Журналов:     Статей:        

Вестник Томского государственного университета. Биология. 2017; : 127-139

Улучшенная процедура визуального обнаружения тетрациклиновой метки при массовом мечении грызунов

Толкачёв О. В., Гизуллина О. Р., Оленев Г. В.

https://doi.org/10.17223/19988591/39/8

Аннотация

На основе анализа обширного краниального материала показано, что существующие методы визуальной диагностики тетрациклиновой метки у грызунов недостаточно надежны. Для повышения вероятности выявления меченых животных характерную флуоресценцию под ультрафиолетом необходимо искать в аншлифах как верхнего резца, так и нижней челюсти. Улучшенная методика дает прирост эффективности от 37 до 55%. Обнаружены различия в проявлении тетрациклиновой метки у полевок по сравнению с мышами. Установлено, что со временем образцы от любых вываренных и очищенных черепов становятся значительно светлее в ультрафиолете, что осложняет диагностику. Интенсивность флуоресценции метки в резцах также постепенно снижается. Определен критический срок хранения образцов - три года, после которого выявление метки затрудняется. Обнаружено, что обработка пероксидом водорода, которую часто применяют при очистке черепов грызунов, ухудшает видимость тетрациклиновой метки.
Список литературы

1. Lindsey G.D., Nass R.D., Hood G.A. An Evaluation of Bait Stations for Controlling Rats in Sugarcane // The Journal of Wildlife Management. 1971. Vol. 35, № 3. PP. 440-444. doi: 10.2307/3799695

2. Slate D., Algeo T.P., Nelson K.M., Chipman R.B., Donovan D., Blanton J.D., Niezgoda M., Rupprecht C.E. Oral Rabies Vaccination in North America: Opportunities, Complexities, and Challenges // PLoS Neglected Trop Diseases. 2009. Vol. 3, № 12. PP. 1-9. doi: 10.1371/ journal.pntd.0000549

3. Tripp D.W., Rocke T.E., Streich S.P., Brown N.L., Fernandez J. R.-R., Miller M.W. Season and application rates affect vaccine bait consumption by prairie dogs in Colorado and Utah, USA // Journal of Wildlife Diseases. 2014. Vol. 50, № 2. PP. 224-234. doi: 10.7589/2013-04-100

4. Рыльникoв В.А. Зональные oсобенности сезонных миграций серых крыс (Rattus norvegicus Berk.) России в аспекте управления ее численностью // Бюллетень Московского общества испытателей природы. Отдел биологический. 2007. Т. 112, № 3. С. 13-19.

5. Большаков В.Н., Баженов А.В. Радионуклидные методы мечения в популяционной экологии млекопитающих. М. : Наука, 1988. 158 с.

6. Szacki J., Liro A. Movements of small mammals in the heterogeneous landscape // Landscape ecology. 1991. Vol. 5, № 4. PP. 219-224. doi: 10.1007/BF00141436

7. Hanski I., Gilpin M. Metapopulation dynamics: brief history and conceptual domain // Biological Journal of the Linnean Society. 1991. Vol. 42. PP. 3-16. doi: 10.1111/j.1095-8312.1991.tb00548.x

8. Peacock E., Titus K., Garshelis D.L., Peacock M.M., Kuc M. Mark-recapture using tetracycline and genetics reveal record-high bear density // The Journal of Wildlife Management. 2011. Vol. 75, № 6. PP. 1513-1520. doi: 10.1002/jwmg.171

9. Григоркина Е.Б., Оленев Г.В. Миграции грызунов в зоне влияния Восточно-Уральского радиоактивного следа (радиобиологический аспект) // Радиационная биология. Радиоэкология. 2013. Т 53, № 1. С. 76-83.

