Журналов:     Статей:        

Вестник Томского государственного университета. Биология. 2019; : 106-127

Возрастная динамика и топография реактивности индивидуального мю-ритма ЭЭГ у детей 4–14 лет

Кайда А. И., Махин С. А., Эйсмонт Е. В., Павленко В. Б.

https://doi.org/10.17223/19988591/45/6

Аннотация

Исследование посвящено изучению паттернов реактивности индивидуально определенного мю-ритма ЭЭГ у детей следующих возрастных групп: «дошкольники» (4–6 лет), «младшие школьники» (7–10 лет), «подростки» (11–14 лет) в условиях реализации самостоятельных движений с помощью компьютерной мыши, а также синхронной имитации, зрительно-слуховом и слуховом восприятии аналогичных движений, выполняемых другим человеком. В исследовании принял участие 121 испытуемый в возрасте 4–14 лет. Дисперсионный анализ различий в амплитуде мю-ритма в ситуации выполнения детьми самостоятельных движений с помощью компьютерной мыши продемонстрировал значимую десинхронизацию мю-ритма преимущественно левополушарной локализации в центральных и верхнелобных корковых проекциях, а также в теменных отведениях как левого, так и правого полушарий. При этом величина десинхронизации увеличивалась с возрастом. В ситуации синхронной имитации движений другого человека наблюдалась дополнительная к вызванной собственными движениями депрессия мю-ритма в локусах P3 и Pz только в группе подростков. Ситуация зрительно-слухового восприятия движений, выполняемых другим человеком, вызывала значимое подавление мю-ритма исключительно в теменных отведениях. При слуховом восприятии движений мышью, выполняемых другим человеком, подавление мю-ритма наблюдалось в теменных отведениях P3, Pz и P4 также исключительно в группе подростков.

Список литературы

1. Hardwick R.M., Caspers S., Eickhoff S.B., Swinnen S.P. Neural correlates of action: Comparing meta-analyses of imagery, observation, and execution // Neurosci Biobehav Rev. 2018. № 94. PP. 31–44.

2. Лебедева Н.Н., Зуфман А.И., Мальцев В.Ю. Система зеркальных нейронов мозга: ключ к обучению, формированию личности и пониманию чужого сознания // Успехи физиологических наук. 2017. Т. 48, № 4. С. 16–28.

3. Gallese V., Fadiga L., Fogassi L., Rizzolatti G. Action recognition in the premotor cortex // Brain. 1996. № 119. PP. 593–609.

4. Rizzolatti G., Fadiga L., Gallese V., Fogassi L. Premotor cortex and the recognition of motor actions // Brain Res. Cogn. Brain Res. 1996. № 3. PP. 131–141.

5. Rizzolatti G., Craighero L. The mirror-neuron system // Annu. Rev. Neurosci. 2004. № 27. PP. 169–192.

6. Nishitani N., Avikainen S., Hari R. Abnormal imitation-related cortical activation sequences in Asperger’s syndrome // Ann. Neurol. 2004. № 55. PP. 558–562.

7. Puce A., Perrett D. Electrophysiology and brain imaging of biological motion // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003. № 358. PP. 435–445.

8. Braadbaart L., Williams J.H.G., Waiter G.D. Do mirror neuron areas mediate mu rhythm suppression during imitation and action observation? // International Journal of Psychophysiology. 2013. № 89. PP. 99–105.

9. Fox N.A., Bakermans-Kranenburg M.J., Yoo K.H., Bowman L.C., Cannon E.N., Vanderwert R.E., Ferrari P.F. Assessing human mirror activity with EEG mu rhythm: A meta-analysis // Psychol. Bull. 2016. № 142 (3). PP. 291–313.

10. Лебедева Н.Н., Каримова Е.Д., Карпычев В.В., Мальцев В.Ю. Зеркальная система мозга при наблюдении, выполнении и представлении моторных задач – нейрофизиологическое отражение восприятия чужого сознания // Журнал высшей нервной деятельности им. И.П. Павлова. 2018. Т. 68. № 2. С. 204–215.

11. Hobson H.M., Bishop D.V.M. Mu suppression—a good measure of the human mirror neuron system? // Cortex. 2016. № 82. PP. 290–310.

