Журналов:     Статей:        

Вестник Томского государственного университета. Биология. 2018; : 218-241

Динамика уровня обводненности болот в южнотаежной подзоне Западной Сибири в среднем и позднем голоцене

Курьина И. В., Веретенникова Е. Э., Головацкая Е. А., Бляхарчук Т. А., Смирнов С. В.

https://doi.org/10.17223/19988591/42/12

Аннотация

Проведен сравнительный анализ динамики уровня обводненности болот в голоцене. Материал для анализа - четыре торфяные колонки, отобранные на разных болотах на территории южной тайги Западной Сибири. Для трех выполнена количественная реконструкция уровня болотных вод по данным ризоподного анализа торфа при помощи трансферной функции. На одном из болот осуществлена реконструкция атмосферных осадков по палинологическим данным информационно-статистическим методом Климанова. Выделены 6 этапов синхронного повышения уровня обводненности большинства исследованных болот за последние 8500 лет: 8500-8400, 5700-5600, 5200-4600, 2600-2300, 1300-1100, 900-700 л.н., и 11 этапов синхронного для большинства болот уменьшения обводненности: 6700-6600, 6100-6000, 4600-4400, 43004100, 4000-3800, 3500-3400, 3200-3000, 2700-2600, 2100-1900, 1500-1300, 1100-900л.н. Эти этапы согласуются с соответствующими изменениями количества атмосферных осадков. Полученные результаты свидетельствуют о высокой чувствительности исследованных торфяных отложений как верховых, так и низинного болот к колебаниям климата в голоцене.
Список литературы

1. Kremenetski K.V., Velichko A.A., Borisova O.K., MacDonald G.M., Smith L.C., Frey K.E. and Orlova L.A. Peatlands of the Western Siberian lowlands: current knowledge on zonation, carbon content and Late Quaternary history // Quaternary Science Reviews. 2003. № 22. PP. 703-723.

2. Болотные системы Западной Сибири и их природоохранное значение / отв. ред. В.Б. Куваев. Тула : Гриф и К, 2001. 584 с.

3. Лапшина Е.Д. Флора болот юго-востока Западной Сибири. Томск : Изд-во Том. ун-та, 2003. 294 с.

4. Borisova O.K., Novenko E.Yu., Zelikson E.M., Kremenetski K.V. Lateglacial and Holocene vegetational and climatic changes in the southern taiga zone of West Siberia according to pollen records from Zhukovskoye peat mire // Quaternary International. 2011. 237. PP. 6573. doi: 10.1016/j.quaint.2011.01.015

5. Бляхарчук Т. А. Новые палинологические данные о динамике растительного покрова и климата Западной Сибири и прилегающих территорий в голоцене. Новосибирск : Гео, 2012. 139 с.

6. Warner B.G., Charman D.J. Holocene changes on a peatland in Northwestern Ontario interpreted from testate amoebae (Protozoa) analysis // Boreas. 1994. № 23. PP. 270-279.

7. Turner T.E., Swindles G.T., Roucoux K.H. Late Holocene ecohydrological and carbon dynamics of a UK raised bog: impact of human activity and climate change // Quaternary Science Reviews. 2014. № 84. PP. 65-85. doi: 10.1016/j.quascirev.2013.10.030

8. Lamentowicz M., Slowinski M., Marcisz K., Zielinska M., Kaliszan K., Lapshina E., Gilbert D., Buttler A., Fialkiewicz-Koziel B., Jassey V.E.J., Laggoun-Defarge F., Kolaczek P. Hydrological dynamics and fire history of the last 1300 years in western Siberia reconstructed from a high-resolution, ombrotrophic peat archive // Quaternary Research. 2015. № 84 (3). PP. 312-325. doi: 10.1016/j.yqres.2015.09.002

9. Willis K.S., Beilman D., Booth R.K., Amesbury M., Holmquist J., MacDonald G. Peatland paleohydrology in the southern West Siberian Lowlands: Comparison of multiple testate amoebae transfer functions, sites, and Sphagnum S13C values // The Holocene. 2015. № 25(9). PP. 1425-1436. doi: 10.1177/0959683615585833

10. Aaby B. Cyclic climatic variations in climate over the past 5,500 years reflected in raised bogs // Nature. 1976. № 263. PP. 281-284.

11. Charman D.J. Biostratigraphic and palaeoenvironmental applications of testate amoebae // Quaternary Science Reviews. 2001. № 20. PP. 1753-1764.

