Журналов:     Статей:        

Вестник Томского государственного университета. Биология. 2019; : 210-219

Определение оптимальных условий роста грамположительной бактерии Gulosibacter sp. BS38 – деструктора токсичного ксенобиотика epsilon-капролактам

Есикова Т. З.

https://doi.org/10.17223/19988591/45/11

Аннотация

Использование микроорганизмов – специфических деструкторов ксенобиотиков для биологической очистки производственных отходов предполагает предварительный отбор наиболее активных в отношении исследуемых субстратов штаммов на основе изучения физиологии их роста на селективных средах. Изучено влияние физико-химических факторов культивирования (температура, рН среды и концентрация субстрата) на параметры роста грамположительной бактерии Gulosibacter sp. BS38 – деструктора токсичного неприродного соединения epsilon-капролактама. Культивирование штамма BS38 осуществляли в жидкой минеральной среде Эванса, содержащей ксенобиотик в качестве единственного источника углерода и энергии. Показано, что штамм BS38 растет в широком диапазоне концентраций капролактама – от 0,5 до 12,0 г/л, оптимально при 1,0–2,0 г/л, рН 7,5 и температуре 28°С. Штамм BS38 способен расти при высоких концентрациях токсичного поллютанта, является мезофильным и алкалотолерантным организмом, что определяет перспективы его использования в технологиях биологической очистки отходов производств капролактама и полимеров, получаемых на его основе.

Список литературы

1. Понаморева О.Н. Методы определения капролактама и олигомеров в водных средах // Известия ТулГу. Естественные науки. 2017. № 1. С. 3–11.

2. Esikova T.Z., Ponamoreva O.N., Baskunov B.P., Taran S.A., Boronin A.M. Transformation of low-molecular linear caprolactam oligomers by caprolactam-degrading bacteria // Journal of Chemical Technology and Biotechnology. 2012. № 87. PP. 1284–1290. doi: 10.1002/jctb.3789

3. Baxi N.N. Influence of ε-caprolactam on growth and physiology of environmental bacteria // Annals of Microbiology. 2013. № 63. PP. 1471–1476. doi: 10.1007/s13213-013-0610-4

4. Boronin A.M., Kosheleva I.A. The role of catabolic plasmids in biodegradation of petroleum hydrocarbons // Current environmental issues and challenges / ed. by C. Giacomo, O. Roberto. Dordrecht : Springer, 2014. PР. 159–168.

5. Есикова Т.З., Волкова О.В., Таран С.А., Боронин А.М. Ключевая роль dca-генов в катаболизме epsilon-капролактама у бактерий рода Pseudomonas // Микробиология. 2015. Т. 84, № 5. С. 616–619. doi: 10.7868/S0026365615050079

6. Otzen M., Palacio C., Janssen D.B. Characterization of the caprolactam degradation pathway in Pseudomonas jessenii using mass spectrometry-based proteomics // Applied Microbiology and Biotechnology. 2018. Vol. 102, № 15. PP. 6699–6711. doi: 10.1007/s00253-018-9073-7

7. Есикова Т.З., Акатова Е.В., Таран С.А. Бактерии-деструкторы низкомолекулярных линейных олигомеровepsilon-капролактама // Прикладная биохимия и микробиология. 2014. № 5. С. 481–489. doi: 10.7868/S55510991450043

8. Wang C.C., Lee C.M. Isolation of the ε-caprolactam denitrifying bacteria from a wastewater treatment system manufactured with acrylonitrile-butadiene-styrene resin // Journal of Hazardous Materials. 2007. № 145. РР. 136–141. doi: 10.1016/j.jhazmat.2006.10.092

9. Биотехнология. Автоматизация биотехнологических исследований / Д.В. Зудин, В.М. Кантере, Г.А. Угодчиков ; под ред. Н.С. Егорова. М. : Высшая школа, 1987. 112 с.

10. Соляникова И.П., Головлева Л.А. Физиолого-биохимические свойства актинобактерий как основа их высокой биодеградативной активности // Прикладная биохимия и микробиология. 2015. Т. 51, № 2. С. 132–139. doi: 10.7868/S0555109915020208

11. Estevinho B.N., Lopes A.R., Sousa V., Rocha F., Nunes O.C. Microencapsulation of Gulosibacter molinativorax ON4T cells by a spray-drying process using different biopolymers // Journal of hazardous materials. 2017. Vol. 15, № 338. PP. 85–92. doi: 10.1016/j.jhazmat.2017.05.018

12. Fortmann L., Rosenberg A. // Fate of ε-caprolactam in the aquatic environment. Chemosphere. 1984. Vol. 13. PP. 53–65. doi: 10.1016/0045-6535(84)90008-0

13. Boronin A.M., Naumova R.P., Grishchenkov V.G., Ilijinskaya O.N. Plasmids specifying ε-caprolactam degradation in Pseudomonas strains // FEMS Microbiology Letters. 1984. Vol. 22. PP. 167–170.

