Журналов:     Статей:        

Территория «НЕФТЕГАЗ». 2019; : 54-66

Термодинамические условия образования гидратов метана при промысловой транспортировке попутного нефтяного газа

Михайлов В. Г., Халфин Р. С.

Аннотация

В статье проанализирована термодинамика гидратообразования с использованием комбинации уравнения состояния типа Cubic Plus Association и модели Ван-дер-Ваальса – Платтье. По результатам анализа авторами предложено уточненное уравнение состояния типа Cubic Plus Association для бинарной смеси «вода – метан», где физические взаимодействия молекул описываются уравнением Пенга – Робинсона, а ассоциирующие, возникающие в результате водородных связей молекул воды – термодинамической теорией возмущений. Молекулярная структура воды рассматривается в виде комбинации структур двух типов, первый из которых сформирован в виде крупных упорядоченных ассоциатов, в которых каждая молекула воды образует четыре водородные связи (кластер). Второй тип структур – неупорядоченные молекулы, окружающие кластеры. Проведены корреляции для оценки энергетического параметра физических взаимодействий молекул воды для упорядоченных водных ассоциатов, а также в целях оценки мольных долей воды в бинарной смеси компонентов, вступивших и не вступивших в ассоциационные взаимодействия. Для молекул неполярных компонентов и неупорядоченных молекул воды уравнение состояния сведено к классическому виду уравнения состояния Пенга – Робинсона.

В статье также представлена разработанная авторами методика прогнозирования гидратообразования при транспортировке попутного нефтяного газа, основанная на принципах термодинамического фазового равновесия системы «гидрат – жидкость – газ», в которой критерием гидратообразования служит термодинамический баланс коэффициентов летучести воды в жидкой, газообразной и твердой фазах. В целях повышения точности расчета коэффициента фугитивности (летучести) «пустой» гидратной решетки введен новый поправочный коэффициент. Для оценки применимости методики прогнозирования гидратообразования проведено сопоставление расчетной зависимости давления гидратообразования от температуры с экспериментальными данными, полученными при разных термобарических условиях. 

Список литературы

1. Wilcox W.I., Carson D.B., Katz D.L. Natural Gas Hydrates // Industrial and Engineering Chemistry. 1941. Vol. 33. No. 5. P. 662.

2. Katz D.L. Predictions of Conditions for Hydrate Formation in Natural Gases // Transactions of the AIME. 1945. Vol. 160. P. 140–144.

3. Ghavipour M., Ghavipour M., Chitsazan M., Najibi S.H., Ghidary S. Experimental Study of Natural Gas Hydrates and a Novel Use of Neural Network to Predict Hydrate Formation Conditions // Chemical Engineering Research and Design. 2013. Vol. 91. P. 264–273.

4. Maghsoodloo B.S., Alamdari A. Effect of Maize Starch on Methane Hydrate Formation/Dissociation Rates and Stability // Journal of Natural Gas Science and Engineering. 2015. Vol. 26. P. 1–5.

5. Van der Waals J.H., Platteeuw J.C. Clathrate Solutions // Prigogine, I. (Ed.), Advances in Chemical Physics. Interscience. 1959. Vol. 1. P. 1–57.

6. Parrish W.R., Prausnitz J.M. Dissociation Pressures of Gas Hydrates Formed by Gas Mixtures // Industrial & Engineering Chemistry Process Design and Development. 1972. Vol. 11. P. 26–35.

7. Javanmardi J., Moshfeghian M., Maddox R.N. Simple Method for Predicting Gas-Hydrate-Forming Conditions in Aqueous Mixed-Electrolyte Solutions // Energy Fuels. 1998. Vol. 12. P. 219–222.

8. Bouillot B., Herri J.-M. Framework for Clathrate Hydrate Flash Calculations and Implications on the Crystal Structure and Final Equilibrium of Mixed Hydrates // Fluid Phase Equilibria. 2016. Vol. 413. P. 184–195.

9. Wang L., Dong S. Lattice Dynamical Simulation of Methane Hydrate // Journal of Natural Gas. 2010. Vol. 19. No. 1. P. 43–46.

