Журналов:     Статей:        

Вестник Томского государственного университета. Биология. 2018; : 188-201

Влияние галловых клещей на состояние ассимиляционного аппарата липы сердцевидной

Пестов С. В., Тычинкина И. Г., Огородникова С. Ю.

Аннотация

Представлены данные о влиянии двух видов галловых клещей Eriophyes tiliae и E. leiosoma на состояние листьев липы сердцевидной. Сбор материала проведён в Кировской области в черте г. Кирова и пос. Осиновка. Для определения степени повреждения растений галлообразователями с каждого участка собирали 100 листьев (по 10 листьев с 10 деревьев). Для определения морфологических параметров на участках с наибольшей степенью повреждения галловыми клещами случайным образом отбирали по 50 поврежденных и 50 неповрежденных листьев. Определяли длину и ширину листа, содержание хлорофиллов и каротиноидов в экстракте. Установлено, что изученные виды клещей по-разному реагируют на условия окружающей среды и различаются распределением по местообитаниям. E. tiliae занимает более широкий спектр биотопов, чем E. leiosoma. Оба вида галловых клещей не встречаются на одном листе в пределах одного дерева. Заселение липы галловыми клещами оказывает влияние на размеры ассимиляционных органов, что проявляется в уменьшении длины и ширины листьев. Степень изменений в фотосинтетическом аппарате листа зависит от вида галловых клещей. Статистически значимое снижение (р<0,05) содержания хлорофиллов вызывает E. leiosoma, а E. tiliae не влияет на содержание и соотношение зеленых пигментов, но индуцирует накопление каротиноидов в листьях. Выявленные в ходе исследований изменения ассимиляционного аппарата липы сердцевидной свидетельствуют об опасности галловых клещей для липовых насаждений в городах и указывают на необходимость совершенствования системы мероприятий по надзору за этой группой филлофагов и мер борьбы с ними.
Список литературы

1. Слепян Э.И. Патологические новообразования и их возбудители у растений. Л. : Наука, 1973. 510 с.

2. Белицкая М.Н. Особенности фауны галлобразователей в полезащитных лесополосах аридной зоны // Экология России: на пути к инновациям. 2015. № 11. С. 105-107.

3. Леонтьева И.А., Яковлева И.А. Обзор фауны галлообразующих членистоногих городских зеленых насаждений г. Елабуги // Успехи современной науки и образования. 2017. Т. 8, № 4. С. 180-187.

4. Белов Д.А. Особенности комплекса галлообразующих членистоногих в городских насаждениях Москвы // Лесной вестник / Forestry Bulletin. 2008. № 1. С. 73-78.

5. Бухарина И.Л. Эколого-биологические особенности адаптации древесных растений в условиях урбосреды // Известия Самарского научного центра Российской академии наук. 2008. Т. 10, № 2. С. 607-612.

6. Photosynthetic pigments: chemical structure, biological function and ecology. Syktyvkar, 2014: Komi Scientific Center, Ural Division of the Russian Academy of Sciences. 448 p.

7. Huang M.-Y., Chou H.-M., Chang Y.-T., Yang C.-M. The number of cecidomyiid insect galls affects the photosynthesis of Machilus thunbergii host leaves // Journal of Asia-Pacific Entomology. 2014. Vol. 17, № 2. PP. 151-154. doi: doi.org/10.1016/j.aspen.2013.12.002

8. Аникин В.В., Никельшпарг М.И., Никельшпарг Э.И., Конюхов И.В. Фотосинтетическая активность у повилики Cuscuta campestris (Convolvulaceae) при заселении растения галлообразователем-долгоносиком Smicronyx smreczynskii (Coleoptera, Curculionidae) // Известия Саратовского университета. Новая серия. Серия: Химия. Биология. Экология. 2017. Т. 17, № 1. С. 42-47.