10. Толкачев О.В. Исследование миграций мышевидных грызунов в городской среде // Экология. 2016. № 4. С. 307-312. doi: 10.7868/S0367059716040144

11. Толкачев О.В. Расс еление малой лесной мыши (Sylvaemus uralensis Pallas, 1811) и рыжей полевки (Clethrionomys glareolus Schreber, 1780) в условиях фрагментированного ландшафта // Сибирский экологический журнал. 2016. № 1. С. 137-147. doi: 10.15372/ SEJ20160114

12. Fisher P. Review of Using Rhodamine B as a Marker for Wildlife Studies // Wildlife Society Bulletin. 1999. Vol. 27, № 2. PP. 318-329. URL: http://www.jstor.org/stable/3783897

13. Smyser T.J., Beasley J.C., Olson Z.H., Rhodes O.E. Jr. Use of Rhodamine B to reveal patterns of interspecific competition and bait acceptance in raccoons // Journal of Wildlife Management. 2010. Vol. 74, № 6. PP. 1405-1416. doi: 10.2193/2009-299

14. Belant J.L., Etter D.R., Mayhew S.L., Visser L.G., Friedrich P.D. Improving large scale mark-recapture estimates for American black bear populations // Ursus. 2011. Vol. 22, № 1. PP. 9-23. URL: http://www.jstor.org/stable/41304051

15. Reidy M.M., Campbell T.A., Hewitt D.G. A mark-recapture technique for monitoring feral swine populations // Rangeland Ecology & Management. 2011. Vol. 64, № 3. PP. 316-318. doi: 10.2111/REM-D-10-00158.1

16. Milch R.A., Rall D.P., Tobie J.E. Bone Localization of the Tetracyclines // Journal of the National Cancer Institute. 1957. Vol. 19, № 1. PP. 87-93.

17. Frost H.M., Villanueva A.R., Roth H., Stanisavljevic S. Tetracycline bone labeling // The Journal of New Drugs. 1961. Vol. 1, is. 5. PP. 195-244. doi: 10.1177/009127006100100503

18. Рыльникoв В.А., Карасева Е.В., Дубинина Н.В. Изучение подвижности серых крыс на рисовых полях Краснодарского края с помощью мечения костей тетрациклином // Грызуны : материалы V всесоюз. совещ. Саратов, 1980. С. 264-265.

19. Лобков В.А. Опыт группового мечения тетрациклином молодых крапчатых сусликов (Citellus suslicus) для изучения их расселения // Зоологический журнал. 1984. Т. 63, № 2. С. 309-311.

20. Milch R.A., Rall D.P., Tobie J.E. Fluorescence of tetracycline antibiotics in bone // The Journal of bone and joint surgery. American volume. 1958. Vol. 40-A, № 4. PP. 897-910. PMID: 13549526

21. Клевезаль Г.А., Мина М.В. Методика группового мечения грызунов с помощью тетрациклина и возможности ее использования в экологических исследованиях // Зоологический журнал. 1980. Т. 59, № 6. С. 936-941.

22. Рыльникoв В.А., Николаев Г.М., Ушакова Т.А. Метод мечения костей серых крыс путем комбинирования четырех антибиотиков группы тетрациклина и его применение // Зоологический журнал. 1981. Т. 60, № 9. С. 1411-1414.

23. Crier J.K. Tetracyclines as a fluorescent marker in bones and teeth of rodents // The Journal of Wildlife Management. 1970. Vol. 34, № 4. PP. 829-834. doi: 10.2307/3799151

24. Lavoie G.K., Atwell G.C., Swink F.N., Sumangil J.P., Libay J. Movement of the ricefield rat, Rattus rattus mindanensis, in response to flooding and plowing as shown by fluorescent bone labeling // Philippine agriculturist. 1971. Vol. 54. PP. 325-330.

25. Малафеева Е.Ф. Об использовании тетрациклина в экологических исследованиях // Экология. 1984. № 3. С. 79-81.

26. Linhart S.B., Kennelly J.J. Fluorescent bone labeling of coyotes with demethylchlortetracycline // The Journal of Wildlife Management. 1967. Vol. 31, № 2. PP. 317-321. doi: 10.2307/3798322

27. Гладкина Т.С., Кожевников В.С. Тетрациклин в качестве маркера для изучения расселения обыкновенной полевки // Экология. 1986. № 4. С. 84-86.

