Вестник Томского государственного университета. Биология. 2019; : 26-47
Устойчивость микробиологической активности дерново-подзолистой почвы в условиях применения диатомита и цеолита
Козлов А. В., Куликова А. Х., Селицкая О. В., Уромова И. П.
https://doi.org/10.17223/19988591/46/2Аннотация
Список литературы
1. Иванов И.В. Общие вопросы эволюции почв // Эволюция почв и почвенного покрова. Теория, разнообразие природной эволюции и антропогенных трансформаций почв. М. : ГЕОС, 2015. С. 20–38.
2. Griffiths B.S., Bonkowski M., Roy J., Ritz K. Functional stability, substrate utilisation and biological indicators of soils following environmental impacts // Applied Soil Ecology. 2001. Vol. 16. PP. 49–61. doi: 10.1016/S0929-1393(00)00081-0
3. Добровольский Г.В., Никитин Е.Д. Экология почв. М. : Изд-во Моск. ун-та, 2012. 412 с.
4. Соколов М.С., Марченко А.И., Санин С.С., Торопова Е.Ю., Чулкина В.А., Захаров А.Ф. Здоровье почвы агроценозов как атрибут ее качества и устойчивости к биотическим и абиотическим стрессорам // Известия ТСХА. 2009. № 1. С. 13–22.
5. Kuan H.L., Hallett P.D., Griffiths B.S., Gregory A.S., Watts C.W., Whitmore A.P. The biological and physical stability and resilience of a selection of Scottish soils to stresses // European Journal of Soil Science. 2007. Vol. 58. PP. 811–821. doi: 10.1111/j.1365-2389.2006.00871.x
6. van Bruggen A.H.C., Semenov A.M., van Diepeningen A.D., de Vos O.J., Blok W.J. Relation between soil health, wave like fluctuations in microbial populations, and soil-borne plant disease management // European Journal of Plant Pathology. 2006. Vol. 115. PP. 105–122. doi: 10.1007/s10658-005-1250-8
7. Козлов А.В., Селицкая О.В. Значение микроорганизмов в поддержании устойчивости почв к воздействию антропогенных факторов // Вестник Мининского университета. 2015. № 3 (11). С. 27.
8. Колесников С.И., Ярославцев М.В., Спивакова Н.А., Казеев К.Ш. Сравнительная оценка устойчивости биологических свойств черноземов юга России к загрязнению Cr, Cu, Ni, Pb в модельном эксперименте // Почвоведение. 2013. № 2. С. 195–200. doi: 10.7868/S0032180X13020081
9. Кураков А.В., Козлова Ю.Е. Устойчивость микробного комплекса дерново-подзолистых почв к действию минеральных удобрений // Почвоведение. 2002. № 5. С. 595–600.
10. Мосина Л.В., Мерзлая Г.Е. Микробиологическая диагностика состояния системы почва – растение на сенокосах при внесении компостов на основе осадков сточных вод // Известия ТСХА. 2010. № 1. С. 18–27.
11. Сорокин Н.Д., Гродницкая И.Д., Шапченкова О.А., Евграфова С.Ю. Экспериментальная оценка устойчивости почвенного микробоценоза при химическом загрязнении // Почвоведение. 2009. № 6. С. 701–707.
12. Чимитдоржиева И.Б., Цыдыпов В.Ц., Абашеева Н.Е. Влияние лантана на биологическую активность и экологическую устойчивость аммонифицирующих и нитрифицирующих микроорганизмов в вегетационных опытах // Агрохимия. 2009. № 3. С. 60–65.