9. Oliveira D.C., Isaias R.M.S., Moreira A.S.F.P., Magalhaes T.A., Lemos-Filho J.P. Is the oxidative stress caused by Aspidosperma spp. galls capable of altering leaf photosynthesis? // Plant Science. 2011. Vol. 180, №2 3. PP. 489-495. doi: doi.org/10.1016/j.plantsci.2010.11.005

10. Motta L.B., Kraus J.E., Salatino A., Maria L.F. Distribution of metabolites in galled and non-galled foliar tissues of Tibouchina pulchra // Biochemical Systematics and Ecology. 2003. Vol. 33. PP. 971-981. doi: doi.org/10.1016/j.bse.2005.02.004

11. Glushakova A.M., Kachalkin A.V. Endophytic yeasts in leaf galls // Microbiology. 2017. Vol. 86, № 2. PP. 250-256. doi: 10.1134/S0026261717020096

12. Chetverikov P.E., Vishyakov A.E., Dodueva I.T., Osipova M.A., Sukhareva S.I., Shavarda A.L. Gallogenesis induced by Eriophyoids (Acariformes: Eriophyoidea) // Entomological Review. 2015. Vol. 95, № 8. PP. 1137-1143 doi: doi.org/10.1134/S0013873815080217

13. Юркина Е.В., Пестов С.В. Возможности применения галлообразующих представителей членистоногих животных в качестве биоиндикаторов условий урбанизированной среды (на примере г. Сыктывкар) // Лесной вестник / Forestry Bulletin. 2017. Т. 21, № 3. С. 49-60.

14. Mingaleva N.A., Pestov S.V., Zagirova S.V. Health status and biological damage to tree leaves in green areas of Syktyvkar // Contemporary Problems of Ecology. 2011. Vol. 4, № 3. PP. 310-318. doi.org/10.1134/S1995425511030106

15. Юркина Е.В., Пестов С.В. Видовое разнообразие членистоногих галлообразователей урбанизированной среды г. Сыктывкара // Теоретическая и прикладная экология. 2017. № 1. C. 77-83.

16. Lichtenthaler H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes // Methods in Enzymology, 1987. Vol. 148. PP. 350-382.

17. Маслова Т. Г., Попова И.А., Попова О.Ф. Критическая оценка спектрофотометрического метода количественного определения каротиноидов // Физиология растений. 1986. Т. 39, № 6. С. 615-619.

18. Yang C.M., Yang M.M., Huang M.Y., Hsu J.M., Jane W.N. Herbivorous insect causes deficiency of pigment-protein complexes in an oval-pointed cecidomyiid gall of Machilus thunbergii leaves // Botanical Bulletin of Academia Sinica. 2003. Vol. 44. PP. 314-321.

19. Dias G.G., Moreira G.R.P., Ferreira B.G., Isaias R.M.S. Why do the galls induced by Calophya duvauae Scott on Schinus polygamus (Cav.) Cabrera (Anacardiaceae) change colors? // Biochemical Systematic and Ecology. 2013. Vol. 48. PP. 111-122. doi: doi. org/10.1016/j.bse.2012.12.013

20. Huang M.-Y., Huang W.-D., Chou H.-M., Chen C.-C., Chang Y.-T., Yang C.-M. Herbivorous insects alter the chlorophyll metabolism of galls on host plants // Journal of Asia-Pacific Entomology. 2014. Vol. 17, № 3. PP. 431-434. doi: doi.org/10.1016/j.aspen.2014.04.004

Tomsk State University Journal of Biology. 2018; : 188-201

The effect of gall mites on the condition of Tilia cordata assimilation apparatus

Pestov S. V., Tychinkina I. G., Ogorodnikova S. Yu.

