Журналов:     Статей:        

Вестник Томского государственного университета. Биология. 2018; : 160-175

Особенности накопления глюкофруктанов у видов рода Allium L. (Amaryllidaceae)

Васфилова Е. С., Воробьева Т. А.

https://doi.org/10.17223/19988591/42/8

Аннотация

Изучены особенности накопления фруктозосодержащих углеводов (глюкофруктанов) у видов рода Allium при интродукции в условиях Среднего Урала. Для большинства видов такие данные получены впервые. Установлено, что содержание высокомолекулярных глюкофруктанов (GFH) у видов луковичной жизненной формы (A. aflatunense, A. caeruleum) достоверно выше, чем у группы луковично-корневищных растений с крупными корневищами и слабо развитыми луковицами (A. ledebourianum A. nutans, A. ramosum). Группа луковично-корневищных растений с крупными луковицами и слабовыраженными корневищами (A. obliguum, A. altaicum, A. strictum) занимала промежуточное положение между двумя предыдущими группами, не отличаясь достоверно ни от одной из них. Отмечены различия в накоплении низкомолекулярных (GFl) и высокомолекулярных глюкофруктанов в разных органах растений: у A. altaicum и A. obliquum, из группы луковично-корневищных видов с хорошо развитыми луковицами, содержание GFL и GFH в луковицах в 1,5-2 раза выше, чем в корневищах. У A. nutans и A. ramosum, имеющих мелкие луковицы, различия в содержании GFL невелики, а концентрация GFHу A. ramosum в корневищах в 1,3 раза выше, чем в луковицах. Накопление глюкофруктанов значительно меняется в течение вегетационного сезона, что связано с различной интенсивностью процессов роста и развития растений. В период отрастания содержание GFH очень низкое, максимальное их накопление отмечается в период цветения и плодоношения, а к концу вегетационного периода их концентрация заметно снижается. Содержание GFL у разных видов достигает максимума в разные фенофазы, что определяется особенностями сезонного развития видов.
Список литературы

1. Kaur N., Gupta A.K. Applications of inulin and oligofructose in health and nutrition // Journal of Biosciences 2002. Vol. 27. Iss.7. PP. 703-714. doi: 10.1007/BF02708379

2. Криштанова Н.А., Сафонова М.Ю., Болотова В.Ц., Павлова Е.Д., Саканян Е.И. Перспективы использования растительных полисахаридов в качестве лечебных и лечебно-профилактических средств // Вестник Воронежского государственного университета. Сер.: Химия. Биология. Фармация. 2005. № 1. С. 212-221.

3. Abrams S.A., Griffin I.J., Hawthorne K.M., Liang L., Gunn S.K., Darlington G., Ellis K.J. A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents // The American Journal of Clinical Nutrition. 2005. Vol. 82. № 2. PP. 471-476.

4. Roberfroid M.B. Inulin - type fructans: functional food ingredients // Journal of Nutrition. 2007. Vol. 137, № 11. PP. 2493-2502.

5. Ferreira S.S., Passos C.P., Madureira P., Vilanova M., Coimbra M.A. Structure-function relationships of immunostimulatory polysaccharides: A review // Carbohydrate Polymers. 2015. Vol. 132. PP. 378-396. doi: 10.1016/j.carbpol.2015.05.079

6. Gibson G.R, Beatty E.R., Wang X., Cummings J.H. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin // Gastroenterology. 1995. Vol. 108, is. 4. PP. 975-982. doi: 10.1016/0016-5085(95)90192-2

7. Niness, K.R., Inulin and oligofructose: What are they? // Journal of Nutrition. 1999. Vol. 129, № 7. PP. 1402-1406.

8. Boeckner L.S., Schnepf M.I., Tungland B.C. Inulin: A review of nutritional and health implications // Advances in Food and Nutrition Research. 2001. Vol. 43. PP. 1-63. doi: 10.1016/S1043-4526(01)43002-6