14. Sanuth H.A., Yadav A., Fagade O.E., Shouche Y. E-Caprolactam utilization by Proteus sp. and Bordetella sp. isolated from solid waste dumpsites in Lagos state, Nigeria, frst report // Indian J Microbiol. 2013. Vol. 53. PP. 221–226. doi: 10.1007/s12088-013-0356-5

15. Baxi N.N., Shah A.K. Biological treatment of the components of solid oligomeric waste from a nylon-6 production plant // World Journal of Microbiology and Biotechnology. 2000. Vol. 16. PP. 835–840. doi: 10.1023/A:1008971216941

16. Соколов А.Б., Печатников М.Г., Крижановский А.С., Петров Г.Г. Комбинирование химических и биологических способов очистки капролактами содержащих стоков // Российский химический журнал имени Д.И. Менделеева. 2006. Т. 50, № 3. С. 48–55.

Tomsk State University Journal of Biology. 2019; : 210-219

Determination of optimal growth conditions for gram-positive bacterium Gulosibacter sp. BS38, destructor of toxic xenobiotic epsilon-caprolactam

Esikova T. Z.

https://doi.org/10.17223/19988591/45/11

Abstract

Caprolactam is one of the widespread pollutants; its annual world production is in millions of tons. In the process of production and polymerization of CAP, wastes are generated that contain a certain amount of caprolactam and low molecular weight fractions of oligomers. Currently, industrial waste is incinerated or disposed of, which leads to pollution of soil and groundwater with toxic pollutants. A lack of systematic studies on microbial destructors of caprolactam is a limiting factor in the development of cost-effective technologies for biological treatment of industrial wastewaters. The aim of this research was to explore the growth pattern of the strain-destructor Gulosibacter sp. BS38 in a mineral medium containing caprolactam as a sole carbon and energy source at different substrate concentrations, pH and temperatures. In order to determine the optimum growth conditions, liquid mineral medium was used at temperature range, pH value or substrate concentration according to the objective of the experiment. When studying the effect of cultivation conditions on the strain growth, such parameters as optical density (OD), the length of the lag-phase and the maximum specifc growth rate of the culture (µmax) were assessed. Cells were cultured in 750 ml Erlenmeyer flasks, containing 100 ml of the medium, during 100- 120 hours in an incubator shaker at 180 rpm. As the inoculum, a culture grown in the same medium (рН 7.5, cultivation temperature 28°С, CAP concentration 1.0 g/l) was used up to an optical density equivalent to 0.5. The intensity of culture growth was estimated spectrophotometrically by the change in the optical density (wavelength = 590 nm); the curve of growth patterns was used to calculate the length of the lag-phase and the maximum specifc growth rate. According to literature data, the rate and degree of caprolactam degradation in wastewater, frst, depends on the amount of this compound, hence the tolerance of the microorganisms-destructors to high concentrations of caprolactam can be critical in practical use. The strain BS38 was able to grow on this xenobiotic compound, the concentration of which was widely ranging from 0.5 to 12.0 g/l. In the presence of 0.5 g/l, the length of the growth lag-phase was the shortest (5 hours) compared to those observed at higher concentrations (See Fig. 1A), but the optical density was not high (0.55). The maximum specifc growth rate was 0.057 h-1. When substrate concentration was 1.0 and 2.0 g/l, the optical density was maximum, 0.71 and 0.73; it was the same for the specifc growth rate (0.094 and 0.086 h-1, respectively). A further increase in caprolactam level leads proportionally to extended lag time, slow specifc growth rate and decreased optical density of the culture. The highest level of the caprolactam in the medium at which bacterial growth continued was 12.0 g/l. The study of the effect of pH and temperature on growth patterns of the strain BS38 showed that the optimum growth of the bacterium occurred at 28°С and pH 7.5 (See Fig. 1, B, C). It was found that the temperature mostly affected the specifc growth rate of the culture (0.094, 0.052, and 0.038 h-1 at a temperature of 28°C, 37°C, and 15°C, respectively) while the change in pH also caused an extension in lag time and a decrease in optical density (Fig. 1, B). The paper contains 1 Figure and 16 References.

References

1. Ponamoreva O.N. Metody opredeleniya kaprolaktama i oligomerov v vodnykh sredakh // Izvestiya TulGu. Estestvennye nauki. 2017. № 1. S. 3–11.