13. Crecchio C., Gelsomino A., Ambrosoli R., Minati J.L., Ruggiero P. Functional and molecular responses of soil microbial communities under differing soil management practices // Soil Biology & Biochemistry. 2004. Vol. 36. PP. 1873–1883. doi: 10.1016/j.soilbio.2004.05.008
14. Karthikeyan S., Wolfaardt G.M., Korber D.R., Caldwell D.E. Functional and structural responses of degradative microbial community to substrates with varying degrees of complexity in chemical stricture // Microbial Ecology. 1999. Vol. 38. PP. 215–224. doi: 10.1007/s002489900171
15. Orwin K.H., Wardle D.A. Plant species composition effects on belowground properties and the resistance and resilience of the soil microflora to a drying disturbance // Plant and Soil. 2005. Vol. 278. PP. 205–221. doi: 10.1007/s11104-005-8424-1
16. Seghers D., Kristof V., Reheul D., Bulcke R., Siciliano S.D., Verstraete W., Top E.M. Effect of long term herbicide applications on the bacterial community structure and function in an agricultural soil // Microbial Ecology. 2003. Vol. 46(2). PP. 139–146. doi: 10.1016/S0168-6496(03)00205-8
17. Бочарникова Е.А., Матыченков В.В., Матыченков И.В. Кремниевые удобрения и мелиоранты: история изучения, теория и практика применения // Агрохимия. 2011. № 7. С. 84–96.
18. Самсонова Н.Е. Кремний в растительных и животных организмах // Агрохимия. 2019. № 1. С. 86–96. doi: 10.1134/S0002188119010071
19. Матыченков И.В., Хомяков Д.М., Пахненко Е.П., Бочарникова Е.А., Матыченков В.В. Подвижные кремниевые соединения в системе почва–растение и методы их определения // Вестник Московского университета. Сер. 17. Почвоведение. 2016. № 3. С. 37–46.
20. Kulikova A.Kh., Kozlov А.V., Toigildin А.L. Influence of silicon containing preparations on agrochemical properties of sod and podzolic soil and yielding capacity of crops // Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2018. Vol. 9(2). PP. 432–436.
21. Козлов А.В., Куликова А.Х., Копосова Н.Н. Влияние диатомита, цеолита и бентонитовой глины на показатели физико-химического состояния дерновоподзолистой почвы // Известия Самарского научного центра Российской академии наук. 2017. Т. 19, № 2-2. С. 275–280.
22. Козлов А.В., Куликова А.Х. Влияние высококремнистых пород на структуру, численность и ферментативную активность целлюлозосапротрофного микробного пула дерново-подзолистой почвы в условиях выращивания озимой пшеницы и картофеля // Вестник Ульяновской государственной сельскохозяйственной академии. 2016. № 1 (33). С. 56–65.
23. Козлов А.В., Куликова А.Х., Уромова И.П. Влияние высококремнистых пород (диатомита, цеолита и бентонитовой глины) на активность олиготрофного и автохтонного микробного пула дерново-подзолистой почвы // Вестник Томского государственного университета. Биология. 2017. № 4 (40). С. 44–65. doi: 10.17223/19988591/40/3
24. Кусова Н.В., Степанова Л.П. Кипящие камни (цеолиты): список литературы. Орел : ОрелГАУ, 2005. 18 с.
25. Наумов В.Д. География почв. Почвы России. М. : Проспект, 2016. 344 с.
26. Экология микроорганизмов / под ред. А.И. Нетрусова. М. : Юрайт, 2015. 268 с.
27. Муха В.Д. Естественно-антропогенная эволюция почв (общие закономерности и зональные особенности). М. : КолосС, 2004. 271 с.
28. Практикум по микробиологии : учеб. пособие для студентов вузов / А.И. Нетрусов, М.А. Егорова, Л.М. Захарчук и др. ; под ред. А.И. Нетрусова. М. : Академия, 2005. 608 с.
29. Хазиев Ф.Х. Методы почвенной энзимологии. М. : Наука, 2005. 252 с.
30. Доспехов Б.А. Методика полевого опыта (с основами статистической обработки результатов исследований). М. : ИД Альянс, 2011. 352 с.
31. Коростелева Л.А., Кощаев А.Г. Основы экологии микроорганизмов. СПб. : Лань, 2013. 240 с.
32. van Diepeningen A.D., de Vos O.J., Korthals G.W., van Bruggen A.H.C. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils // Applied Soil Ecology. 2006. Vol. 31. PP. 120–135. doi: 10.1016/j.apsoil.2005.03.003
33. Zelenev V.V., van Bruggen A.H.C., Semenov A.M. Modeling wave-like dynamics of oligotrophic and copiotrophic bacteria along wheat roots in response to nutrient input from a growing root tip // Ecological Modeling. 2005. Vol. 188 (2–4). PP. 404–417. doi: 10.1016/j.ecolmodel.2005.01.046
34. Туев Н.А. Микробиологические процессы гумусообразования. М. : Агропромиздат, 1989. 239 с.