12. Hobson H.M., Bishop D.V.M. The interpretation of mu suppression as an index of mirror neuron activity: past, present and future // R. Soc. Open Sci. 2017. № 4. PP. 1606–1662.

13. Pfurtscheller G., Lopes da Silva F.H. Event-related EEG/MEG synchronization and desynchronization: basic principles // Clin. Neurophysiol. 1999. № 110. PP. 1842–1857.

14. Thorpe S.G., Cannon E.N., Fox N.A. Spectral and source structural development of mu and alpha rhythms from infancy through adulthood // Clin. Neurophysiol. 2016. № 127 (1). PP. 254–269.

15. Cochin S., Barthelemy C., Roux S., Martineau J. Observation and execution of movement: similarities demonstrated by quantifed electroencephalography // Eur. J. Neurosci. 1999. № 11. PP. 1839–1842.

16. Frenkel-Toledo S., Bentin S., Perry A., Liebermann D.G., Soroker N. Dynamics of the EEG power in the frequency and spatial domains during observation and execution of manual movements // Brain Res. 2013. Vol. 1509. PP. 43–57.

17. Buneo C.A., Jarvis M.R., Batista A.P., Andersen R.A. Direct visuomotor transformations for reaching // Nature. 2002. № 416. PP. 632–633.

18. Connolly J.D., Andersen R.A., Goodale M.A. FMRI evidence for a «parietal reach region» in the human brain // Exp. Brain Res. 2003. № 153. PP. 140–145.

19. Hanakawa T., Immisch I., Toma K., Dimyan M., Van Gelderen P., Hallett M. Functional properties of brain areas associated with motor execution and imagery // J. Neurophysiol. 2003. № 89. PP. 989–1002.

20. Solodkin A., Hlustik P., Chen E.E., Small S.L. Fine modulation in network activation during motor execution and motor imagery // Cereb. Cortex. 2004. № 14. PP. 1246–1255.

21. Van Overwalle F., Baetens K. Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis // Neuroimage. 2009. № 48. PP. 564–584.

22. Molenberghs P., Cunnington R., Mattingley J.B. Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies // Neuroscience and Biobehavioral Reviews. 2012. № 36. PP. 341–349.

23. Culham J.C., Valyear K.F. Human parietal cortex in action // Curr. Opin. Neurobiol. 2006. № 16. PP. 205–212.

24. Iacoboni M. Visuo-motor integration and control in the human posterior parietal cortex: evidence from TMS and fMRI // Neuropsychologia. 2006. № 44. PP. 2691–1699.

25. Arnstein D., Cui F., Keysers C., Maurits N.M., Gazzola V. μ-suppression during action observation and execution correlates with BOLD in dorsal premotor, inferior parietal, and SI cortices // J. Neurosci. 2011. № 31. PP. 14243–14249.

26. Segalowitz S.J., Santesso D.L., Jetha M.K. Electrophysiological changes during adolescence: a review // Brain Cogn. 2010. № 72. PP. 86–100.

27. Berchicci M., Zhang T., Romero L., Peters A., Annett R., Teuscher U., Comani S. Development of Mu Rhythm in infants and preschool children // Dev. Neurosci. 2011. № 33. PP. 130–143.

28. Bazanova O.M., Vernon D. Interpreting EEG alpha activity // Neuroscience & Biobehavioral Reviews. 2014. Т. 44. PP. 94–110.

29. Gundlach C., Müller M.M., Nierhaus T., Villringer A., Sehm B. Phasic modulation of human somatosensory perception by transcranially applied oscillating currents // Brain Stimul. 2016. № 9. PP. 712–719.

30. Gundlach C., Müller M.M., Nierhaus T., Villringer A., Sehm B. Modulation of somatosensory alpha rhythm by transcranial alternating current stimulation at mu-frequency // Front. Hum. Neurosci. 2017. № 11. PP. 432.

31. Babiloni C., Carducci F., Cincotti F., Rossini P.M., Neuper C., Pfurtscheller G., Babiloni F. Human movement-related potential vs desynchronization of EEG alpha rhythm: A highresolution EEG study // NeuroImage. 1999. № 1. PP. 658–665.

