Журналов:     Статей:        

Вестник Томского государственного университета. Биология. 2018; : 158-171

Влияние хлоридного засоления на ростовые и физиологические процессы растений Solanum tuberosum L. среднеспелых сортов

Данилова Е. Д., Медведева Ю. В., Ефимова М. В.

Аннотация

Исследовано действие разных концентраций NaCl (в диапазоне от 50 до 150 мМ) на ростовые (линейные размеры побега и корня, площадь листовой поверхности, количество столонов, сырая и сухая биомассы надземной и подземной частей растений) и физиологические (содержание фотосинтетических пигментов в листьях, уровень пролина и интенсивность перекисного окисления липидов в листьях, стебле и корнях) показатели картофеля среднеспелых сортов Луговской и Накра. Оздоровленные растения-регенеранты картофеля in vitro получали методом микроклонального размножения и адаптировали на питательной средеМурасиге-Скуга с половинным содержанием макро- и микроэлементов (0,5 МС). Ростовые параметры растений картофеля сорта Луговской при отсутствии стрессора превышали показатели растений сорта Накра; содержание всех групп фотосинтетических пигментов почти не отличалось. Хлоридное засоление (50 мМ) оказывало выраженный негативный эффект на столонообразование у сорта Накра; увеличение концентрации до 150 мМ способствовало снижению количества столонов и площади ассимилирующей поверхности в большей степени для растений картофеля сорта Луговской. Интенсивность перекисного окисления липидов в растениях картофеля сорта Накра при отсутствии действия стрессора превышала аналогичные значения растений сорта Луговской. Хлоридное засоление, начиная с концентрации 50 мМ для сорта Луговской и 100 мМ для сорта Накра вызывало увеличение содержания МДА при использовании экстрактов из листьев. Распределение пролина по частям растений у картофеля различных сортов отличалось, у сорта Накра наибольшее содержание выявлено в листьях, наименьшее - в корнях, у сорта Луговской пролин преобладал в стеблях растений, минимальное содержание отмечено в корнях. Слабое и умеренное (50 и 100 мМ) хлоридное засоление активировали накопление пролина в большей степени у растений картофеля сорта Луговской, интенсивное (150 мМ) засоление - у растений сорта Накра. Полученные результаты могут быть полезны для разработки технологии повышения солеустойчивости изучаемых сортов и выбора наиболее коммерчески выгодного сорта.
Список литературы

1. Singh B., Mishra S., Bohra A., Joshi R., Siddique K.H.M. Crop phenomics for abiotic stress tolerance in crop plants // Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants. Wani H. editor. 2018. PP. 277-296. doi: 10.1016/B978-0-12-813066-7.00015-2

2. Mansour M.M.F., Ali E.F. Evaluation of proline functions in saline conditions // Phytochemistry. 2017. Vol. 140. PP. 52-68. doi: 10.1016/j.phytochem.2017.04.016

3. Zorb C., Geilfus C.M., Dietz K.J. Salinity and orop yield // Plant biology. 2018. URL: https:// onlinelibrary.wiley.com/doi/10.1111/plb.12884 (дата обращения: 10.11.2018).

4. Munns R., Gilliham M. Salinity tolerance of crops - what is the cost? // New phytologist. 2015. Vol. 208, № 3. PP. 668-673. https://doi.org/10.1111/nph.13519

5. Qadir M., Quillerou E., Nangia V., Murtaza G., Singh M., Thomas R.J., Noble A.D. Economics of salt-induced land degradation and restoration // Natural resources forum. 2014. Vol. 38. PP. 282-295. https://doi.org/10.1111/1477-8947.12054

6. Shrivastava P., Kumar R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation // Saudi journal of biological sciences. 2015. Vol. 22, № 2. PP. 123-131. doi: 10.1016/j.sjbs.2014.12.001

7. Tavakkoli E., Rengasamy P., McDonald G.K. High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress // Journal of Experimental Botany. 2010. Vol. 61, №15. PP. 4449-4459. doi: 10.1093/jxb/ erq251

8. AbdElgawad H., Zinta G., Hegab M.M., Pandey R., Asard H., Abuelsoud W. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs // Frontiers in plant science. 2016. Vol. 7. PR 1-11. doi: 10.3389/fpls.2016.00276

9. Geilfus C.M. Chloride in soil: From nutrient to soil pollutant // Environmental and Experimental biology. 2019. Vol. 157. PR 299-309. doi:10.1016/j.envexpbot.2018.10.035

10. Gao H.J., Yang H.Y., Bai J.P., Liang X.Y., Lou Y., Zhang J.L., Wang D., Zhang J.L., Niu S.Q., Chen Y.L. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress // Frontiers in plant science. 2015. Vol. 5. PR 1-14. doi: 10.3389/fpls.2014.00787

11. Nxele Х., Klein А., Ndimba В.К. Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants // South African journal of botany. 2017. Vol.108. PE 261-266. doi: 10.1016/j.sajb.2016.11.003

12. Statistical yearbook of the Food and Agricultural Organization for the United Nations. FAO STAT-Agriculture. 2012. FAO STAT-Agriculture. URL: http://www.fao.org/docrep/018/ i3107e/i3107e03.pdf (дата обращения: 10.09.2018).