28. Зубцова Г.Е. Скорость роста резцов некоторых грызунов // Грызуны : материалы VI Всесоюзного совещания. Л. : Наука. 1983. С. 152-154.

29. Buyske D.A., Eisner H.J., Kelly R.G. Concentration and persistence of tetracycline and chlortetracycline in bone // J. Pharm. and Exptl. Therap. 1960. Vol. 130, № 2. PP. 150-156.

Tomsk State University Journal of Biology. 2017; : 127-139

Improved visual detection of tetracycline label for group rodent marking

Tolkachev O. V., Gizullina O. R., Olenev G. V.

https://doi.org/10.17223/19988591/39/8

Abstract

Tetracycline is employed in practical and theoretical studies for group marking of animals. Individuals who consume the bait with marker get a label that appears as yellow or yellow-green fluorescence in bones and teeth under UV light. When this approach is used for rodents there are two locations for mark searching: in the mandibular surface (Crier, 1970) or in the polished slice of the upper incisor (Klevezal and Mina, 1980). The aim of this research was to find the most effective procedure for the visual detection of the tetracycline label in the mass marking of rodents, taking into account possible errors related to the specific nature of field work and the processing of cranial material. We compared the efficacy of mark searching in the lower jaw or the upper incisor using different rodent species that were marked with bait containing tetracycline hydrochloride and then captured during the summer 2016 in the forest stands near Yekaterinburg, Russia. We made polished slices of both the isolated upper incisor and the branch of mandibulae with incisor in the course of sample preparation. Detection of tetracycline label was carried out in the dark room by microscope under UV light. If a mark was suspected, we took a picture of that specimen together with a reference one in the same frame. Numbers of involved individuals were 1133. To assess the influence of time factor (museum storing) on a general view of slices under UV we compared upper incisors from animals without tetracycline label, which were caught in different years (1978-2016). Comparisons of randomly selected pairs from samples of different storage time were placed within the microscope field of view and photographed as one frame. Alterations of tetracycline marks in time were estimated by comparing images of the upper incisors taken under the same conditions in 2013 and 2017. To assess the impact of peroxide hydrogen on the detectability of tetracycline label we made photos of the same specimens (4 ind.) before and after the procedure. This study was carried out on abundant and not threatened species of small mammals. Our institution (Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences) has a special permission for such work. We did not use any unusual protocols that could contradict the generally accepted standards of animal care. Basing on the analysis of extensive cranial material, we showed that the existing methods of visual diagnostics of the tetracycline mark in rodents is not reliable enough. In some cases, the label can only appear in the upper or lower incisors. On the surface of the bone of the lower jaw fluorescence is usually less intense than in the teeth, but in two cases a distinct mark was found only in bones, due to the fact that ever-growing incisors had time to be grinded (Fig. 1). To increase the probability of label detection it is necessary to search for specific fluorescence under UV light in slices of both the upper incisor and the lower jaw. The improved method gives the increment of efficiency from 37% to 55%. We revealed differences in tetracycline label expression between voles and mice (Fig. 2). In the upper incisors of the voles, fluorescence manifests itself in the form of a wedge that is strongly elongated in the direction of tooth growth, usually reaching the occlusal surface in the form of a thin line, whereas in mice the yellow glow covers almost the entire width of the section. Cases when the mark appears only in the lower incisor more often occur in voles than in mice (50% vs 27%). It was found that over time teeth from any boiled and cleaned skulls become lighter under UV, which complicates the diagnosis (Fig. 3). The intensity of label fluorescence in incisors also gradually reduced (Fig. 4). The critical storage period for skulls was ascertained - three years, after which the identification of the mark becomes quite difficult. We discovered that treatment with hydrogen peroxide, which is often used for cleaning rodent skulls, impairs the visibility of the tetracycline mark (Fig. 4). In conclusion, we propose three practical recommendations for detection of tetracycline label in rodents: 1) Search for yellow or yellow-green fluorescence in slices of both the upper incisor and the lower jaw; 2) Detection should be done during the first three years after skull clearing; 3) Samples, which were designated to mark detection, should never be treated with hydrogen peroxide. Acknowledgments: The authors thank Cand. Sci. (Biol.), Senior Researcher of Laboratory of Population Radiobiology EB Grigorkina and Cand. Sci. (Biol.), Researcher of Laboratory of Paleoecology YE Kropacheva (Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences), for help in manuscript preparation. The article contains 4 Figures, 29 References.
References