32. Muthukumaraswamy S.D., Johnson B.W. Changes in rolandic mu rhythm during observation of a precision grip // Psychophysiology. 2004. № 41. PP. 152–156.

33. Tamura T., Gunji A., Takeichi H., Shigemasu H., Inagaki M., Kaga M., Kitazaki M. Audio-vocal monitoring system revealed by mu-rhythm activity // Front. Psychol. 2012. № 3. P. 225.

34. Эйсмонт Е.В., Махин С.А., Бакунова А.В., Кайда А.И., Павленко В.Б. Особенности μ-ритма ЭЭГ и его реактивности в задачах на выполнение, наблюдение, имитацию и слуховое восприятие движений у детей 4–14 лет // Физиология человека. 2017. № 3. С. 43–50.

35. Lepage J.F., Theoret H. EEG evidence for the presence of an action-observation matching system in children // European Journal of Neuroscience. 2006. № 23. PP. 2505–2510.

36. Cannon E.N., Simpson E.A., Fox N.A., Vanderwert R.E., Woodward A.L., Ferrari P.F. Relations between infants’ emerging reach-grasp competence and event-related desynchronization in EEG // Developmental Science. 2016. № 19. PP. 50–62.

37. Bowman L.C., Thorpe S.G., Cannon E.N., Fox N.A. Action mechanisms for social cognition: Behavioral and neural correlates of developing theory of mind // Developmental science. 2017. № 20 (5).

38. Lepage J.F., Tremblay S., Nguyen D.K., Champoux F., Lassonde M., Théoret H. Action related sounds induce early and late modulations of motor cortex activity // Neuroreport. 2010. № 21 (4). PP. 250–253.

39. McGarry L.M., Russo F.A., Schalles M.D., Pineda J.A. Audio-visual facilitation of the mu rhythm // Exp Brain Res. 2012. № 218 (4). PP. 527–38.

40. Pineda J.A., Grichanik M., Williams V., Trieu M., Chang H., Keysers C. EEG sensorimotor correlates of translating sounds into actions // Front Neurosci. 2013. № 7. P. 203.

41. Tsuchida K., Ueno K., Shimada S. Motor area activity for action-related and nonactionrelated sounds in a three-dimensional sound feld reproduction system // Neuroreport. 2015. № 26 (5). PP. 291–295.

42. Махин С.А., Макаричева А.А., Луцюк Н.В., Павленко В.Б. Исследование реактивности мю-ритма при наблюдении, слуховом восприятии и имитации движений: Взаимосвязь со свойствами личности, определяющими эмпатию // Физиология человека. 2015. Т. 41,. № 6. С. 28.

43. Nishimura Y., Ikeda Y., Suematsu A., Higuchi S. Effect of visual orientation on mu suppression in children: a comparative EEG study with adults // Journal of physiological anthropology. 2018. № 37 (1). P. 16.

44. Raymaekers R., Wiersema J.R., Roeyers H. EEG study of the mirror neuron system in children with high functioning autism // Brain research. 2009. № 1304. PP. 113–121.

45. Salmelin R., Hamaalainen M., Kajola M., Hari R. Functional segregation of movementrelated rhythmic activity in the human brain // NeuroImage. 1995. № 2. PP. 237–243.

46. Manshanden I., De Munck J.C., Simon N.R., Lopes da Silva F.H. Source localization of MEG sleep spindles and the relation to sources of alpha band rhythms // Clin. Neurophysiol. 2002. № 113. PP. 1937–1947.

47. Stancok A., Pfurtcheller G. Event-related desynchronisation of central beta-rhythms during brisk and slow self-paced fnger movements of dominant and non-dominant hand // Cogn. Brain Res. 1996. № 3. PP. 171–183.

48. Alexandrov A.A., Tugin S.M. Changes in the mu rhythm in different types of motor activity and on observation of movement // Neuroscience and behavioral physiology. 2012. № 42(3). PP. 302–307.

49. Barry R.J., Clarke A.R., Johnstone S.J., Brown C.R. EEG differences between eyes-closed and eyes-open resting conditions // Clinical Neurophysiology. 2007. № 118. PP. 2765–2773.

50. Bonini L., Rozzi S., Serventi F.U., Simone L., Ferrari P.F., Fogassi L. Ventral premotor and inferior parietal cortices make distinct contribution to action organization and intention understanding // Cereb. Cortex. 2010. № 20. PP. 1372–1385.