10. Kontogeorgis G.M., Voutsas E.C., Yakoumis I.V., Tassios D.P. An Equation of State for Associating Fluids // Industrial and Engineering Chemistry Research. 1996. Vol. 35. No. 11. P. 4310–4318.

11. Huang C., Wikfeldt K.T., Tokushima T., et al. The Inhomogeneous Structure of Water at Ambient Conditions // Proceedings of the National Academy of Sciences of the United States of America. 2009. Vol. 106. No. 36. P. 15214-8.

12. Nasrifar K., Moshfeghian M. Liquid-Liquid Equilibria of Water-Hydrocarbon Systems from Cubic Equations of State // Fluid Phase Equilibria. 2002. Vol. 193. No. 1. P. 261–275.

13. Firoozabadi A., Nutakki R., Wong T.W., Aziz K. EOS Predictions of Compressibility and Phase Behavior in Systems Containing Water, Hydrocarbons, and CO2 // SPE Reservoir Engineering. 1988. Vol. 3. No. 2. P. 673–684.

14. Peng D.Y., Robinson D.B. Two and Three-Phase Equilibrium Calculations for Systems Containing Water // Canadian Journal of Chemical Engineering. 1976. Vol. 54. P. 595–599.

15. Wang M.C., Wong D. Calculation of Critical Lines of Hydrocarbon/Water Systems by Extrapolating Mixing Rules Fitted to Subcritical Equilibrium Data // Fluid Phase Equilibria. 2005. Vol. 227. No. 2. P. 183–196.

16. Michel S., Hooper H.H., Prausnitz J.M. Mutual Solubilities of Water and Hydrocarbons from an Equation of State. Need for an Unconventional Mixing Rule // Fluid Phase Equilibria. 1989. Vol. 45. No. 2–3. P. 173–189.

17. Калиновский Ю.В., Минеев А.В., Пономарев А.И. Модификация кубических уравнений состояния Пенга – Робинсона и Брусиловского для описания поведения воды и метанола // Нефтегазовое дело. 2006. Т. 4. № 1. С. 293–297.

18. Михайлов В.Г., Пономарев А.И., Топольников А.С. Прогнозирование газового фактора с учетом растворенного в воде газа на поздних стадиях разработки нефтяных месторождений // SOCAR Proceedings. 2017. № 3. С. 41–48.

19. Economou I.G., Donohue M.D. Equations of State for Hydrogen Bonding Systems // Fluid Phase Equilibria. 1996. Vol. 116. P. 518–529.

20. Economou I.G., Donohue M.D. Chemical, Quasi-Chemical and Perturbation Theories for Associating Fluids // American Institute of Chemical Engineers Journal. 1991. Vol. 37. No. 12. P. 1875–1894.

21. Huang S.H., Radosz M. Equation of State for Small, Large, Polydisperse and Associating Molecules // Industrial and Engineering Chemistry Research. 1990. Vol. 29. No. 11. P. 2284–2294.

22. Haghighi H., Chapoy A., Tohidi B. Methane and Water Phase Equilibria in the Presence of Single and Mixed Electrolyte Solutions Using the Cubic-PlusAssociation Equation of State // Oil and Gas Science and Technology – Revue de l'IFP. 2008. Vol. 64. No. 2. P. 141–154.

23. Zhidong L., Firoozabadi A. Cubic-Plus-Association Equation of State for Water-Containing Mixtures: Is “Cross Association” Necessary? // American Institute of Chemical Engineers Journal. 2009. Vol. 55. No. 7. P. 1803–1813.

24. Myint P.C., Hao Y., Firoozabadi A. The CPA Equation of State and an Activity Coefficient Model for Accurate Molar Enthalpy Calculations of Mixtures with Carbon Dioxide and Water/Brine. Technical Report. USA, 2015.

25. Liu Y., Zhu Y., Zhu J. Experiment and Prediction of Water Content of Sour Natural Gas With an Modified Cubic Plus Association Equation of State // Polish Journal of Chemical Technology. 2018. Vol. 20. No. 2. P. 98–106.