13. Jaarsma R., de Boer A. H. Salinity tolerance of two potato cultivars (Solanum tuberosum) correlates with differences in vacuolar transport activity // Frontiers in plant science. 2018. Vol. 9. 737. РР. 1-12. doi: 10.3389/fpls.2018.00737

14. Jaarsma R., de Vries R.S.M., de Boer A.H. Effect of salt stress on growth, Na+ accumulation and proline metabolism in potato (Solanum tuberosum) cultivars // PLOS One. 2013. Vol. 8, № 3. e60183. https://doi.org/10.1371/journal.pone.0060183

15. Faried H.F., Ayyub C.M., Amjad M., Ahmed R. Salinity impacts ionic, physiological and biochemical attributes in potato // Pakistan journal of agricultural sciences. 2016. Vol. 53. PF 17-25. doi: 10.21162/PAKJAS/16.4766

16. Lichtenthaler H.K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes // Methods in enzymology. 1987. Vol. 148. PB 350-382. http://dx.doi.org/10.1016/0076-6879(87)48036-1

17. Buege J.A., Aust S.D. Microsomal lipid peroxidation // Methods in enzymology. 1978. Vol. 52. PE 302-310. https://doi.org/10.1016/S0076-6879(78)52032-6

18. Bates L.S., Waldran R.P., Teare I.D. Rapid determination of free proline for water stress studies // Plant and soil. 1973. Vol. 39. PR 205-212. http://dx.doi.org/10.1007/BF0001806

19. Ефимова М.В., Мануйлова А.В., Малофий М.К., Карташов А.В., Кузнецов Вл.В. Защитная роль брассиностероидов при засолении проростов Brassica napus L. // Вестник Томского государственного университета. Биология. 2013. № 1 (21). С. 118- 129. doi: 10.17223/19988591/21/9

20. Ефимова М.В., Коломейчук Л.В., Бойко Е.В., Малофий М.К., Видершпан А.Н., Плюснин И.Н., Головацкая И.Ф., Мураган О.К., Кузнецов Вл.В. Физиологические механизмы устойчивости растений Solanum tuberosum L. к хлоридному засолению // Физиология растений. 2018. Т. 65, № 3. С. 196-206. https://doi.org/10.7868/S001533031803003X

21. Li W., Li Q. Effect of environmental salt stress on plants and the molecular mechanism of salt stress tolerance // International journal of environmental sciences and natural resources. 2017. Vol. 7. РР. 1-6. doi: 10.19080/IJESNR.2017.07.555714

22. Wungrampha S., Joshi R., Singla-Pareek S.L., Pareek, A. Photosynthesis and salinity: are these mutually exclusive? // Photosynthetica. 2018. Vol. 56, № 1. PR 366-381. doi: 10.1007/s11099-017-0763-7

23. Lotfi R., Gharavi-Kouchebagh P., Khoshvaghti H. Biochemical and physiological responses of Brassica napus plants to humic acid and under water stress // The Russian journal of plant physiology. 2015. Vol. 62. PR 480-486. doi: 10.7868/S0015330315040120

24. Bose J., Rodrigo-Moreno A., Shabala S. ROS homeostasis in halophytes in the context of salinity stress tolerance // Journal of experimental botany. 2014. Vol. 65, № 5. PR 12411257. doi: 10.1093/jxb/ert430

Tomsk State University Journal of Biology. 2018; : 158-171

The effect of chloride salinity on growth and physiological processes in mid-ripening varieties of Solanum tuberosum L. plants

Danilova E. D., Medvedeva Y. V., Efimova M. V.