51. Fogassi L., Ferrari P.F., Gesierich B., Rozzi S., Chersi F., Rizzolatti G. Parietal lobe, from action organization to intention understanding // Science. 2005. № 308. PP. 662–667.

52. Yamazaki Y., Yokochi H., Tanaka M., Okanoya A., Iriki A. Potential role of monkey inferior parietal neurons coding action semantic equivalences as precursors of parts of speech // Social Neurosci. 2010. № 5. PP. 105–117.

Tomsk State University Journal of Biology. 2019; : 106-127

Age dynamics and topography of an individual EEG mu rhythm reactivity in children aged 4-14 years

Kaida A. I., Makhin S. A., Eismont E. V., Pavlenko V. В.

https://doi.org/10.17223/19988591/45/6

Abstract

Within the framework of the mirror neuron system related studies, there is a line of research dedicated to examining the effects of the EEG mu rhythm reactivity under conditions of observation and imitation of actions performed by others. It is hypothesized that the analysis of the mu rhythm activity at central electrode sites can be taken as a relatively easy non-invasive method for examining the mirror neuron system activity in human. At that, it is important to take into account possible individual differences in the frequency of the mu rhythm which is thought to reflect the activation level of the primary sensorimotor cortex. It is necessary to differentiate it from other alpha-like EEG oscillations related to different functional systems of the neocortex. Besides, in children the frequency of the mu rhythm tends to gradually increase with age. Hence, it seems important in such studies in the frst place to functionally defne the individual mu rhythm frequency for each participant under relevant conditions of a selfpaced motor activity. The main aim of our research was to study the reactivity patterns of the individual mu rhythm under different conditions in children in the following age groups: “preschoolers” (4-6 years), “younger schoolchildren” (7-10 years), “adolescents” (11-14 years). In 87 typically developing children aged 4-14 years, we analyzed the EEG recorded at the following electrode sites: F3, Fz, F4, C3, Cz, C4, P3, Pz, and P4. The experimental conditions (30-second long each) were as follows: fxation of one’s sight at a motionless computer mouse, self-controlled circular righthand movements (prior to and after the condition of movement observation), visual observation of similar movements performed by another person, real time imitation of observed movements, and hearing of familiar sounds produced by the computer mouse movements with eyes closed. We used repeated measures ANOVA to assess the main effects of the age group and experimental condition variables and their interaction on the amplitude of the individual mu rhythm. In this research, we discovered patterns of individual EEG mu rhythm reactivity under conditions of observation, imitation, and auditory perception of movements with the computer mouse. The mean values of the median frequency within the individual mu-ranges were as follows: 10.1 ± 1.2 Hz for “preschoolers”, 9.9 ± 1.4 Hz in the group of “younger schoolchildren” and 10.6 ± 1.1 Hz for “adolescents”. 121 children aged 4-14 years took part in the study. This research was conform to ethical principles of the declaration of Helsinki, 1964. Parents, after being provided with necessary information,gave their consent to their children’s participation in the research. The condition of performing self-paced circular mouse movements showed distinct left hemisphere lateralization of the individual mu rhythm suppression in all age groups, mainly, in central and parietal leads (See Fig. 1). Higher indices of desynchronization were found for the sample of older children. The observation condition revealed signifcant mu rhythm suppression effects solely for the parietal leads (See Fig. 2). Even though the fgure shows that the mu rhythm desynchronization is greater for older participants, the variance analysis revealed no signifcant age differences. It is of interest that the condition of the repeated execution of movements demonstrated even more pronounced and widely spread mu rhythm suppression, if compared to the frst movement condition, with statistically signifcant interaction effect between the condition and age group factors (See Fig. 3). A signifcant decrease in the mu rhythm amplitude is discovered at the F3, Fz and Cz electrode sites for the group of younger schoolchildren and at the Fz and C4 electrode sites for the group of adolescents. The imitation condition, relative to one’s own movements, had an additional suppression effect of the individual mu rhythm only in the group of adolescents. Signifcant suppression was discovered in the parietal leads P3 and Pz (See Fig. 4). The condition of the auditory recognition of the computer mouse movement sounds showed signifcant suppression of the mu rhythm only in the group of adolescents, as well. The suppression was found in the parietal leads P3, Pz and P4 (See Fig. 5). Since the eyes were closed for the two conditions to be compared, we could effectively limit the effects of visual attention modulations which are typically followed by a considerable occipital alpha rhythm desynchronization. As a result, the discovered effects cannot be explained by a mere process of a visual-motor integration but rather by a possible activation of the mirror neuron system parietal component which is thought by some authors to mediate one’s action goal coding when observing actions performed by others. Regarding the mu rhythm reactivity in general, the results of the present study showed that the desynchronization of the individually determined EEG mu rhythm becomes more pronounced with age. Reaching the puberty seems to change signifcantly the reactivity patterns of the mu rhythm. The paper contains 5 Figures and 52 References.