26. Kontogeorgis G.M., Michelsen M.L., Folas G.K., Derawi S. et al. Ten Years with the CPA (Cubic-Plus-Association) Equation of State. Part 1. Pure Compounds and Self-Association Systems // Industrial and Engineering Chemistry Research. 2006. Vol. 45. No. 14. P. 4855–4868.

27. Voutsas E.C., Boulougouris G.C., Economou I.G., Tassios D.P. Water/Hydrocarbon Phase Equilibria Using the Thermodynamic Perturbation Theory // Industrial & Engineering Chemistry Research. 2000. Vol. 39. P. 797–804.

28. Hajiw M. Etude des Conditions de Dissociation des Hydrates de Gaz en Pr sence de Gaz Acides [Hydrate Mitigation in Sour and Acid Gases]. Doctoral Dissertation. Paris, 2014. P. 132–157.

29. Aasen A., Hammer M., Skaugen G., Jakobsen J.P., Wilhelmsen O. Thermodynamic Models to Accurately Describe the PVTxy-Behavior of Water/Carbon Dioxide Mixtures // Fluid Phase Equilibria. 2017. Vol. 442. 125–139.

30. Oliveira M.B., Coutinho J.A.P., Queimada A.J. Mutual Solubilities of Hydrocarbons and Water with the CPA EoS // Fluid Phase Equilibria. 2007. Vol. 258. No. 1. P. 58–66.

31. Behrouz M., Aghajani M. Solubility of Methane, Ethane, and Propane in Pure Water Using New Binary Interaction Parameters // Iranian Journal of Oil and Gas Science and Technology. 2015. Vol. 4. No. 3. P. 51–59.

32. Wang Y., Han B., Yan H., Liu R. Solubility of CH4 in the Mixed Solvent t-Butyl Alcohol and Water // Thermochimica Acta. 1995. Vol. 253. P. 327–334.

33. Chapoy A., Mohammadi A.H., Richon D., Tohidi B. Gas Solubility Measurement and Modeling for Methane–Water And Methane–Ethane–n-Butane–Water Systems near Hydrate Forming Conditions // Fluid Phase Equilibria. 2004. Vol. 220. P. 111–119.

34. Wang L.K., Chen G.J., Han G.H., Guo X.Q., Guo T.M. Experimental Study on the Solubility of Natural Gas Components in Water with or without Hydrate Inhibitor // Fluid Phase Equilibria. 2003. Vol. 207. P. 143–154.

35. Culberson O.L., McKetta-Jr. J.J. Phase Equilibria in Hydrocarbon-water Systems, IV-Vaporliquid Equilibrium Constants in the Methane-water and Ethanewater Systems // Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers. 1951. Vol. 192. P. 297–300.

36. Duffy J.R., Smith N.O., Nagy B. Solubility of Natural Gases in Aqueous Salt Solutions. 1. Liquidus Surfaces in the System CH4 –H2 O–NaCl–CaCl2 at Room Temperatures and at Pressures below 1000 psia // Geochimica et Cosmochimica Acta. 1961. Vol. 24. No. 1. P. 23–31.

37. Yang S.O., Cho S.H., Lee H., Lee C.S. Measurement and Prediction of Phase Equilibria for Water + Methane in Hydrate Forming Conditions // Fluid Phase Equilibria. 2001. Vol. 185. No. 1–2. P. 53–63.

38. Amirijafari R., Campbell J. Solubility of Gaseous Hydrocarbon Mixtures in Water // Society of Petroleum Engineers Journal. 1972. Vol. 12. No. 1. P. 21–27.

39. Chapoy A., Mohammadi A., Tohidi B., Valtz A., Richon D. Experimental Measurement and Phase Behavior Modeling of Hydrogen Sulfide–Water Binary System // Industrial and Engineering Chemistry Research. 2005. Vol. 44. No. 19. P. 7567–7574.