Abstract

Significant expansion of saline territories due to climate aridization and man-made pressure on the environment reduces the productivity of the most important crops. The intense salinity affects the basic physiological processes of plants, inhibiting growth and reducing productivity. In response to salt stress, the plant responds with multiple molecular, metabolic and physiological reactions aimed at the formation of protector systems and the organism adaptation to stressful environmental conditions. The potato ranks fourth among the major world food crops and its production is very important for ensuring food security and social stability in many countries. Wild potato species are highly tolerant to stress, however, modern varieties are the product of a long-term breeding, significantly more susceptible to salinization. All this raises the question of the need to study the potato tolerance to salt stress and to specify criteria for selecting the most commercially viable varieties. This cannot be done without comparing salt tolerance physiological mechanisms for economically valuable genotypes. We studied the physiological (the level of photosynthetic pigments in leaves, content of proline and lipid peroxidation degree in leaves, stem and roots) and growth (the length of axial organs, leaf surface area, wet and dry biomass) parameters of cv. Lugovskoy and ст. Nakra potato plants exposed to chloride salinity of different intensity (50-150 mM NaCl). We obtained disease-free regenerants of potato plants in vitro by the method of microclonal propagation and adapted them on Murashige and Skoog medium (0.5 MS) with half the content of macro- and microelements during 21 days. After growing on a hydroponic unit, the plants were transferred to the same medium with the addition of NaCl. The plants were fixed and used for the assays 7 days after the beginning of the experiment. The leaves of the middle layers, middle parts of the stem and roots were fixed with liquid nitrogen to determine the amount of proline and assess the intensity of lipid peroxidation; 96% ethanol was used to determine the level of photosynthetic pigments in plant leaves. We evaluated morphometric parameters on at least 10 plants for each variant. The results of the studies showed differences in the salt tolerance between two varieties of potatoes. Growth parameters of cv. Lugovskoy plants exceeded cv. Nakra plants in the absence of stress (See Table). Low intensity of salinity (50 mM) had a pronounced negative effect on cv. Nakra stolon formation; concentration increasing to 150 mM suppressed the stolon formation and decreased the area of the assimilating surface, to a greater degree, for cv. Lugovskoy plants (See Table). One of the most negative effects of salinization affecting the assimilating apparatus of plants is the inhibition of the level of photosynthetic pigments. The contents of all pigment groups were similar for the two varieties, the negative influence of NaCl in the calculation on the dry weight began at a concentration of 100 mM. For cv. Lugovskoy, the negative effect of salinity was less pronounced (See Fig. 1). Salinity as well as other types of abiotic stress increases ROS production. The lipid peroxidation degree in potato plants of the cv. Nakra without stressor was higher than that of cv. Lugovskoy (See Fig. 2). Under salt condition, the content of MDA in the reaction approximately increased by 32-40% with the use of leaf extracts of cv. Nakra S. tuberosum, as compared to the control plants; in leaf extracts of cv. Lugovskoy, an increase in the content of MDA was approximately 300 %. There was no change in the level of MDA in the stems and roots of two varieties under chloride salinity compared to the control plants, except for root extracts of cv. Nakra 150 mM NaCl (See Fig. 2). Proline accumulation is one of the most marked changes in plant metabolism in response to salt stress. Proline distribution in potato plant parts was different: for cv. Nakra the maximum level was reached in the leaves and the minimum - in the roots, for cv. Lugovskoy the maximum level was observed in the stems and the minimum - in the roots (See Fig. 3). Weak and moderate (50 and 100 mM) chloride salinity activated the accumulation of proline, largely, in cv. Lugovskoy potato plants, and intensive (150 mM) salinization - in cv. Nakra plants (See Fig. 3). The obtained results can be useful for developing a technology to improve salt tolerance of the studied cultivars and to opt for the most commercially viable variety. The paper contains 3 Figures, 1 Table and 24 References.
References

1. Singh B., Mishra S., Bohra A., Joshi R., Siddique K.H.M. Crop phenomics for abiotic stress tolerance in crop plants // Biochemical, physiological and molecular avenues for combating abiotic stress tolerance in plants. Wani H. editor. 2018. PP. 277-296. doi: 10.1016/B978-0-12-813066-7.00015-2

2. Mansour M.M.F., Ali E.F. Evaluation of proline functions in saline conditions // Phytochemistry. 2017. Vol. 140. PP. 52-68. doi: 10.1016/j.phytochem.2017.04.016

3. Zorb C., Geilfus C.M., Dietz K.J. Salinity and orop yield // Plant biology. 2018. URL: https:// onlinelibrary.wiley.com/doi/10.1111/plb.12884 (data obrashcheniya: 10.11.2018).

4. Munns R., Gilliham M. Salinity tolerance of crops - what is the cost? // New phytologist. 2015. Vol. 208, № 3. PP. 668-673. https://doi.org/10.1111/nph.13519

5. Qadir M., Quillerou E., Nangia V., Murtaza G., Singh M., Thomas R.J., Noble A.D. Economics of salt-induced land degradation and restoration // Natural resources forum. 2014. Vol. 38. PP. 282-295. https://doi.org/10.1111/1477-8947.12054

6. Shrivastava P., Kumar R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation // Saudi journal of biological sciences. 2015. Vol. 22, № 2. PP. 123-131. doi: 10.1016/j.sjbs.2014.12.001

7. Tavakkoli E., Rengasamy P., McDonald G.K. High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress // Journal of Experimental Botany. 2010. Vol. 61, №15. PP. 4449-4459. doi: 10.1093/jxb/ erq251