9. Caleffi E.R., Krausova G., Hyrslova I., Paredes L.L.R., dos Santos M.M., Sassaki G.L Goncalves R.A.C., de Oliveira A.J.B. Isolation and prebiotic activity of inulin-type fructan extracted from Pfaffia glomerata (Spreng) Pedersen roots // International Journal of Biological Macromolecules. 2015. Vol. 80. PP. 392-399. doi: 10.1016/j. ijbiomac.2015.06.053

10. Kim K.H., Chung C.B., Kim Y.H., Kim K.S. Cosmeceutical properties of levan produced by Zymomonas mobilis // International journal of cosmetic science. 2006. Vol. 28, № 3. PP. 231-232. doi:10.1111/j.1467-2494.2006.00314_2.x

11. Hendry G.A.F. Evolutionary origins and natural functions of fructans - a climatological, biogeographic and mechanistic appraisal // New Phytologist. 1993. Vol. 123. Iss. 1. PP. 3-14. doi: 10.1111/j.1469-8137.1993.tb04525.x

12. Vijn I, Smeekens S. Fructan: More Than a Reserve Carbohydrate? // Plant Physiology. 1999. Vol. 120. Iss. 2. PP. 351-360. doi: 10.1104/pp.120.2.351

13. Shiomi N., Onodera S., Sakai H. Fructo-oligosaccharide content and fructosyltransferase activity during growth of onion bulbs // New phytologist. 1997. Vol. 136, Iss. 1. PP. 105113. doi: 10.1046/j.1469-8137.1997.00726.x

14. Бельмер С.В., Гасилина Т.В. Пребиотики, инулин и детское питание // Вопросы современной педиатрии. 2010. Т.9. № 3. С. 121-125.

15. Watzl B, Girrbach S, Roller M. Inulin, oligofructose and immunomodulation // British Journal of Nutrition. 2005. Vol. 93, Iss. 1. PP. 49-55. doi: 10.1079/BJN20041357

16. Barkhatova T.V., Nazarenko M.N., Kozhukhova M.A., Khripko I.A. Obtaining and identification of inulin from Jerusalem artichoke (Helianthus tuberosus) tubers // Foods and Raw Materials, 2015. Vol. 3, № 2. PP. 13-22. doi: 10.12737/13115

17. Shepherd S.J., Gibson P.R. Fructose malabsorption and symptoms of irritable bowel syndrome: Guidelines for effective dietary management // Journal of The American Dietetic Association. 2006. Vol. 106. PP. 1631-1639. doi: 10.1016/j.jada.2006.07.010

18. Flores A.C., Morlett J.A., Rodriguez R. Inulin potential for enzymatic obtaining of prebiotic oligosaccharides // Critical Reviews in Food Science and Nutrition. 2016. Vol. 56, is. 11. PP. 1893-1902. doi: 10.1080/10408398.2013.807220

19. Livingston III D.P., Hincha D.K., Heyer A.G. Fructan and its relationship to abiotic stress tolerance in plants // Cellular and Molecular Life Sciences. 2009. Vol. 66, is. 13. PP. 20072023. doi: 10.1007/s00018-009-0002-x

20. Salinas C., Handford M., Pauly M., Dupree P., Cardemil L. Structural modifications of fructans in Aloe barbadensis Miller (Aloe vera) grown under water stress // PLoS One. 2016. Vol. 11, is. 7. PP. 1-24. doi: 10.1371/journal.pone.0159819.

21. Carson John F. Chemistry and biological properties of onions and garlic // Food Reviews International. 1987. Vol. 3, is. 1-2. PP. 71-103. doi: 10.1080/87559128709540808

22. Оленников Д.Н., Кащенко Н.И. Полисахариды. Современное состояние изученности: экспериментально-наукометрическое исследование // Химия растительного сырья. 2014. № 1. С. 5-26. doi: 10.14258/jcprm.1401005

23. Багаутдинова Р.И., Федосеева Г.П., Оконешникова Т.Ф. Фруктозосодержащие углеводы растений разных семейств - локализация и состав // Химия и компьютерное моделирование. Бутлеровские сообщения. 2001. Т. 2, № 5. С. 13-16.