1. Lindsey G.D., Nass R.D., Hood G.A. An Evaluation of Bait Stations for Controlling Rats in Sugarcane // The Journal of Wildlife Management. 1971. Vol. 35, № 3. PP. 440-444. doi: 10.2307/3799695

2. Slate D., Algeo T.P., Nelson K.M., Chipman R.B., Donovan D., Blanton J.D., Niezgoda M., Rupprecht C.E. Oral Rabies Vaccination in North America: Opportunities, Complexities, and Challenges // PLoS Neglected Trop Diseases. 2009. Vol. 3, № 12. PP. 1-9. doi: 10.1371/ journal.pntd.0000549

3. Tripp D.W., Rocke T.E., Streich S.P., Brown N.L., Fernandez J. R.-R., Miller M.W. Season and application rates affect vaccine bait consumption by prairie dogs in Colorado and Utah, USA // Journal of Wildlife Diseases. 2014. Vol. 50, № 2. PP. 224-234. doi: 10.7589/2013-04-100

4. Ryl'nikov V.A. Zonal'nye osobennosti sezonnykh migratsii serykh krys (Rattus norvegicus Berk.) Rossii v aspekte upravleniya ee chislennost'yu // Byulleten' Moskovskogo obshchestva ispytatelei prirody. Otdel biologicheskii. 2007. T. 112, № 3. S. 13-19.

5. Bol'shakov V.N., Bazhenov A.V. Radionuklidnye metody mecheniya v populyatsionnoi ekologii mlekopitayushchikh. M. : Nauka, 1988. 158 s.

6. Szacki J., Liro A. Movements of small mammals in the heterogeneous landscape // Landscape ecology. 1991. Vol. 5, № 4. PP. 219-224. doi: 10.1007/BF00141436

7. Hanski I., Gilpin M. Metapopulation dynamics: brief history and conceptual domain // Biological Journal of the Linnean Society. 1991. Vol. 42. PP. 3-16. doi: 10.1111/j.1095-8312.1991.tb00548.x

8. Peacock E., Titus K., Garshelis D.L., Peacock M.M., Kuc M. Mark-recapture using tetracycline and genetics reveal record-high bear density // The Journal of Wildlife Management. 2011. Vol. 75, № 6. PP. 1513-1520. doi: 10.1002/jwmg.171

9. Grigorkina E.B., Olenev G.V. Migratsii gryzunov v zone vliyaniya Vostochno-Ural'skogo radioaktivnogo sleda (radiobiologicheskii aspekt) // Radiatsionnaya biologiya. Radioekologiya. 2013. T 53, № 1. S. 76-83.

10. Tolkachev O.V. Issledovanie migratsii myshevidnykh gryzunov v gorodskoi srede // Ekologiya. 2016. № 4. S. 307-312. doi: 10.7868/S0367059716040144

11. Tolkachev O.V. Rass elenie maloi lesnoi myshi (Sylvaemus uralensis Pallas, 1811) i ryzhei polevki (Clethrionomys glareolus Schreber, 1780) v usloviyakh fragmentirovannogo landshafta // Sibirskii ekologicheskii zhurnal. 2016. № 1. S. 137-147. doi: 10.15372/ SEJ20160114

12. Fisher P. Review of Using Rhodamine B as a Marker for Wildlife Studies // Wildlife Society Bulletin. 1999. Vol. 27, № 2. PP. 318-329. URL: http://www.jstor.org/stable/3783897

13. Smyser T.J., Beasley J.C., Olson Z.H., Rhodes O.E. Jr. Use of Rhodamine B to reveal patterns of interspecific competition and bait acceptance in raccoons // Journal of Wildlife Management. 2010. Vol. 74, № 6. PP. 1405-1416. doi: 10.2193/2009-299