References

1. Hardwick R.M., Caspers S., Eickhoff S.B., Swinnen S.P. Neural correlates of action: Comparing meta-analyses of imagery, observation, and execution // Neurosci Biobehav Rev. 2018. № 94. PP. 31–44.

2. Lebedeva N.N., Zufman A.I., Mal'tsev V.Yu. Sistema zerkal'nykh neironov mozga: klyuch k obucheniyu, formirovaniyu lichnosti i ponimaniyu chuzhogo soznaniya // Uspekhi fiziologicheskikh nauk. 2017. T. 48, № 4. S. 16–28.

3. Gallese V., Fadiga L., Fogassi L., Rizzolatti G. Action recognition in the premotor cortex // Brain. 1996. № 119. PP. 593–609.

4. Rizzolatti G., Fadiga L., Gallese V., Fogassi L. Premotor cortex and the recognition of motor actions // Brain Res. Cogn. Brain Res. 1996. № 3. PP. 131–141.

5. Rizzolatti G., Craighero L. The mirror-neuron system // Annu. Rev. Neurosci. 2004. № 27. PP. 169–192.

6. Nishitani N., Avikainen S., Hari R. Abnormal imitation-related cortical activation sequences in Asperger’s syndrome // Ann. Neurol. 2004. № 55. PP. 558–562.

7. Puce A., Perrett D. Electrophysiology and brain imaging of biological motion // Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003. № 358. PP. 435–445.

8. Braadbaart L., Williams J.H.G., Waiter G.D. Do mirror neuron areas mediate mu rhythm suppression during imitation and action observation? // International Journal of Psychophysiology. 2013. № 89. PP. 99–105.

9. Fox N.A., Bakermans-Kranenburg M.J., Yoo K.H., Bowman L.C., Cannon E.N., Vanderwert R.E., Ferrari P.F. Assessing human mirror activity with EEG mu rhythm: A meta-analysis // Psychol. Bull. 2016. № 142 (3). PP. 291–313.

10. Lebedeva N.N., Karimova E.D., Karpychev V.V., Mal'tsev V.Yu. Zerkal'naya sistema mozga pri nablyudenii, vypolnenii i predstavlenii motornykh zadach – neirofiziologicheskoe otrazhenie vospriyatiya chuzhogo soznaniya // Zhurnal vysshei nervnoi deyatel'nosti im. I.P. Pavlova. 2018. T. 68. № 2. S. 204–215.

11. Hobson H.M., Bishop D.V.M. Mu suppression—a good measure of the human mirror neuron system? // Cortex. 2016. № 82. PP. 290–310.

12. Hobson H.M., Bishop D.V.M. The interpretation of mu suppression as an index of mirror neuron activity: past, present and future // R. Soc. Open Sci. 2017. № 4. PP. 1606–1662.

13. Pfurtscheller G., Lopes da Silva F.H. Event-related EEG/MEG synchronization and desynchronization: basic principles // Clin. Neurophysiol. 1999. № 110. PP. 1842–1857.

14. Thorpe S.G., Cannon E.N., Fox N.A. Spectral and source structural development of mu and alpha rhythms from infancy through adulthood // Clin. Neurophysiol. 2016. № 127 (1). PP. 254–269.

15. Cochin S., Barthelemy C., Roux S., Martineau J. Observation and execution of movement: similarities demonstrated by quantifed electroencephalography // Eur. J. Neurosci. 1999. № 11. PP. 1839–1842.