40. Mohammadi A., Chapoy A., Richon D., Tohidi B. Experimental Measurement and Thermodynamic Modeling of Water Content in Methane and Ethane Systems // Industrial and Engineering Chemistry Research. 2004. Vol. 43. No. 22. P. 7148–7162.

41. Rigby M., Prausnitz J.M. Solubility of Water in Compressed Nitrogen, Argon and Methane // Journal of Chemical Physics. 1968. Vol. 72. No. 1. P. 330–334.

42. Roberts O.L., Brownscombe E.R., Howe L.S. Constitution Diagrams and Composition of Methane and Ethane Hydrates // Oil and Gas Journal. 1940. Vol. 39. P. 37–43.

43. Deaton W.M., Frost E.M. Gas Hydrate Composition and Equilibrium Data // Oil and Gas Journal. 1946. Vol. 45. P. 170–178.

44. McLeod H.O., Campbell J.M. Natural Gas Hydrates at Pressures to 10,000 psia // Journal of Petroleum Technology. 1961. Vol. 13. No. 6. P. 590–594.

45. Marshall D.R., Saito S., Kobayashi R. Hydrates at High Pressures: Part I. Methane-Water, Argon-Water, and Nitrogen-Water Systems // American Institute of Chemical Engineers Journal. 1964. Vol. 10. P. 202–205.

46. Jhaveri J., Robinson D.B. Hydrates in the methane-nitrogen system // Canadian Journal of Chemical Engineering. 1965. No. 43. P. 75–78.

47. Galloway T.J., Ruska W., Chappelear P.S., Kobayashi R. Experimental Measurement of Hydrate Numbers for Methane and Ethane and Comparison with Theoretical Values // Industrial and Engineering Chemistry Fundamentals. 1970. No. 9. P. 237–243.

48. Verma V.K. Gas Hydrates From Liquid Hydrocarbon-Water Systems. Ph.D. Thesis. USA: University of Michigan, 1974.

49. De Roo J.L., Peters C.J., Lichtenthaler R.N., Diepen G.A.M. Occurrence of Methane Hydrate in Saturated and Unsaturated Solutions of Sodium Chloride and Water in Dependence of Temperature and Pressure // American Institute of Chemical Engineers Journal. 1983. Vol. 29. No. 4. P. 651–657.

50. Thakore J.L., Holder G.D. Solid-Vapor Azeotropes Inhydrate-Forming Systems // Industrial and Engineering Chemistry Research. 1987. Vol. 26. P. 462–469.

51. Adisasmito S., Franck R.J., Sloan E.D. Hydrates of Carbondioxide and Methane Mixtures // Journal of Chemical and Engineering Data. 1991. Vol. 36. P. 68–71.

52. Jager M.D., Sloan E.D. The Effect of Pressure on Methane Hydration in Pure Water and Sodium Chloride Solutions // Fluid Phase Equilibria. 2001. Vol. 185. No. 1–2. P. 89–99.

53. Klauda J.B., Sandler S.I. A Fugacity Model for Gas Hydrate Phase Equilibria // Industrial and Engineering Chemistry Research. 2000. Vol. 39. P. 3377–3386.

54. Sloan E.D., Koh C.A. Clathrate Hydrates of Natural Gases. 3d ed. Boca Raton – London – New York: Taylor & Francis Group, 2007. P. 148–157.

55. Tse J.S. Thermal Expansion of the Clathrate Hydrates of Ethylene Oxide and Tetrahydrofuran // Journal de Physique Colloques. 1987. Vol. 48. No. C1. P. 543–548.

Territorija “NEFTEGAS” [Oil and Gas Territory]. 2019; : 54-66

Thermodynamical Conditions of Methane Hydrate Formation during Field Transportation of Associated Petroleum Gas

Mikhaylov V. G., Khalfin R. S.