24. Черемушкина В.А. Биология луков Евразии. Новосибирск : Наука СО РАН, 2004. 280 с.

25. Гринберг Е.Г., Сузан В.Г. Луковые растения в Сибири и на Урале. Новосибирск : Наука СО РАН, 2007. 224 с.

26. Энциклопедия декоративных садовых растений. URL: http://flower.onego.ru/lukov/ allium_i.html (дата обращения: 25.12.2017).

27. Оленников Д.Н., Танхаева Л.М. Исследование колориметрической реакции инулина с резорцином в зависимости от условий ее проведения // Химия растительного сырья. 2008. № 1. С. 87-93.

28. Оленников Д.Н., Танхаева Л.М. Методика количественного определения суммарного содержания полифруктанов в корнях лопуха (Arctium spp.) // Химия растительного сырья. 2010. № 1. С. 115-120.

29. Saengkanuk A., Nuchadomrong S., Jogloy S., Patanothai A., Srijaranai S. A simplified spectrophotometric method for the determination of inulin in Jerusalem artichoke (Helianthus tuberosus L.) tubers // European food research & technology. 2011. Vol. 233, №.4. PP. 609-616.

30. Ivanova L., Filova G., Ivanov I., Denev P., Petkova N. Antioxidants and carbohydrate content in infusions and microwave extracts from eight medicinal plants // Journal of Applied Pharmaceutical Science. 2017. Vol. 7 (10). PP. 55-61. doi:10.7324/JAPS.2017.71008

31. Бадретдинова З.А., Канарский А.В. Фруктаны сельскохозяйственных культур // Вестник Казанского технологического университета. 2013. Т. 16. № 19. С. 207-210.

32. Флора Сибири. Araceae - Orchidaceae / под ред. Л.И. Малышева, Г.А. Пешковой. Новосибирск : Наука, 1987. Т.4. С. 83-84.

Tomsk State University Journal of Biology. 2018; : 160-175

Peculiarities of accumulation of glucofructans in Allium L. (Amaryllidaceae) species

Vasfilova E. S., Vorob'eva T. A.