12. Mauquoy D., Engelkes T., Groot M.H.M., Markesteijn F., Oudejans M.G., van der Plicht J., van Geel B. High-resolution records of late-Holocene climate change and carbon accumulation in two north-west European ombrotrophic peat bogs // Palaeogeography, Palaeoclimatology, Palaeoecology. 2002. № 186. PP. 275-310.

13. Booth R.K. Testing the climate sensitivity of peat-based paleoclimate reconstructions in mid-continental North America // Quaternary Science Reviews. 2010. № 29. PP. 720-731. doi: 10.1016/j.quascirev.2009.11.018

14. Lavoie M., Pellerin S., Larocque M. Examining the role of allogenous and autogenous factors in the long-term dynamics of a temperate headwater peatland (southern Quebec, Canada) // Palaeogeography, Palaeoclimatology, Palaeoecology. 2013. № 386. PP. 336348. doi: 10.1016/j.palaeo.2013.06.003

15. Loisel J., Garneau M. Late Holocene paleoecohydrology and carbon accumulation estimates from two boreal peat bogs in eastern Canada: Potential and limits of multy-proxy archives // Palaeogeography, Palaeoclimatology, Palaeoecology. 2010. № 291. PP. 493-533. doi: 10.1016/j.palaeo.2010.03.020

16. Болота Западной Сибири, их строение и гидрологический режим / под ред. К.Е. Иванова, С.М. Новикова. Л.: Гидрометеоиздат, 1976. 448 с.

17. Ускова Л.М. Анализ связи заболоченности речных бассейнов с физико-географическими условиями таежной зоны Западной Сибири // География и природные ресурсы. 1982. № 2. С. 72-79.

18. Прейс Ю.И., Курьина И.В. Палеореконструкция высокого разрешения по данным комплексного исследования торфяных отложений южной тайги Западной Сибири // Исследование природно-климатических процессов на территории Большого Васюганского болота / отв. ред. М.В. Кабанов. Новосибирск : Изд-во СО РАН, 2012. С. 14-38.

19. Веретенникова Е.Э., Курьина И.В., Ильина А.А., Савельев В.В. Реконструкция гидротермических условий формирования грядово-мочажинного комплекса в голоцене на юге Западной Сибири // Вестник Томского государственного университета. Биология. 2014. № 3 (27). С. 6-22.

20. Курьина И.В., Головацкая Е.А. Палеокомплексы раковинных амеб (Rhizopoda, Testacea) в торфяной залежи низинного болота (на юге лесной зоны Западной Сибири) // Известия РАН. Сер. Биология. 2018. № 1. С. 103-112. doi: 10.7868/ S0002332918010137.

21. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. 2012. URL: https://www.r-project.org/ (accessed: 01.12.2017).

22. Juggins S. rioja: Analysis of quaternary science data. R package version (0.8-7). 2012. URL: http://www.stafF.ncl.ac.uk/stephen.juggins/ (accessed: 01.12.2017).

23. Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O'Hara R.B., Simpson G.L., Solymos P., Stevens M.N. vegan: Community ecology package. R package version 2.2-0. 2012. URL: https://github.com/vegandevs/vegan/ (accessed: 01.12.2017).

24. Цыганов А.Н., Бабешко К.В., Новенко Е.Ю., Малышева Е.А., Пейн Р. Д., Мазей Ю.А. Количественная реконструкция гидрологического режима болот по ископаемым сообществам раковинных амеб // Экология. 2017. № 2. С. 147-155. doi: 10.7868/ S0367059717020081.

25. Климанов В.А. Восстановление палеотемператур и палеоосадков на основе спорово-пыльцевых данных // Методы реконструкции палеоклиматов. М. : Наука, 1985. С. 3848.

26. Blyakharchuk T.A. Western Siberia, a review of Holocene climatic changes // Журнал Сибирского федерального университета. Серия: Биология. 2009. Т. 1. № 2. С. 4-12.

27. Бляхарчук Т.А. Палеореконструкция климатических изменений на территории БВБ с использованием метода В.А. Климанова // Исследование природно-климатических процессов на территории Большого Васюганского болота / отв. ред. М.В. Кабанов. Новосибирск : Изд-во СО РАН, 2012. С. 8-14.