35. Govaerts B., Mezzalama M., Unno Y., Sayre K.D., Luna-Guido M., Vanherck K., Dendooven L., Deckers J. Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity // Applied Soil Ecology. 2007. Vol. 37. PP. 18–30. doi: 10.1016/j.apsoil.2007.03.006
Tomsk State University Journal of Biology. 2019; : 26-47
Stability of microbiological activity of the sod-podsolic soil when applying diatomite and zeolite
Kozlov A. V., Kulikova A. H., Selitskaya O. V., Uromova I. P.
https://doi.org/10.17223/19988591/46/2Abstract
At present, the analysis of the state of soil biotic complex when using nontraditional materials, such as high-silicon rocks is an important problem in the field of agronomic soil science. The aim of this research was to assess the state of the basic microbial participants of the L-selection survival strategy (ammonifying and amylolytic consortia) in conjunction with hydrolase enzymatic activity of the sod-podzolic soil under high doses of diatomite and zeolite rocks with subsequent assessment of the stability of the considered part of microbiota.
We studied the effect of different doses (3, 6 and 12 t/ha) of diatomite of the Inzensky deposit (Ulyanovsk region) and zeolite of the Hotynetsky deposit (Oryol region) on the number of ammonifying and amylolytic microorganisms and on hydrolase enzymatic activity of soil in a microfield experiment (2015-2017) carried out in the sod-podzolic light loamy soil (WRB - Retisols) of Nizhny Novgorod region (56°31ꞌ13.00ꞌꞌN 44°06ꞌ57.37ꞌꞌE). Field experiments were conducted according to the generally accepted rules for small-plot field studies (the registration area of the plot was 1 m2 , the location of the plot was randomized, and replication was fourfold). Analytical studies included the number of microorganisms with Koch’s pour plate method using beef-extract agar (BEA) and Inorganic Salt Starch Agar (ISSA), protease enzymatic activity using the ninhydrin spectrophotometric method, invertase using the gravimetric method with Fehling’s solution, the intensity of carbon dioxide gas transpiration from soil by standard gasometrical method, and the biomass of microorganisms in the soil by rehydration method. The stability of the soil microbial pool was assessed by a twophase method, in which the inactivated state characterizes the soil capacity to preserve a certain microbial niche (microbiological resistance), and the mobilized phase describes the potential microbiological activity in the soil, that is the most possible biochemical “reserve” of the microbial consortium under study.
The results of our three-year microfield experiment with the use of diatomite showed that, on average, during a three-year microfield experiment with the use of diatomite, the number of inactivated ammonifying microorganisms maximally increased up to 42%, and that of mobilized ones up to 13% (See Table 1). A similar, but a less active pattern was observed in the mobilized samples. When using zeolite rock, we observed a tendency to optimize both phases of the ammonifying group of microorganisms. The number of inactivated amylolytic microorganisms decreased by 34% when using diatomite and by 13% when using zeolite, and when mobilizing the soil, there was a decrease to 17% and 8% respectively. The activity of the proteolytic enzyme system of the soil was found: on average, over 3 years the activity of protease enzymes increased up to 38% due to the use of diatomite and up to 11% of zeolite rock (See Table 2). The activity of invertase enzymes began to decline in the second year of the study with an increase in the dose of each of the rocks and was prolonged to the end of the experiment. The measure of decline turned out to be more significant in the variants with diatomite material (up to 8-11%) than with zeolite (up to 3-6%). The use of both rocks reduced the value of the mineralization coefficient of the organic matter of CM (See Fig. 1). In inactivated samples, the degree of their impact on the indicator was more significant. The smallest CM values were established in the variants with 6 and 12 t/ha of application in the soil, where the decline reached 54% in the variants with diatomite and up to 24% with zeolite. The use of diatomite rock, especially in high doses, contributed