2. Esikova T.Z., Ponamoreva O.N., Baskunov B.P., Taran S.A., Boronin A.M. Transformation of low-molecular linear caprolactam oligomers by caprolactam-degrading bacteria // Journal of Chemical Technology and Biotechnology. 2012. № 87. PP. 1284–1290. doi: 10.1002/jctb.3789

3. Baxi N.N. Influence of ε-caprolactam on growth and physiology of environmental bacteria // Annals of Microbiology. 2013. № 63. PP. 1471–1476. doi: 10.1007/s13213-013-0610-4

4. Boronin A.M., Kosheleva I.A. The role of catabolic plasmids in biodegradation of petroleum hydrocarbons // Current environmental issues and challenges / ed. by C. Giacomo, O. Roberto. Dordrecht : Springer, 2014. PR. 159–168.

5. Esikova T.Z., Volkova O.V., Taran S.A., Boronin A.M. Klyuchevaya rol' dca-genov v katabolizme epsilon-kaprolaktama u bakterii roda Pseudomonas // Mikrobiologiya. 2015. T. 84, № 5. S. 616–619. doi: 10.7868/S0026365615050079

6. Otzen M., Palacio C., Janssen D.B. Characterization of the caprolactam degradation pathway in Pseudomonas jessenii using mass spectrometry-based proteomics // Applied Microbiology and Biotechnology. 2018. Vol. 102, № 15. PP. 6699–6711. doi: 10.1007/s00253-018-9073-7

7. Esikova T.Z., Akatova E.V., Taran S.A. Bakterii-destruktory nizkomolekulyarnykh lineinykh oligomerovepsilon-kaprolaktama // Prikladnaya biokhimiya i mikrobiologiya. 2014. № 5. S. 481–489. doi: 10.7868/S55510991450043

8. Wang C.C., Lee C.M. Isolation of the ε-caprolactam denitrifying bacteria from a wastewater treatment system manufactured with acrylonitrile-butadiene-styrene resin // Journal of Hazardous Materials. 2007. № 145. RR. 136–141. doi: 10.1016/j.jhazmat.2006.10.092

9. Biotekhnologiya. Avtomatizatsiya biotekhnologicheskikh issledovanii / D.V. Zudin, V.M. Kantere, G.A. Ugodchikov ; pod red. N.S. Egorova. M. : Vysshaya shkola, 1987. 112 s.

10. Solyanikova I.P., Golovleva L.A. Fiziologo-biokhimicheskie svoistva aktinobakterii kak osnova ikh vysokoi biodegradativnoi aktivnosti // Prikladnaya biokhimiya i mikrobiologiya. 2015. T. 51, № 2. S. 132–139. doi: 10.7868/S0555109915020208

11. Estevinho B.N., Lopes A.R., Sousa V., Rocha F., Nunes O.C. Microencapsulation of Gulosibacter molinativorax ON4T cells by a spray-drying process using different biopolymers // Journal of hazardous materials. 2017. Vol. 15, № 338. PP. 85–92. doi: 10.1016/j.jhazmat.2017.05.018

12. Fortmann L., Rosenberg A. // Fate of ε-caprolactam in the aquatic environment. Chemosphere. 1984. Vol. 13. PP. 53–65. doi: 10.1016/0045-6535(84)90008-0

13. Boronin A.M., Naumova R.P., Grishchenkov V.G., Ilijinskaya O.N. Plasmids specifying ε-caprolactam degradation in Pseudomonas strains // FEMS Microbiology Letters. 1984. Vol. 22. PP. 167–170.

14. Sanuth H.A., Yadav A., Fagade O.E., Shouche Y. E-Caprolactam utilization by Proteus sp. and Bordetella sp. isolated from solid waste dumpsites in Lagos state, Nigeria, frst report // Indian J Microbiol. 2013. Vol. 53. PP. 221–226. doi: 10.1007/s12088-013-0356-5

15. Baxi N.N., Shah A.K. Biological treatment of the components of solid oligomeric waste from a nylon-6 production plant // World Journal of Microbiology and Biotechnology. 2000. Vol. 16. PP. 835–840. doi: 10.1023/A:1008971216941

16. Sokolov A.B., Pechatnikov M.G., Krizhanovskii A.S., Petrov G.G. Kombinirovanie khimicheskikh i biologicheskikh sposobov ochistki kaprolaktami soderzhashchikh stokov // Rossiiskii khimicheskii zhurnal imeni D.I. Mendeleeva. 2006. T. 50, № 3. S. 48–55.