28. Stuiver M., Reimer P.J., Reimer R.W. CALIB 7.1. 2017. URL: http://calib.org (accessed: 30.11.2017).

29. Хотинский Н.А. Голоцен Северной Евразии. М. : Наука, 1977. 200 с.

30. Глебов Ф.З., Карпенко Л.В. Динамика болотной и суходольной растительности и климата междуречья Оби и Васюгана в голоцене // Лесоведение. 1999. № 5. С. 35-40.

Tomsk State University Journal of Biology. 2018; : 218-241

Dynamics of the surface wetness of mires in the southern taiga subzone of Western Siberia in the middle and late Holocene

Kurina I. V., Veretennikova E. E., Golovatskaya E. A., Blyakharchuk T. A., Smirnov S. V.

https://doi.org/10.17223/19988591/42/12

Abstract

The research is devoted to the comparative analysis of the dynamics of the surface wetness of mires located within the southern taiga subzone of Western Siberia. Synchronous changes in the surface wetness of different mires in the same area during their development in the Holocene are most likely due to the influence of hydroclimatic fluctuations on them. The aim of our work was to identify synchronous changes in the surface wetness in different mires within a single region in the course of their development in the Holocene and to search for the conformity with regional paleoclimatic changes. The objects were four different mires on the territory of the southern taiga of West Siberia: 1) the Temnoye raised mire, located on the second terrace of the Tom River; 2) the Bakcharsky watershed mire (a peat core was taken from the hollow of the ridge-hollow complex); 3) the Samara mire, which occupies the first floodplain terrace of the Bakchar river; 4) the Petropavlovskoye raised mire, located on the right-bank terrace of the Ob river (Table 1 and Fig. 1). For the first three mires, we calculated a quantitative reconstruction of the water-table depth using transfer function models on the basis of testate amoebae analysis of peat. We developed two models of transfer functions for the area of the southern taiga of Western Siberia, separately, for ombrotrophic and minerotrophic mires using a weighted average (Figs. 2 and 3). In the fourth mire, reconstruction of paleoprecipitation was carried out using Klimanov's information-statistical method. The calibrated age of peat deposits in the number system Before Present was used in the work (Table 2). The studied mires differ from one another in the degree of surface wetness. The surface wetness of the Temnoye and Petropavlovskoye mires is much less than that of the Samara mire and the hollow from the Bakcharsky mire. The results of the construction of depth-age models of the studied peat cores indicated that peat accumulated with different speeds during the formation of mire sediments, in most cases slowing down of peat accumulation occurred non-simultaneously in different mires (Fig. 4). The time resolution of the reconstructions of the surface wetness in the studied mires varied from 51 to 650 years and, on average, was 193 years in the hollow from the Bakcharsky mire, 104 years in the Temnoye mire, 243 years in the Samara mire, and 188 years in the Petropavlovskoye mire (Fig. 5). As a result of a comparative analysis of the development of the studied mires over the last 8.500 years, we identified six periods of synchronous increase in their surface wetness: 8500-8400, 5700-5600, 5200-4600, 2600-2300, 1300-1100, and 900-700 yr BP, as well as 11 periods of synchronous drying of the mire surface: 6700-6600, 6100-6000, 4600-4400, 4300-4100, 4000-3800, 35003400, 3200-3000, 2700-2600, 2100-1900, 1500-1300, and 1100-900 yr BP (Fig. 6). These periods are consistent with the corresponding changes in paleoprecipitations. In general, the dynamics of the surface wetness in the studied mires corresponded to the climatic characteristics of different periods in the Holocene, revealed in West Siberia. Thus, in the Atlantic period synchronous wet stages in the studied mires were shown; in the Subboreal period mainly synchronous dry stages were singled out, and in the Subatlantic period the wet and dry synchronous stages alternating one by one were revealed in the studied mires. The periods with low time resolution in reconstructions complicate the detection of synchronous changes in the surface wetness of mires. We concluded that the higher the time resolution, the more likely it is that the compared water-table depth values existed in different mires at the same time, therefore, the greater the objectivity of data synchronization from different objects. The problem of low time resolution can be avoided by increasing the number of objects studied, or by a smaller sampling step in the peat cores. The synchronous changes in the surface wetness of mires and paleoprecipitations, which we have identified, reflect the fluctuations in the climate humidity in the Holocene. Our results indicate the sensitivity of the studied ombrotrophic and minerotrophic mires to hydroclimatic fluctuations during their development. In the future, it is planned to continue the research and include a comparative analysis of quantitative data of paleoecological reconstructions from other mires on the territory of the southern taiga subzone of West Siberia, as well as to increase the time resolution of the reconstructions. This will make it possible to clarify and detail information on century to millennial-scale climate variations on the studied territory in the Holocene.
References

1. Kremenetski K.V., Velichko A.A., Borisova O.K., MacDonald G.M., Smith L.C., Frey K.E. and Orlova L.A. Peatlands of the Western Siberian lowlands: current knowledge on zonation, carbon content and Late Quaternary history // Quaternary Science Reviews. 2003. № 22. PP. 703-723.