14. Belant J.L., Etter D.R., Mayhew S.L., Visser L.G., Friedrich P.D. Improving large scale mark-recapture estimates for American black bear populations // Ursus. 2011. Vol. 22, № 1. PP. 9-23. URL: http://www.jstor.org/stable/41304051

15. Reidy M.M., Campbell T.A., Hewitt D.G. A mark-recapture technique for monitoring feral swine populations // Rangeland Ecology & Management. 2011. Vol. 64, № 3. PP. 316-318. doi: 10.2111/REM-D-10-00158.1

16. Milch R.A., Rall D.P., Tobie J.E. Bone Localization of the Tetracyclines // Journal of the National Cancer Institute. 1957. Vol. 19, № 1. PP. 87-93.

17. Frost H.M., Villanueva A.R., Roth H., Stanisavljevic S. Tetracycline bone labeling // The Journal of New Drugs. 1961. Vol. 1, is. 5. PP. 195-244. doi: 10.1177/009127006100100503

18. Ryl'nikov V.A., Karaseva E.V., Dubinina N.V. Izuchenie podvizhnosti serykh krys na risovykh polyakh Krasnodarskogo kraya s pomoshch'yu mecheniya kostei tetratsiklinom // Gryzuny : materialy V vsesoyuz. soveshch. Saratov, 1980. S. 264-265.

19. Lobkov V.A. Opyt gruppovogo mecheniya tetratsiklinom molodykh krapchatykh suslikov (Citellus suslicus) dlya izucheniya ikh rasseleniya // Zoologicheskii zhurnal. 1984. T. 63, № 2. S. 309-311.

20. Milch R.A., Rall D.P., Tobie J.E. Fluorescence of tetracycline antibiotics in bone // The Journal of bone and joint surgery. American volume. 1958. Vol. 40-A, № 4. PP. 897-910. PMID: 13549526

21. Klevezal' G.A., Mina M.V. Metodika gruppovogo mecheniya gryzunov s pomoshch'yu tetratsiklina i vozmozhnosti ee ispol'zovaniya v ekologicheskikh issledovaniyakh // Zoologicheskii zhurnal. 1980. T. 59, № 6. S. 936-941.

22. Ryl'nikov V.A., Nikolaev G.M., Ushakova T.A. Metod mecheniya kostei serykh krys putem kombinirovaniya chetyrekh antibiotikov gruppy tetratsiklina i ego primenenie // Zoologicheskii zhurnal. 1981. T. 60, № 9. S. 1411-1414.

23. Crier J.K. Tetracyclines as a fluorescent marker in bones and teeth of rodents // The Journal of Wildlife Management. 1970. Vol. 34, № 4. PP. 829-834. doi: 10.2307/3799151

24. Lavoie G.K., Atwell G.C., Swink F.N., Sumangil J.P., Libay J. Movement of the ricefield rat, Rattus rattus mindanensis, in response to flooding and plowing as shown by fluorescent bone labeling // Philippine agriculturist. 1971. Vol. 54. PP. 325-330.

25. Malafeeva E.F. Ob ispol'zovanii tetratsiklina v ekologicheskikh issledovaniyakh // Ekologiya. 1984. № 3. S. 79-81.

26. Linhart S.B., Kennelly J.J. Fluorescent bone labeling of coyotes with demethylchlortetracycline // The Journal of Wildlife Management. 1967. Vol. 31, № 2. PP. 317-321. doi: 10.2307/3798322

27. Gladkina T.S., Kozhevnikov V.S. Tetratsiklin v kachestve markera dlya izucheniya rasseleniya obyknovennoi polevki // Ekologiya. 1986. № 4. S. 84-86.

28. Zubtsova G.E. Skorost' rosta reztsov nekotorykh gryzunov // Gryzuny : materialy VI Vsesoyuznogo soveshchaniya. L. : Nauka. 1983. S. 152-154.

29. Buyske D.A., Eisner H.J., Kelly R.G. Concentration and persistence of tetracycline and chlortetracycline in bone // J. Pharm. and Exptl. Therap. 1960. Vol. 130, № 2. PP. 150-156.