https://doi.org/10.17223/19988591/42/8

Abstract

Fructose-containing carbohydrates (glucofructans) are now intensively studied, which is associated with the appearance of new data on their protective role in the plant organism and their pharmacological properties. These compounds are present in a number of ornamental plants, cereals, and vegetables, including onions. Various types of pharmacological action of onions, which can be associated with the presence of fructans, are revealed. The aim of this work was to study the peculiarities of accumulating glucofructans in 8 Allium L. species, introduced in the Botanic Garden of the Ural Branch of the Russian Academy of Sciences (Yekaterinburg). We studied species of onions belonging to the following morphological groups: bulbous - A. aflatunense B.Fedtsch. and A. caeruleum Pall.; bulbous-rhizomatous with a weakly expressed rhizome and large bulbs (2-4 cm and more) - A. altaicum Pall., A. obliguum L., and A. strictum Schrad.; bulbous-rhizomatous with a well-pronounced rhizome and small bulbs (up to 1.5-2 cm) - A. ledebourianum Schult. & Schult. f., A. nutans L., and A. ramosum L. The material for analysis was collected in 2016-2017, in conditions of culture in the open ground, from plants that were in a generative state. For each specific specimen, an average sample of 5-10 individuals was taken. Freshly harvested bulbs and rhizomes were ground to particles of 7-10 millimeters in size and were kept in a drying oven at a temperature of 100°C for 30 minutes, for inactivation of enzymes; then, the raw material was dried at a temperature of 60°C until air-dry state. Immediately prior to the analysis, the raw material was further milled and a fraction was selected with particle sizes of 0.5-1 mm. During the analysis the low-molecular and high-molecular fractions of glucofructans were isolated. The low molecular fraction was obtained by three-fold extraction of the dry plant material with 95% ethanol at 80°C, evaporated to dryness, and the precipitate dissolved in distilled water. From the plant residue, a high molecular fraction was extracted with water (three times for 60 minutes, in a boiling water bath), hydrolysis with concentrated hydrochloric acid was carried out for 8 minutes at a temperature of 100°C. The fructose content was determined spectrophotometrically using a reaction with resorcinol. The concentration of low- and high-molecular glucofructans was calculated as a percentage of air-dry raw materials. For each sample of raw materials, the ratio of concentrations of high molecular and low molecular glucofructans (GFH/GFL) was calculated. Differences in the content of glucofructans (low-molecular and high-molecular) between samples of species belonging to different life forms were estimated using the method of one-way analysis of variance and using the nonparametric Kruskel-Wallis criterion. In the course of work, we revealed the relationship between the content of glucofructans and the features of the morphology of the underground organs. The highest content of high molecular glucofructans was found in A. aflatunense and A. caeruleum, belonging to the group of bulbous species: from 22.22 to 41.40% (See Table 1). A high concentration of GFH was also found in raw material of A. obliquum that belongs to the group of onion-rhizome plants with well-developed bulbs. These species have a high ratio of concentrations of high molecular and low molecular glucofructans (GFH/GFL). Somewhat lower than on bulbous species, but still high enough (16.87-27.71%) was the content of high molecular glucofructans in the raw materials of two other species from the group of onion-rhizome plants with well-developed bulbs - A. altaicum and A. strictum, as well as A. ramosum that belongs to the group of onion-rhizome plants with weakly expressed bulbs. In A. strictum and A. ramosum, the GFH/GFL ratio is high - 3.94-8.15; in A. altaicum it is slightly lower: 1.26 in bulbs and 1.62 in the rhizomes. The lowest content of glucofructans and the value of GFH/GFL were in species from the group of onion-rhizome plants with small bulbs - A. ledebourianum and especially A. nutans, in which high molecular glucofructans are almost completely absent. Univariate analysis of variance revealed statistically significant differences between species of Alliun of bulbous life form (in which the ability to accumulate high molecular glucofructans is the highest) and species of bulbous-rhizome form with a powerful rhizome and weakly expressed bulbs, with a reduced ability to synthesis of these compounds (p = 0.01004, by the criterion of Unequal N HSD). There were no reliable differences between species of different life forms by the content of low molecular weight glucofructans, and also by the ratio GFH/GFL. Differences in the accumulation of glucofructans in different organs of the studied species are revealed. In A. altaicum and A. obliquum, belonging to the group of bulbous-rhizome species with well-developed bulbs, the content of high-molecular glucofructans in bulbs was almost 1.5 times higher than in rhizomes, and the content of low-molecular glucofructans was two or more times higher (See Table 1). But in A. ramosum, which has weakly expressed bulbs, the picture is inverse: the content of high-molecular glucofructans in bulbs is about 1.3 times less than in rhizomes; the differences in the content of low molecular glucofructans in bulbs and rhizomes are insignificant. The accumulation of high molecular glucofructans significantly changed during the growing season (See Tables 2 and 3). During the period of spring regrowth, their content is very low; the maximum accumulation was noted during flowering and fruiting, and by the end of the growing season it decreased. The content of oligofructans in different species reached a maximum in various phenophases, which is related to the specific features of seasonal development of the studied species.
References

1. Kaur N., Gupta A.K. Applications of inulin and oligofructose in health and nutrition // Journal of Biosciences 2002. Vol. 27. Iss.7. PP. 703-714. doi: 10.1007/BF02708379

2. Krishtanova N.A., Safonova M.Yu., Bolotova V.Ts., Pavlova E.D., Sakanyan E.I. Perspektivy ispol'zovaniya rastitel'nykh polisakharidov v kachestve lechebnykh i lechebno-profilakticheskikh sredstv // Vestnik Voronezhskogo gosudarstvennogo universiteta. Ser.: Khimiya. Biologiya. Farmatsiya. 2005. № 1. S. 212-221.

