 12- and ωЗ-desaturases of chloroplasts. During the period of low-temperature hardening, the part of PUFA, and especially a-linolenic acid, was maintained at a high level; there was an increase in the content of palmitic acid, which may indicate an increase in the intensity of synthesis of FA de novo. In addition, an increase in the content of C16: 17 acid was observed, which is also important for adaptation. It is known that the fluidity of membranes with decreasing temperature is determined not only by the content of FA with a larger number of double bonds, but also by the content of FA with a smaller number of carbon atoms. Maintaining a high amount of PUFA helped to maintain the thylakoid membranes of chloroplasts in a functional state during the hardening process, which, in turn, allowed the potato plants to realize other processes of adaptation.

The paper contains 2 Figures, 1 Table and 25 References.

References

1. Liu Y, Dang P., Liu L., He C. Cold acclimation by the CBF-COR pathway in a changing climate: Lessons from Arabidopsis thaliana // Plant Cell Reports. 2019. Vol. 38. PP. 511— 519. doi: 10.1007/s00299-019-02376-3

2. Trunova T.I. Rastenie i nizkotemperaturnyi stress (64-e Timiryazevskie chteniya). M. : Nauka, 2007. 54 s.

3. Titov A.F., Akimova T.V., Talanova V.V., Topchieva L.V. Ustoichivost' rastenii v nachal'nyi period deistviya neblagopriyatnykh temperatur. M. : Nauka, 2006. 143 s.

4. Lyons J.M. Chilling injury in plants // Annu. Rev. Plant. Physiol. 1973. Vol. 24. PP. 445-466.

5. Los' D.A. Molekulyarnye mekhanizmy kholodoustoichivosti rastenii // Vestnik RAN. 2005. T 75. S. 338-345.

6. Harwood J.L. Lipids: structure and function // The biochemistry of plants / ed. P.K. Stumpf. New York : Acad. Press, 1980. PP. 1-55.

7. Iba K. Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance // Ann. Rev. Plant Biol. 2002. Vol. 53. PP. 225-244. doi: 10.1146/annurev.arplant.53.100201.160729

8. Chi X., Zhang Z., Chen N., Zhang X., Wang M., Chen M., Wang T., Pan L., Chen J., Yang Z., Guan X., Yu S. Isolation and functional analysis of fatty acid desaturase genes from peanut (Arachis hypogaea L.) // PLoS ONE. 2017. Vol. 12(12): e0189759. PP. 1-28. doi: 10.1371/journal.pone.0189759

9. Ishizaki-Nishizawa O., Fujii T., Azuma M., Sekiguchi K., Murata N., Ohtani T., Toguri T. Low-temperature resistance of higher plants is significantly enhanced by a nonspecific cyanobacterial desaturase // Nat. Biotechnol. 1996. Vol. 14. PP. 1003-1006.

10. Lee S.H., Ahn S.J., Im YJ., Cho K., Chung C.-C., Cho B.H., Han O. Differential impact of low temperature on fatty acid unsaturation and lipoxygenase activity in figleaf gourd and cucumber roots // Biochem. and Biophys. Research Communications. 2005. Vol. 330. PP. 1194-1198.

11. Miquel M., James D., Dooner H., Browse J. Arabidopsis requires polyunsaturated lipids for low-temperature survival // Proc. Natl. Acad. Sci. USA. 1993. Vol. 90. PP. 6208-6212.

12. Crosatti C., Rizza F., Badeck F.W., Mazzucotelli E., Cattivelli L. Harden the chloroplast to protect the plant // Physiologia Plantarum. 2013. Vol. 147. PP. 55-63. doi: 10.1111/j.1399-3054.2012.01689.x

13. Los' D.A. Desaturazy zhirnykh kislot. M. : Nauchnyi mir, 2014. 372 s.

14. Anisimov B.V., Elanskii S.N., Zeiruk V.N., Kuznetsova M.A. Sorta kartofelya, vozdelyvaemye v Rossii: spravochnoe izdanie. M. : Agrospas, 2013. 144 s.

15. Rao X., Huang X., Zhou Z., Lin X. An improvement of the AACT method for quantitative real-time polymerase chain reaction data analysis // Biostat. Bioinforma. Biomath. 2013. Vol. 3. PP. 71-85.

16. Lang E.G.E., Mueller S.J., Hoernstein S.N.W., Porankiewicz-Asplund J., Vervliet-Scheebaum M., Reski R. Simultaneous isolation of pure and intact chloroplasts and mitochondria from moss as theb for sub-cellular proteomics // Plant Cell Rep. 2011. Vol. 30. PP. 205-215. doi: 10.1007/s00299-010-0935-4

17. Maali Amiri R, Goldenkova-Pavlova I.V., Yur'eva N.O., Pchelkin V.P., Tsydendambaev V.D., Vereshchagin A.G., Deryabin A.N., Trunova T.I., Los' D.A., Nosov A.M. Zhirnokislotnyi sostav lipidov rastenii kartofelya, transformirovannykh genom D12-desaturazy tsianobakterii // Fiziologiya rastenii. 2007. T. 54. C. 678-685. doi: 10.1134/S1021443707050056

18. Sidorov R.A., Zhukov A.V., Vereshchagin A.G., Tsydendambaev V.D. Nizshie alkilovye efiry zhirnykh kislot iz plodov bereskleta // Fiziologiya rastenii. 2012. T. 59. C. 362-368. doi: 10.1134/S1021443712030156

19. Koc I., Vatansever R., Ozyigit I. I., Filiz E. Identification of differentially expressed genes in chilling-Induced potato (Solanum tuberosum L.); a data analysis study // Appl. Biochem. Biotechnol. 2015. Vol. 177. PP. 792-811. doi: 10.1007/s12010-015-1778-9

20. Kachroo A., Shanklin J., Whittle E., Lapchyk L., Hildebrand D., Kachroo P The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis // Plant Mol. Biol. 2007. Vol. 63. PP 257-271. doi: 10.1007/s11103-006-9086-y

21. Zhukov A.V. Zhirnye kisloty s ochen' dlinnoi tsep'yu v sostave membrannykh lipidov rastenii // Fiziologiya rastenii. 2018. T. 65. S. 418-437. doi: 10.1134/S1021443718050187

22. Lavrova V.V., Sysoeva M.I., Matveeva E.M. Zhirnokislotnyi sostav lipidov list'ev kartofelya v usloviyakh periodicheskoi i dlitel'noi gipotermii // Trudy Karel'skogo nauchnogo tsentra RAN. 2012. № 2. S. 91.

23. Vereshchagin A.G. Lipidy v zhizni rastenii (66-e Timiryazevskie chteniya). M. : Nauka, 2007. 78 s.

24. Naraikina N.V., Sin'kevich M.S., Demin I.N., Selivanov A.A., Moshkov I.E., Trunova T.I. Izmeneniya aktivnosti izoform SOD pri nizkotemperaturnoi adaptatsii u rastenii kartofelya (Solanum tuberosum L.) dikogo tipa i transformirovannykh genom D12-atsil-lipidnoi desaturazy // Fiziologiya rastenii. 2014. T. 61. C. 359366.

25. Naraikina N.V., Astakhova N.V., Deryabin A.N., Sin'kevich M.S., Trunova T.I. Adaptivnye izmeneniya ul'trastruktury khloroplastov, soderzhaniya pigmentov i sakharov pri nizkotemperaturnom zakalivanii rastenii kartofelya: rol' D12-atsillipidnoi desaturazy // Izvestiya RAN. Seriya biologicheskaya. 2018. № 6. S. 635-642.