to a decrease in the activity of microbiological processes of decomposition of organic matter in the soil (inactivated part of the microbiota), while maintaining the potential of this function (the level of the mobilized part). The application of zeolite in the soil slightly reduced the indicator under consideration, but it definitely did not contribute to an increase in potential microbiological activity in the transformation of organic components. The degree of microbiological resistance of the soil, depending on the dose of diatomite, increased by 17-27% in ammonifying function and decreased by 21-23% in amylolytic one. The index of microbiological transformation of nitrogen-containing organic matter increased up to 58-60% relative to the control group (See Fig. 2). In variants with the use of zeolite, on average over 3 years of research, we observed a similar trend but with an insignificant activity. Here, the exponent of N-microbiological resistance (DMSN) increased by 12-14% in variants with the 2nd and 3rd doses of rocks. The coefficient of soil microbiological cultivation DMCN showed (See Fig. 3) that against the background of a general increase in soil microbiological activity (more than 2 times in variants with diatomite and by 12-29% in tests with zeolite) the persistence of potential microbial reserve of L-strategies significantly increased (by 19-31% in tests with diatomite and by 7-14% in variants with zeolite). We demonstrated (See Fig. 4) that in the variants with the use of diatomite rock with a gradual annual increase in carbon of the microbial mass in the soil (from 5% to 11% with D1, from 6% to 16% with D2 and from 7% to 15% with D3) the activity of carbon dioxide release from it decreased. The tests with the application of zeolite showed a similar tendency: a weak one with respect to the microbial biomass (on average, for 3 years by 4%, regardless of dose) and significantly sharp with respect to CO2 transpiration by 11-21%. Due to the above-described change in the number of basic saprotrophic soil microorganisms, its hydrolase activity, soil microbial biomass and its “respiration” under the influence of diatomite, as well as due to shifts in microbially-dependent indicators of the organic matter mineralization, microbiological stability and soil cultivation, components are subject to change under its action, are directed towards complication and are actively and directly involved in the microbial metabolism. The latter, undoubtedly, has a positive meaning in terms of active participation of the microbial pool in the formation of humic substances in the soil.
The paper contains 4 Figures, 2 Tables and 35 References.
References
1. Ivanov I.V. Obshchie voprosy evolyutsii pochv // Evolyutsiya pochv i pochvennogo pokrova. Teoriya, raznoobrazie prirodnoi evolyutsii i antropogennykh transformatsii pochv. M. : GEOS, 2015. S. 20–38.
2. Griffiths B.S., Bonkowski M., Roy J., Ritz K. Functional stability, substrate utilisation and biological indicators of soils following environmental impacts // Applied Soil Ecology. 2001. Vol. 16. PP. 49–61. doi: 10.1016/S0929-1393(00)00081-0
3. Dobrovol'skii G.V., Nikitin E.D. Ekologiya pochv. M. : Izd-vo Mosk. un-ta, 2012. 412 s.
4. Sokolov M.S., Marchenko A.I., Sanin S.S., Toropova E.Yu., Chulkina V.A., Zakharov A.F. Zdorov'e pochvy agrotsenozov kak atribut ee kachestva i ustoichivosti k bioticheskim i abioticheskim stressoram // Izvestiya TSKhA. 2009. № 1. S. 13–22.
5. Kuan H.L., Hallett P.D., Griffiths B.S., Gregory A.S., Watts C.W., Whitmore A.P. The biological and physical stability and resilience of a selection of Scottish soils to stresses // European Journal of Soil Science. 2007. Vol. 58. PP. 811–821. doi: 10.1111/j.1365-2389.2006.00871.x
6. van Bruggen A.H.C., Semenov A.M., van Diepeningen A.D., de Vos O.J., Blok W.J. Relation between soil health, wave like fluctuations in microbial populations, and soil-borne plant disease management // European Journal of Plant Pathology. 2006. Vol. 115. PP. 105–122. doi: 10.1007/s10658-005-1250-8
7. Kozlov A.V., Selitskaya O.V. Znachenie mikroorganizmov v podderzhanii ustoichivosti pochv k vozdeistviyu antropogennykh faktorov // Vestnik Mininskogo universiteta. 2015. № 3 (11). S. 27.