3. Abrams S.A., Griffin I.J., Hawthorne K.M., Liang L., Gunn S.K., Darlington G., Ellis K.J. A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents // The American Journal of Clinical Nutrition. 2005. Vol. 82. № 2. PP. 471-476.

4. Roberfroid M.B. Inulin - type fructans: functional food ingredients // Journal of Nutrition. 2007. Vol. 137, № 11. PP. 2493-2502.

5. Ferreira S.S., Passos C.P., Madureira P., Vilanova M., Coimbra M.A. Structure-function relationships of immunostimulatory polysaccharides: A review // Carbohydrate Polymers. 2015. Vol. 132. PP. 378-396. doi: 10.1016/j.carbpol.2015.05.079

6. Gibson G.R, Beatty E.R., Wang X., Cummings J.H. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin // Gastroenterology. 1995. Vol. 108, is. 4. PP. 975-982. doi: 10.1016/0016-5085(95)90192-2

7. Niness, K.R., Inulin and oligofructose: What are they? // Journal of Nutrition. 1999. Vol. 129, № 7. PP. 1402-1406.

8. Boeckner L.S., Schnepf M.I., Tungland B.C. Inulin: A review of nutritional and health implications // Advances in Food and Nutrition Research. 2001. Vol. 43. PP. 1-63. doi: 10.1016/S1043-4526(01)43002-6

9. Caleffi E.R., Krausova G., Hyrslova I., Paredes L.L.R., dos Santos M.M., Sassaki G.L Goncalves R.A.C., de Oliveira A.J.B. Isolation and prebiotic activity of inulin-type fructan extracted from Pfaffia glomerata (Spreng) Pedersen roots // International Journal of Biological Macromolecules. 2015. Vol. 80. PP. 392-399. doi: 10.1016/j. ijbiomac.2015.06.053

10. Kim K.H., Chung C.B., Kim Y.H., Kim K.S. Cosmeceutical properties of levan produced by Zymomonas mobilis // International journal of cosmetic science. 2006. Vol. 28, № 3. PP. 231-232. doi:10.1111/j.1467-2494.2006.00314_2.x

11. Hendry G.A.F. Evolutionary origins and natural functions of fructans - a climatological, biogeographic and mechanistic appraisal // New Phytologist. 1993. Vol. 123. Iss. 1. PP. 3-14. doi: 10.1111/j.1469-8137.1993.tb04525.x

12. Vijn I, Smeekens S. Fructan: More Than a Reserve Carbohydrate? // Plant Physiology. 1999. Vol. 120. Iss. 2. PP. 351-360. doi: 10.1104/pp.120.2.351

13. Shiomi N., Onodera S., Sakai H. Fructo-oligosaccharide content and fructosyltransferase activity during growth of onion bulbs // New phytologist. 1997. Vol. 136, Iss. 1. PP. 105113. doi: 10.1046/j.1469-8137.1997.00726.x

14. Bel'mer S.V., Gasilina T.V. Prebiotiki, inulin i detskoe pitanie // Voprosy sovremennoi pediatrii. 2010. T.9. № 3. S. 121-125.

15. Watzl B, Girrbach S, Roller M. Inulin, oligofructose and immunomodulation // British Journal of Nutrition. 2005. Vol. 93, Iss. 1. PP. 49-55. doi: 10.1079/BJN20041357

16. Barkhatova T.V., Nazarenko M.N., Kozhukhova M.A., Khripko I.A. Obtaining and identification of inulin from Jerusalem artichoke (Helianthus tuberosus) tubers // Foods and Raw Materials, 2015. Vol. 3, № 2. PP. 13-22. doi: 10.12737/13115

17. Shepherd S.J., Gibson P.R. Fructose malabsorption and symptoms of irritable bowel syndrome: Guidelines for effective dietary management // Journal of The American Dietetic Association. 2006. Vol. 106. PP. 1631-1639. doi: 10.1016/j.jada.2006.07.010