8. AbdElgawad H., Zinta G., Hegab M.M., Pandey R., Asard H., Abuelsoud W. High salinity induces different oxidative stress and antioxidant responses in maize seedlings organs // Frontiers in plant science. 2016. Vol. 7. PR 1-11. doi: 10.3389/fpls.2016.00276

9. Geilfus C.M. Chloride in soil: From nutrient to soil pollutant // Environmental and Experimental biology. 2019. Vol. 157. PR 299-309. doi:10.1016/j.envexpbot.2018.10.035

10. Gao H.J., Yang H.Y., Bai J.P., Liang X.Y., Lou Y., Zhang J.L., Wang D., Zhang J.L., Niu S.Q., Chen Y.L. Ultrastructural and physiological responses of potato (Solanum tuberosum L.) plantlets to gradient saline stress // Frontiers in plant science. 2015. Vol. 5. PR 1-14. doi: 10.3389/fpls.2014.00787

11. Nxele Kh., Klein A., Ndimba V.K. Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants // South African journal of botany. 2017. Vol.108. PE 261-266. doi: 10.1016/j.sajb.2016.11.003

12. Statistical yearbook of the Food and Agricultural Organization for the United Nations. FAO STAT-Agriculture. 2012. FAO STAT-Agriculture. URL: http://www.fao.org/docrep/018/ i3107e/i3107e03.pdf (data obrashcheniya: 10.09.2018).

13. Jaarsma R., de Boer A. H. Salinity tolerance of two potato cultivars (Solanum tuberosum) correlates with differences in vacuolar transport activity // Frontiers in plant science. 2018. Vol. 9. 737. RR. 1-12. doi: 10.3389/fpls.2018.00737

14. Jaarsma R., de Vries R.S.M., de Boer A.H. Effect of salt stress on growth, Na+ accumulation and proline metabolism in potato (Solanum tuberosum) cultivars // PLOS One. 2013. Vol. 8, № 3. e60183. https://doi.org/10.1371/journal.pone.0060183

15. Faried H.F., Ayyub C.M., Amjad M., Ahmed R. Salinity impacts ionic, physiological and biochemical attributes in potato // Pakistan journal of agricultural sciences. 2016. Vol. 53. PF 17-25. doi: 10.21162/PAKJAS/16.4766

16. Lichtenthaler H.K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes // Methods in enzymology. 1987. Vol. 148. PB 350-382. http://dx.doi.org/10.1016/0076-6879(87)48036-1

17. Buege J.A., Aust S.D. Microsomal lipid peroxidation // Methods in enzymology. 1978. Vol. 52. PE 302-310. https://doi.org/10.1016/S0076-6879(78)52032-6

18. Bates L.S., Waldran R.P., Teare I.D. Rapid determination of free proline for water stress studies // Plant and soil. 1973. Vol. 39. PR 205-212. http://dx.doi.org/10.1007/BF0001806

19. Efimova M.V., Manuilova A.V., Malofii M.K., Kartashov A.V., Kuznetsov Vl.V. Zashchitnaya rol' brassinosteroidov pri zasolenii prorostov Brassica napus L. // Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya. 2013. № 1 (21). S. 118- 129. doi: 10.17223/19988591/21/9

20. Efimova M.V., Kolomeichuk L.V., Boiko E.V., Malofii M.K., Vidershpan A.N., Plyusnin I.N., Golovatskaya I.F., Muragan O.K., Kuznetsov Vl.V. Fiziologicheskie mekhanizmy ustoichivosti rastenii Solanum tuberosum L. k khloridnomu zasoleniyu // Fiziologiya rastenii. 2018. T. 65, № 3. S. 196-206. https://doi.org/10.7868/S001533031803003X

21. Li W., Li Q. Effect of environmental salt stress on plants and the molecular mechanism of salt stress tolerance // International journal of environmental sciences and natural resources. 2017. Vol. 7. RR. 1-6. doi: 10.19080/IJESNR.2017.07.555714

22. Wungrampha S., Joshi R., Singla-Pareek S.L., Pareek, A. Photosynthesis and salinity: are these mutually exclusive? // Photosynthetica. 2018. Vol. 56, № 1. PR 366-381. doi: 10.1007/s11099-017-0763-7

23. Lotfi R., Gharavi-Kouchebagh P., Khoshvaghti H. Biochemical and physiological responses of Brassica napus plants to humic acid and under water stress // The Russian journal of plant physiology. 2015. Vol. 62. PR 480-486. doi: 10.7868/S0015330315040120

24. Bose J., Rodrigo-Moreno A., Shabala S. ROS homeostasis in halophytes in the context of salinity stress tolerance // Journal of experimental botany. 2014. Vol. 65, № 5. PR 12411257. doi: 10.1093/jxb/ert430