16. Frenkel-Toledo S., Bentin S., Perry A., Liebermann D.G., Soroker N. Dynamics of the EEG power in the frequency and spatial domains during observation and execution of manual movements // Brain Res. 2013. Vol. 1509. PP. 43–57.

17. Buneo C.A., Jarvis M.R., Batista A.P., Andersen R.A. Direct visuomotor transformations for reaching // Nature. 2002. № 416. PP. 632–633.

18. Connolly J.D., Andersen R.A., Goodale M.A. FMRI evidence for a «parietal reach region» in the human brain // Exp. Brain Res. 2003. № 153. PP. 140–145.

19. Hanakawa T., Immisch I., Toma K., Dimyan M., Van Gelderen P., Hallett M. Functional properties of brain areas associated with motor execution and imagery // J. Neurophysiol. 2003. № 89. PP. 989–1002.

20. Solodkin A., Hlustik P., Chen E.E., Small S.L. Fine modulation in network activation during motor execution and motor imagery // Cereb. Cortex. 2004. № 14. PP. 1246–1255.

21. Van Overwalle F., Baetens K. Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis // Neuroimage. 2009. № 48. PP. 564–584.

22. Molenberghs P., Cunnington R., Mattingley J.B. Brain regions with mirror properties: A meta-analysis of 125 human fMRI studies // Neuroscience and Biobehavioral Reviews. 2012. № 36. PP. 341–349.

23. Culham J.C., Valyear K.F. Human parietal cortex in action // Curr. Opin. Neurobiol. 2006. № 16. PP. 205–212.

24. Iacoboni M. Visuo-motor integration and control in the human posterior parietal cortex: evidence from TMS and fMRI // Neuropsychologia. 2006. № 44. PP. 2691–1699.

25. Arnstein D., Cui F., Keysers C., Maurits N.M., Gazzola V. μ-suppression during action observation and execution correlates with BOLD in dorsal premotor, inferior parietal, and SI cortices // J. Neurosci. 2011. № 31. PP. 14243–14249.

26. Segalowitz S.J., Santesso D.L., Jetha M.K. Electrophysiological changes during adolescence: a review // Brain Cogn. 2010. № 72. PP. 86–100.

27. Berchicci M., Zhang T., Romero L., Peters A., Annett R., Teuscher U., Comani S. Development of Mu Rhythm in infants and preschool children // Dev. Neurosci. 2011. № 33. PP. 130–143.

28. Bazanova O.M., Vernon D. Interpreting EEG alpha activity // Neuroscience & Biobehavioral Reviews. 2014. T. 44. PP. 94–110.

29. Gundlach C., Müller M.M., Nierhaus T., Villringer A., Sehm B. Phasic modulation of human somatosensory perception by transcranially applied oscillating currents // Brain Stimul. 2016. № 9. PP. 712–719.

30. Gundlach C., Müller M.M., Nierhaus T., Villringer A., Sehm B. Modulation of somatosensory alpha rhythm by transcranial alternating current stimulation at mu-frequency // Front. Hum. Neurosci. 2017. № 11. PP. 432.

31. Babiloni C., Carducci F., Cincotti F., Rossini P.M., Neuper C., Pfurtscheller G., Babiloni F. Human movement-related potential vs desynchronization of EEG alpha rhythm: A highresolution EEG study // NeuroImage. 1999. № 1. PP. 658–665.

32. Muthukumaraswamy S.D., Johnson B.W. Changes in rolandic mu rhythm during observation of a precision grip // Psychophysiology. 2004. № 41. PP. 152–156.

33. Tamura T., Gunji A., Takeichi H., Shigemasu H., Inagaki M., Kaga M., Kitazaki M. Audio-vocal monitoring system revealed by mu-rhythm activity // Front. Psychol. 2012. № 3. P. 225.

34. Eismont E.V., Makhin S.A., Bakunova A.V., Kaida A.I., Pavlenko V.B. Osobennosti μ-ritma EEG i ego reaktivnosti v zadachakh na vypolnenie, nablyudenie, imitatsiyu i slukhovoe vospriyatie dvizhenii u detei 4–14 let // Fiziologiya cheloveka. 2017. № 3. S. 43–50.