2. Bolotnye sistemy Zapadnoi Sibiri i ikh prirodookhrannoe znachenie / otv. red. V.B. Kuvaev. Tula : Grif i K, 2001. 584 s.

3. Lapshina E.D. Flora bolot yugo-vostoka Zapadnoi Sibiri. Tomsk : Izd-vo Tom. un-ta, 2003. 294 s.

4. Borisova O.K., Novenko E.Yu., Zelikson E.M., Kremenetski K.V. Lateglacial and Holocene vegetational and climatic changes in the southern taiga zone of West Siberia according to pollen records from Zhukovskoye peat mire // Quaternary International. 2011. 237. PP. 6573. doi: 10.1016/j.quaint.2011.01.015

5. Blyakharchuk T. A. Novye palinologicheskie dannye o dinamike rastitel'nogo pokrova i klimata Zapadnoi Sibiri i prilegayushchikh territorii v golotsene. Novosibirsk : Geo, 2012. 139 s.

6. Warner B.G., Charman D.J. Holocene changes on a peatland in Northwestern Ontario interpreted from testate amoebae (Protozoa) analysis // Boreas. 1994. № 23. PP. 270-279.

7. Turner T.E., Swindles G.T., Roucoux K.H. Late Holocene ecohydrological and carbon dynamics of a UK raised bog: impact of human activity and climate change // Quaternary Science Reviews. 2014. № 84. PP. 65-85. doi: 10.1016/j.quascirev.2013.10.030

8. Lamentowicz M., Slowinski M., Marcisz K., Zielinska M., Kaliszan K., Lapshina E., Gilbert D., Buttler A., Fialkiewicz-Koziel B., Jassey V.E.J., Laggoun-Defarge F., Kolaczek P. Hydrological dynamics and fire history of the last 1300 years in western Siberia reconstructed from a high-resolution, ombrotrophic peat archive // Quaternary Research. 2015. № 84 (3). PP. 312-325. doi: 10.1016/j.yqres.2015.09.002

9. Willis K.S., Beilman D., Booth R.K., Amesbury M., Holmquist J., MacDonald G. Peatland paleohydrology in the southern West Siberian Lowlands: Comparison of multiple testate amoebae transfer functions, sites, and Sphagnum S13C values // The Holocene. 2015. № 25(9). PP. 1425-1436. doi: 10.1177/0959683615585833

10. Aaby B. Cyclic climatic variations in climate over the past 5,500 years reflected in raised bogs // Nature. 1976. № 263. PP. 281-284.

11. Charman D.J. Biostratigraphic and palaeoenvironmental applications of testate amoebae // Quaternary Science Reviews. 2001. № 20. PP. 1753-1764.

12. Mauquoy D., Engelkes T., Groot M.H.M., Markesteijn F., Oudejans M.G., van der Plicht J., van Geel B. High-resolution records of late-Holocene climate change and carbon accumulation in two north-west European ombrotrophic peat bogs // Palaeogeography, Palaeoclimatology, Palaeoecology. 2002. № 186. PP. 275-310.

13. Booth R.K. Testing the climate sensitivity of peat-based paleoclimate reconstructions in mid-continental North America // Quaternary Science Reviews. 2010. № 29. PP. 720-731. doi: 10.1016/j.quascirev.2009.11.018

14. Lavoie M., Pellerin S., Larocque M. Examining the role of allogenous and autogenous factors in the long-term dynamics of a temperate headwater peatland (southern Quebec, Canada) // Palaeogeography, Palaeoclimatology, Palaeoecology. 2013. № 386. PP. 336348. doi: 10.1016/j.palaeo.2013.06.003

15. Loisel J., Garneau M. Late Holocene paleoecohydrology and carbon accumulation estimates from two boreal peat bogs in eastern Canada: Potential and limits of multy-proxy archives // Palaeogeography, Palaeoclimatology, Palaeoecology. 2010. № 291. PP. 493-533. doi: 10.1016/j.palaeo.2010.03.020

16. Bolota Zapadnoi Sibiri, ikh stroenie i gidrologicheskii rezhim / pod red. K.E. Ivanova, S.M. Novikova. L.: Gidrometeoizdat, 1976. 448 s.