18. Flores A.C., Morlett J.A., Rodriguez R. Inulin potential for enzymatic obtaining of prebiotic oligosaccharides // Critical Reviews in Food Science and Nutrition. 2016. Vol. 56, is. 11. PP. 1893-1902. doi: 10.1080/10408398.2013.807220

19. Livingston III D.P., Hincha D.K., Heyer A.G. Fructan and its relationship to abiotic stress tolerance in plants // Cellular and Molecular Life Sciences. 2009. Vol. 66, is. 13. PP. 20072023. doi: 10.1007/s00018-009-0002-x

20. Salinas C., Handford M., Pauly M., Dupree P., Cardemil L. Structural modifications of fructans in Aloe barbadensis Miller (Aloe vera) grown under water stress // PLoS One. 2016. Vol. 11, is. 7. PP. 1-24. doi: 10.1371/journal.pone.0159819.

21. Carson John F. Chemistry and biological properties of onions and garlic // Food Reviews International. 1987. Vol. 3, is. 1-2. PP. 71-103. doi: 10.1080/87559128709540808

22. Olennikov D.N., Kashchenko N.I. Polisakharidy. Sovremennoe sostoyanie izuchennosti: eksperimental'no-naukometricheskoe issledovanie // Khimiya rastitel'nogo syr'ya. 2014. № 1. S. 5-26. doi: 10.14258/jcprm.1401005

23. Bagautdinova R.I., Fedoseeva G.P., Okoneshnikova T.F. Fruktozosoderzhashchie uglevody rastenii raznykh semeistv - lokalizatsiya i sostav // Khimiya i komp'yuternoe modelirovanie. Butlerovskie soobshcheniya. 2001. T. 2, № 5. S. 13-16.

24. Cheremushkina V.A. Biologiya lukov Evrazii. Novosibirsk : Nauka SO RAN, 2004. 280 s.

25. Grinberg E.G., Suzan V.G. Lukovye rasteniya v Sibiri i na Urale. Novosibirsk : Nauka SO RAN, 2007. 224 s.

26. Entsiklopediya dekorativnykh sadovykh rastenii. URL: http://flower.onego.ru/lukov/ allium_i.html (data obrashcheniya: 25.12.2017).

27. Olennikov D.N., Tankhaeva L.M. Issledovanie kolorimetricheskoi reaktsii inulina s rezortsinom v zavisimosti ot uslovii ee provedeniya // Khimiya rastitel'nogo syr'ya. 2008. № 1. S. 87-93.

28. Olennikov D.N., Tankhaeva L.M. Metodika kolichestvennogo opredeleniya summarnogo soderzhaniya polifruktanov v kornyakh lopukha (Arctium spp.) // Khimiya rastitel'nogo syr'ya. 2010. № 1. S. 115-120.

29. Saengkanuk A., Nuchadomrong S., Jogloy S., Patanothai A., Srijaranai S. A simplified spectrophotometric method for the determination of inulin in Jerusalem artichoke (Helianthus tuberosus L.) tubers // European food research & technology. 2011. Vol. 233, №.4. PP. 609-616.

30. Ivanova L., Filova G., Ivanov I., Denev P., Petkova N. Antioxidants and carbohydrate content in infusions and microwave extracts from eight medicinal plants // Journal of Applied Pharmaceutical Science. 2017. Vol. 7 (10). PP. 55-61. doi:10.7324/JAPS.2017.71008

31. Badretdinova Z.A., Kanarskii A.V. Fruktany sel'skokhozyaistvennykh kul'tur // Vestnik Kazanskogo tekhnologicheskogo universiteta. 2013. T. 16. № 19. S. 207-210.

32. Flora Sibiri. Araceae - Orchidaceae / pod red. L.I. Malysheva, G.A. Peshkovoi. Novosibirsk : Nauka, 1987. T.4. S. 83-84.