Abstract

The aim of this research was to study the effects of gall mites on the condition of linden leaves (Tilia cordata Mill.). The research presents the results of the study of two species of gall mites, Eriophyes tiliae and E. leiosoma, which are widely distributed within the range of the linden. We collected material in the village of Osinovka, Kilmez district, Kirov region in August 2016-2017 and in Kirov city in August 2017 (See Fig. 1). The studied territories belong to the subzone of the southern taiga. We selected plant species with distinct characteristics which had attained their generative age state, and also leaves from the bottom of the crown on different sides. To determine the degree of plant damage by gall, we collected leaves (10 leaves from 10 trees) at each site. To define the morphological parameters in the areas with the highest degree of damage by gall mites, 50 damaged and 50 undamaged leaves were randomly selected. The length and the width of the leaf were measured. Leaves for determining linden photosynthetic pigments were selected in the morning (10:00-12:00). Leaf samples (150-200 mg) were fixed with 100% boiling acetone. The content of green and yellow pigments in Tillia cordata leaves in the acetone extract was determined by spectrophotometer SPEKOL 1300 (Analytik Jena, Germany) at wavelengths 662 and 644 nm for chlorophyll a and b, respectively. Determination of carotenoids was carried out at 470 nm. Two species of gall mites inhabit the studied sites of linden: Eriophyes tiliae Pagenstacher and E. leiosoma Nalepa. E. tiliae forms typical highly elongated galls on the upper side of the leaf. E. leiosoma damage shows yellowish-white felts on the underside of the leaf. We established that the studied species of mites react differently to environmental conditions and differ in their habitat distribution. E. tiliae mite occupies a wider range of habitats than E. leiosoma. We noted that both species of mites do not occur on the same leaf of the same tree. In the vicinity of the village of Osinovka, we collected material in the Loban river floodplain and in a birch forest (See Fig. 2). On the territory of the village, no gall mites were found on the linden. E. leiosoma mite was only encountered in the forest biotope. We observed infestation of linden leaves by E. tiliae mites both in the floodplain area and in the birch forest. E. tiliae mites severely damaged linden leaves in the river floodplain. In urban areas, linden damage by E. tiliae mites was higher in parks than along streets, whereas E. leiosoma was mainly found in street plantations and not in parks (See Fig. 3). We revealed that in all investigated areas, leaf damage causes a statistically significant (p <0.05) reduction in the length and width of leaves (See Fig. 4 and 5). The identified morphological changes in leaves indicate the negative impact of gall mites on the condition of the assimilative organs, which can lead to the inhibition of plant growth and development. To assess the state of plants, we used physiological and biochemical characteristics of the assimilating organs that determine the growth and reproductive processes. Data analysis of the content of plastid pigments in T. cordata leaves with gall showed that the degree of change in the pigment fund depends on the type of gall mites. E. leiosoma caused a significant decrease in chlorophylls (See Fig. 6 and 7). E. tiliae did not cause changes in the content and ratio of chlorophylls, but induced the accumulation of carotenoids in leaves (See Table). The level of yellow pigments in leaves with galls was significantly higher (16%), compared to undamaged leaves. Of the green pigments, chlorophyll b was more sensitive to leaf damage by gall mites. Carotenoids, in comparison with chlorophylls, were characterized by a greater resistance to leaf infestation by mites. Thus, the identified changes in Tillia cordata assimilation apparatus demonstrate the dangers of gall mites for Tillia cordata plantations in cities and emphasize the necessity to improve the monitoring of these phyllophages and measures to combat them. The paper contains 7 Figures, 1 Table and 20 References.
References

1. Slepyan E.I. Patologicheskie novoobrazovaniya i ikh vozbuditeli u rastenii. L. : Nauka, 1973. 510 s.

2. Belitskaya M.N. Osobennosti fauny gallobrazovatelei v polezashchitnykh lesopolosakh aridnoi zony // Ekologiya Rossii: na puti k innovatsiyam. 2015. № 11. S. 105-107.

3. Leont'eva I.A., Yakovleva I.A. Obzor fauny galloobrazuyushchikh chlenistonogikh gorodskikh zelenykh nasazhdenii g. Elabugi // Uspekhi sovremennoi nauki i obrazovaniya. 2017. T. 8, № 4. S. 180-187.

4. Belov D.A. Osobennosti kompleksa galloobrazuyushchikh chlenistonogikh v gorodskikh nasazhdeniyakh Moskvy // Lesnoi vestnik / Forestry Bulletin. 2008. № 1. S. 73-78.

5. Bukharina I.L. Ekologo-biologicheskie osobennosti adaptatsii drevesnykh rastenii v usloviyakh urbosredy // Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk. 2008. T. 10, № 2. S. 607-612.

6. Photosynthetic pigments: chemical structure, biological function and ecology. Syktyvkar, 2014: Komi Scientific Center, Ural Division of the Russian Academy of Sciences. 448 p.