8. Kolesnikov S.I., Yaroslavtsev M.V., Spivakova N.A., Kazeev K.Sh. Sravnitel'naya otsenka ustoichivosti biologicheskikh svoistv chernozemov yuga Rossii k zagryazneniyu Cr, Cu, Ni, Pb v model'nom eksperimente // Pochvovedenie. 2013. № 2. S. 195–200. doi: 10.7868/S0032180X13020081
9. Kurakov A.V., Kozlova Yu.E. Ustoichivost' mikrobnogo kompleksa dernovo-podzolistykh pochv k deistviyu mineral'nykh udobrenii // Pochvovedenie. 2002. № 5. S. 595–600.
10. Mosina L.V., Merzlaya G.E. Mikrobiologicheskaya diagnostika sostoyaniya sistemy pochva – rastenie na senokosakh pri vnesenii kompostov na osnove osadkov stochnykh vod // Izvestiya TSKhA. 2010. № 1. S. 18–27.
11. Sorokin N.D., Grodnitskaya I.D., Shapchenkova O.A., Evgrafova S.Yu. Eksperimental'naya otsenka ustoichivosti pochvennogo mikrobotsenoza pri khimicheskom zagryaznenii // Pochvovedenie. 2009. № 6. S. 701–707.
12. Chimitdorzhieva I.B., Tsydypov V.Ts., Abasheeva N.E. Vliyanie lantana na biologicheskuyu aktivnost' i ekologicheskuyu ustoichivost' ammonifitsiruyushchikh i nitrifitsiruyushchikh mikroorganizmov v vegetatsionnykh opytakh // Agrokhimiya. 2009. № 3. S. 60–65.
13. Crecchio C., Gelsomino A., Ambrosoli R., Minati J.L., Ruggiero P. Functional and molecular responses of soil microbial communities under differing soil management practices // Soil Biology & Biochemistry. 2004. Vol. 36. PP. 1873–1883. doi: 10.1016/j.soilbio.2004.05.008
14. Karthikeyan S., Wolfaardt G.M., Korber D.R., Caldwell D.E. Functional and structural responses of degradative microbial community to substrates with varying degrees of complexity in chemical stricture // Microbial Ecology. 1999. Vol. 38. PP. 215–224. doi: 10.1007/s002489900171
15. Orwin K.H., Wardle D.A. Plant species composition effects on belowground properties and the resistance and resilience of the soil microflora to a drying disturbance // Plant and Soil. 2005. Vol. 278. PP. 205–221. doi: 10.1007/s11104-005-8424-1
16. Seghers D., Kristof V., Reheul D., Bulcke R., Siciliano S.D., Verstraete W., Top E.M. Effect of long term herbicide applications on the bacterial community structure and function in an agricultural soil // Microbial Ecology. 2003. Vol. 46(2). PP. 139–146. doi: 10.1016/S0168-6496(03)00205-8
17. Bocharnikova E.A., Matychenkov V.V., Matychenkov I.V. Kremnievye udobreniya i melioranty: istoriya izucheniya, teoriya i praktika primeneniya // Agrokhimiya. 2011. № 7. S. 84–96.
18. Samsonova N.E. Kremnii v rastitel'nykh i zhivotnykh organizmakh // Agrokhimiya. 2019. № 1. S. 86–96. doi: 10.1134/S0002188119010071
19. Matychenkov I.V., Khomyakov D.M., Pakhnenko E.P., Bocharnikova E.A., Matychenkov V.V. Podvizhnye kremnievye soedineniya v sisteme pochva–rastenie i metody ikh opredeleniya // Vestnik Moskovskogo universiteta. Ser. 17. Pochvovedenie. 2016. № 3. S. 37–46.
20. Kulikova A.Kh., Kozlov A.V., Toigildin A.L. Influence of silicon containing preparations on agrochemical properties of sod and podzolic soil and yielding capacity of crops // Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2018. Vol. 9(2). PP. 432–436.