17. Uskova L.M. Analiz svyazi zabolochennosti rechnykh basseinov s fiziko-geograficheskimi usloviyami taezhnoi zony Zapadnoi Sibiri // Geografiya i prirodnye resursy. 1982. № 2. S. 72-79.

18. Preis Yu.I., Kur'ina I.V. Paleorekonstruktsiya vysokogo razresheniya po dannym kompleksnogo issledovaniya torfyanykh otlozhenii yuzhnoi taigi Zapadnoi Sibiri // Issledovanie prirodno-klimaticheskikh protsessov na territorii Bol'shogo Vasyuganskogo bolota / otv. red. M.V. Kabanov. Novosibirsk : Izd-vo SO RAN, 2012. S. 14-38.

19. Veretennikova E.E., Kur'ina I.V., Il'ina A.A., Savel'ev V.V. Rekonstruktsiya gidrotermicheskikh uslovii formirovaniya gryadovo-mochazhinnogo kompleksa v golotsene na yuge Zapadnoi Sibiri // Vestnik Tomskogo gosudarstvennogo universiteta. Biologiya. 2014. № 3 (27). S. 6-22.

20. Kur'ina I.V., Golovatskaya E.A. Paleokompleksy rakovinnykh ameb (Rhizopoda, Testacea) v torfyanoi zalezhi nizinnogo bolota (na yuge lesnoi zony Zapadnoi Sibiri) // Izvestiya RAN. Ser. Biologiya. 2018. № 1. S. 103-112. doi: 10.7868/ S0002332918010137.

21. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. 2012. URL: https://www.r-project.org/ (accessed: 01.12.2017).

22. Juggins S. rioja: Analysis of quaternary science data. R package version (0.8-7). 2012. URL: http://www.stafF.ncl.ac.uk/stephen.juggins/ (accessed: 01.12.2017).

23. Oksanen J., Blanchet F.G., Kindt R., Legendre P., Minchin P.R., O'Hara R.B., Simpson G.L., Solymos P., Stevens M.N. vegan: Community ecology package. R package version 2.2-0. 2012. URL: https://github.com/vegandevs/vegan/ (accessed: 01.12.2017).

24. Tsyganov A.N., Babeshko K.V., Novenko E.Yu., Malysheva E.A., Pein R. D., Mazei Yu.A. Kolichestvennaya rekonstruktsiya gidrologicheskogo rezhima bolot po iskopaemym soobshchestvam rakovinnykh ameb // Ekologiya. 2017. № 2. S. 147-155. doi: 10.7868/ S0367059717020081.

25. Klimanov V.A. Vosstanovlenie paleotemperatur i paleoosadkov na osnove sporovo-pyl'tsevykh dannykh // Metody rekonstruktsii paleoklimatov. M. : Nauka, 1985. S. 3848.

26. Blyakharchuk T.A. Western Siberia, a review of Holocene climatic changes // Zhurnal Sibirskogo federal'nogo universiteta. Seriya: Biologiya. 2009. T. 1. № 2. S. 4-12.

27. Blyakharchuk T.A. Paleorekonstruktsiya klimaticheskikh izmenenii na territorii BVB s ispol'zovaniem metoda V.A. Klimanova // Issledovanie prirodno-klimaticheskikh protsessov na territorii Bol'shogo Vasyuganskogo bolota / otv. red. M.V. Kabanov. Novosibirsk : Izd-vo SO RAN, 2012. S. 8-14.

28. Stuiver M., Reimer P.J., Reimer R.W. CALIB 7.1. 2017. URL: http://calib.org (accessed: 30.11.2017).

29. Khotinskii N.A. Golotsen Severnoi Evrazii. M. : Nauka, 1977. 200 s.

30. Glebov F.Z., Karpenko L.V. Dinamika bolotnoi i sukhodol'noi rastitel'nosti i klimata mezhdurech'ya Obi i Vasyugana v golotsene // Lesovedenie. 1999. № 5. S. 35-40.