35. Lepage J.F., Theoret H. EEG evidence for the presence of an action-observation matching system in children // European Journal of Neuroscience. 2006. № 23. PP. 2505–2510.

36. Cannon E.N., Simpson E.A., Fox N.A., Vanderwert R.E., Woodward A.L., Ferrari P.F. Relations between infants’ emerging reach-grasp competence and event-related desynchronization in EEG // Developmental Science. 2016. № 19. PP. 50–62.

37. Bowman L.C., Thorpe S.G., Cannon E.N., Fox N.A. Action mechanisms for social cognition: Behavioral and neural correlates of developing theory of mind // Developmental science. 2017. № 20 (5).

38. Lepage J.F., Tremblay S., Nguyen D.K., Champoux F., Lassonde M., Théoret H. Action related sounds induce early and late modulations of motor cortex activity // Neuroreport. 2010. № 21 (4). PP. 250–253.

39. McGarry L.M., Russo F.A., Schalles M.D., Pineda J.A. Audio-visual facilitation of the mu rhythm // Exp Brain Res. 2012. № 218 (4). PP. 527–38.

40. Pineda J.A., Grichanik M., Williams V., Trieu M., Chang H., Keysers C. EEG sensorimotor correlates of translating sounds into actions // Front Neurosci. 2013. № 7. P. 203.

41. Tsuchida K., Ueno K., Shimada S. Motor area activity for action-related and nonactionrelated sounds in a three-dimensional sound feld reproduction system // Neuroreport. 2015. № 26 (5). PP. 291–295.

42. Makhin S.A., Makaricheva A.A., Lutsyuk N.V., Pavlenko V.B. Issledovanie reaktivnosti myu-ritma pri nablyudenii, slukhovom vospriyatii i imitatsii dvizhenii: Vzaimosvyaz' so svoistvami lichnosti, opredelyayushchimi empatiyu // Fiziologiya cheloveka. 2015. T. 41,. № 6. S. 28.

43. Nishimura Y., Ikeda Y., Suematsu A., Higuchi S. Effect of visual orientation on mu suppression in children: a comparative EEG study with adults // Journal of physiological anthropology. 2018. № 37 (1). P. 16.

44. Raymaekers R., Wiersema J.R., Roeyers H. EEG study of the mirror neuron system in children with high functioning autism // Brain research. 2009. № 1304. PP. 113–121.

45. Salmelin R., Hamaalainen M., Kajola M., Hari R. Functional segregation of movementrelated rhythmic activity in the human brain // NeuroImage. 1995. № 2. PP. 237–243.

46. Manshanden I., De Munck J.C., Simon N.R., Lopes da Silva F.H. Source localization of MEG sleep spindles and the relation to sources of alpha band rhythms // Clin. Neurophysiol. 2002. № 113. PP. 1937–1947.

47. Stancok A., Pfurtcheller G. Event-related desynchronisation of central beta-rhythms during brisk and slow self-paced fnger movements of dominant and non-dominant hand // Cogn. Brain Res. 1996. № 3. PP. 171–183.

48. Alexandrov A.A., Tugin S.M. Changes in the mu rhythm in different types of motor activity and on observation of movement // Neuroscience and behavioral physiology. 2012. № 42(3). PP. 302–307.

49. Barry R.J., Clarke A.R., Johnstone S.J., Brown C.R. EEG differences between eyes-closed and eyes-open resting conditions // Clinical Neurophysiology. 2007. № 118. PP. 2765–2773.

50. Bonini L., Rozzi S., Serventi F.U., Simone L., Ferrari P.F., Fogassi L. Ventral premotor and inferior parietal cortices make distinct contribution to action organization and intention understanding // Cereb. Cortex. 2010. № 20. PP. 1372–1385.

51. Fogassi L., Ferrari P.F., Gesierich B., Rozzi S., Chersi F., Rizzolatti G. Parietal lobe, from action organization to intention understanding // Science. 2005. № 308. PP. 662–667.

52. Yamazaki Y., Yokochi H., Tanaka M., Okanoya A., Iriki A. Potential role of monkey inferior parietal neurons coding action semantic equivalences as precursors of parts of speech // Social Neurosci. 2010. № 5. PP. 105–117.