7. Huang M.-Y., Chou H.-M., Chang Y.-T., Yang C.-M. The number of cecidomyiid insect galls affects the photosynthesis of Machilus thunbergii host leaves // Journal of Asia-Pacific Entomology. 2014. Vol. 17, № 2. PP. 151-154. doi: doi.org/10.1016/j.aspen.2013.12.002

8. Anikin V.V., Nikel'shparg M.I., Nikel'shparg E.I., Konyukhov I.V. Fotosinteticheskaya aktivnost' u poviliki Cuscuta campestris (Convolvulaceae) pri zaselenii rasteniya galloobrazovatelem-dolgonosikom Smicronyx smreczynskii (Coleoptera, Curculionidae) // Izvestiya Saratovskogo universiteta. Novaya seriya. Seriya: Khimiya. Biologiya. Ekologiya. 2017. T. 17, № 1. S. 42-47.

9. Oliveira D.C., Isaias R.M.S., Moreira A.S.F.P., Magalhaes T.A., Lemos-Filho J.P. Is the oxidative stress caused by Aspidosperma spp. galls capable of altering leaf photosynthesis? // Plant Science. 2011. Vol. 180, №2 3. PP. 489-495. doi: doi.org/10.1016/j.plantsci.2010.11.005

10. Motta L.B., Kraus J.E., Salatino A., Maria L.F. Distribution of metabolites in galled and non-galled foliar tissues of Tibouchina pulchra // Biochemical Systematics and Ecology. 2003. Vol. 33. PP. 971-981. doi: doi.org/10.1016/j.bse.2005.02.004

11. Glushakova A.M., Kachalkin A.V. Endophytic yeasts in leaf galls // Microbiology. 2017. Vol. 86, № 2. PP. 250-256. doi: 10.1134/S0026261717020096

12. Chetverikov P.E., Vishyakov A.E., Dodueva I.T., Osipova M.A., Sukhareva S.I., Shavarda A.L. Gallogenesis induced by Eriophyoids (Acariformes: Eriophyoidea) // Entomological Review. 2015. Vol. 95, № 8. PP. 1137-1143 doi: doi.org/10.1134/S0013873815080217

13. Yurkina E.V., Pestov S.V. Vozmozhnosti primeneniya galloobrazuyushchikh predstavitelei chlenistonogikh zhivotnykh v kachestve bioindikatorov uslovii urbanizirovannoi sredy (na primere g. Syktyvkar) // Lesnoi vestnik / Forestry Bulletin. 2017. T. 21, № 3. S. 49-60.

14. Mingaleva N.A., Pestov S.V., Zagirova S.V. Health status and biological damage to tree leaves in green areas of Syktyvkar // Contemporary Problems of Ecology. 2011. Vol. 4, № 3. PP. 310-318. doi.org/10.1134/S1995425511030106

15. Yurkina E.V., Pestov S.V. Vidovoe raznoobrazie chlenistonogikh galloobrazovatelei urbanizirovannoi sredy g. Syktyvkara // Teoreticheskaya i prikladnaya ekologiya. 2017. № 1. C. 77-83.

16. Lichtenthaler H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes // Methods in Enzymology, 1987. Vol. 148. PP. 350-382.

17. Maslova T. G., Popova I.A., Popova O.F. Kriticheskaya otsenka spektrofotometricheskogo metoda kolichestvennogo opredeleniya karotinoidov // Fiziologiya rastenii. 1986. T. 39, № 6. S. 615-619.

18. Yang C.M., Yang M.M., Huang M.Y., Hsu J.M., Jane W.N. Herbivorous insect causes deficiency of pigment-protein complexes in an oval-pointed cecidomyiid gall of Machilus thunbergii leaves // Botanical Bulletin of Academia Sinica. 2003. Vol. 44. PP. 314-321.

19. Dias G.G., Moreira G.R.P., Ferreira B.G., Isaias R.M.S. Why do the galls induced by Calophya duvauae Scott on Schinus polygamus (Cav.) Cabrera (Anacardiaceae) change colors? // Biochemical Systematic and Ecology. 2013. Vol. 48. PP. 111-122. doi: doi. org/10.1016/j.bse.2012.12.013

20. Huang M.-Y., Huang W.-D., Chou H.-M., Chen C.-C., Chang Y.-T., Yang C.-M. Herbivorous insects alter the chlorophyll metabolism of galls on host plants // Journal of Asia-Pacific Entomology. 2014. Vol. 17, № 3. PP. 431-434. doi: doi.org/10.1016/j.aspen.2014.04.004