21. Kozlov A.V., Kulikova A.Kh., Koposova N.N. Vliyanie diatomita, tseolita i bentonitovoi gliny na pokazateli fiziko-khimicheskogo sostoyaniya dernovopodzolistoi pochvy // Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk. 2017. T. 19, № 2-2. S. 275–280.
22. Kozlov A.V., Kulikova A.Kh. Vliyanie vysokokremnistykh porod na strukturu, chislennost' i fermentativnuyu aktivnost' tsellyulozosaprotrofnogo mikrobnogo pula dernovo-podzolistoi pochvy v usloviyakh vyrashchivaniya ozimoi pshenitsy i kartofelya // Vestnik Ul'yanovskoi gosudarstvennoi sel'skokhozyaistvennoi akademii. 2016. № 1 (33). S. 56–65.
23. Kozlov A.V., Kulikova A.Kh., Uromova I.P. Vliyanie vysokokremnistykh porod (diatomita, tseolita i bentonitovoi gliny) na aktivnost' oligotrofnogo i avtokhtonnogo mikrobnogo pula dernovo-podzolistoi pochvy // Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya. 2017. № 4 (40). S. 44–65. doi: 10.17223/19988591/40/3
24. Kusova N.V., Stepanova L.P. Kipyashchie kamni (tseolity): spisok literatury. Orel : OrelGAU, 2005. 18 s.
25. Naumov V.D. Geografiya pochv. Pochvy Rossii. M. : Prospekt, 2016. 344 s.
26. Ekologiya mikroorganizmov / pod red. A.I. Netrusova. M. : Yurait, 2015. 268 s.
27. Mukha V.D. Estestvenno-antropogennaya evolyutsiya pochv (obshchie zakonomernosti i zonal'nye osobennosti). M. : KolosS, 2004. 271 s.
28. Praktikum po mikrobiologii : ucheb. posobie dlya studentov vuzov / A.I. Netrusov, M.A. Egorova, L.M. Zakharchuk i dr. ; pod red. A.I. Netrusova. M. : Akademiya, 2005. 608 s.
29. Khaziev F.Kh. Metody pochvennoi enzimologii. M. : Nauka, 2005. 252 s.
30. Dospekhov B.A. Metodika polevogo opyta (s osnovami statisticheskoi obrabotki rezul'tatov issledovanii). M. : ID Al'yans, 2011. 352 s.
31. Korosteleva L.A., Koshchaev A.G. Osnovy ekologii mikroorganizmov. SPb. : Lan', 2013. 240 s.
32. van Diepeningen A.D., de Vos O.J., Korthals G.W., van Bruggen A.H.C. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils // Applied Soil Ecology. 2006. Vol. 31. PP. 120–135. doi: 10.1016/j.apsoil.2005.03.003
33. Zelenev V.V., van Bruggen A.H.C., Semenov A.M. Modeling wave-like dynamics of oligotrophic and copiotrophic bacteria along wheat roots in response to nutrient input from a growing root tip // Ecological Modeling. 2005. Vol. 188 (2–4). PP. 404–417. doi: 10.1016/j.ecolmodel.2005.01.046
34. Tuev N.A. Mikrobiologicheskie protsessy gumusoobrazovaniya. M. : Agropromizdat, 1989. 239 s.
35. Govaerts B., Mezzalama M., Unno Y., Sayre K.D., Luna-Guido M., Vanherck K., Dendooven L., Deckers J. Influence of tillage, residue management, and crop rotation on soil microbial biomass and catabolic diversity // Applied Soil Ecology. 2007. Vol. 37. PP. 18–30. doi: 10.1016/j.apsoil.2007.03.006
События
-
Журнал «Неотложная кардиология и кардиоваскулярные риски» присоединился к Elpub >>>
6 июн 2025 | 09:45 -
К платформе Elpub присоединился «Медицинский журнал» >>>
5 июн 2025 | 09:41 -
НЭИКОН принял участие в конференции НИИ Организации здравоохранения и медицинского менеджмента >>>
30 мая 2025 | 10:32 -
Журнал «Творчество и современность» присоединился к Elpub! >>>
27 мая 2025 | 12:38 -
Журналы НЦЭСМП приняты в Scopus >>>
27 мая 2025 | 12:35