Abstract

A combination of cubic-plus-association equation of state and the van der Waals – Platteeuw model was employed for the description of the hydrate formation thermodynamics. Based on the analysis results, the authors proposed a refined equation of state of the cubic-plus-association type for water-containing mixtures where the physical contributions are represented by the Peng – Robinson equation and the chemical contributions from hydrogen bonding of water are described by the thermodynamic perturbation theory. The molecular structure of water is represented as a combination of two types of structures. The first type of structure is formed as a pair of ordered associates with four hydrogen bonds (cluster). The second type is disordered molecules that surround clusters. For ordered water associates, a correlation is obtained for estimating the energy parameter of the physical interactions of water molecules, as well as a correlation for estimating the molar fractions of water in a binary mixture of components that have entered and have not entered into association interactions. For molecules of non-polar components and disordered water molecules, the equation of state reduces to the classical form of Peng – Robinson equation of state.

The article also presents a method for predicting hydrate formation during associated petroleum gas transportation, which has been developed by the authors, based on the principles of thermodynamic phase hydration-liquid – gas equilibrium, in which the thermodynamic balance of water volatility in liquid, gaseous and solid phases serves as a criterion for hydrate formation. In order to improve the accuracy of calculation of the fugacity factor of the “empty” hydrate lattice, a new correction factor was introduced. To assess the applicability of the hydrate formation prediction technique, the calculated dependence of the hydrate formation pressure on temperature is compared with experimental data obtained under different temperature and pressure conditions. 

References

1. Wilcox W.I., Carson D.B., Katz D.L. Natural Gas Hydrates // Industrial and Engineering Chemistry. 1941. Vol. 33. No. 5. P. 662.

2. Katz D.L. Predictions of Conditions for Hydrate Formation in Natural Gases // Transactions of the AIME. 1945. Vol. 160. P. 140–144.

3. Ghavipour M., Ghavipour M., Chitsazan M., Najibi S.H., Ghidary S. Experimental Study of Natural Gas Hydrates and a Novel Use of Neural Network to Predict Hydrate Formation Conditions // Chemical Engineering Research and Design. 2013. Vol. 91. P. 264–273.

4. Maghsoodloo B.S., Alamdari A. Effect of Maize Starch on Methane Hydrate Formation/Dissociation Rates and Stability // Journal of Natural Gas Science and Engineering. 2015. Vol. 26. P. 1–5.

5. Van der Waals J.H., Platteeuw J.C. Clathrate Solutions // Prigogine, I. (Ed.), Advances in Chemical Physics. Interscience. 1959. Vol. 1. P. 1–57.

6. Parrish W.R., Prausnitz J.M. Dissociation Pressures of Gas Hydrates Formed by Gas Mixtures // Industrial & Engineering Chemistry Process Design and Development. 1972. Vol. 11. P. 26–35.

7. Javanmardi J., Moshfeghian M., Maddox R.N. Simple Method for Predicting Gas-Hydrate-Forming Conditions in Aqueous Mixed-Electrolyte Solutions // Energy Fuels. 1998. Vol. 12. P. 219–222.

8. Bouillot B., Herri J.-M. Framework for Clathrate Hydrate Flash Calculations and Implications on the Crystal Structure and Final Equilibrium of Mixed Hydrates // Fluid Phase Equilibria. 2016. Vol. 413. P. 184–195.

9. Wang L., Dong S. Lattice Dynamical Simulation of Methane Hydrate // Journal of Natural Gas. 2010. Vol. 19. No. 1. P. 43–46.

10. Kontogeorgis G.M., Voutsas E.C., Yakoumis I.V., Tassios D.P. An Equation of State for Associating Fluids // Industrial and Engineering Chemistry Research. 1996. Vol. 35. No. 11. P. 4310–4318.

11. Huang C., Wikfeldt K.T., Tokushima T., et al. The Inhomogeneous Structure of Water at Ambient Conditions // Proceedings of the National Academy of Sciences of the United States of America. 2009. Vol. 106. No. 36. P. 15214-8.

12. Nasrifar K., Moshfeghian M. Liquid-Liquid Equilibria of Water-Hydrocarbon Systems from Cubic Equations of State // Fluid Phase Equilibria. 2002. Vol. 193. No. 1. P. 261–275.

13. Firoozabadi A., Nutakki R., Wong T.W., Aziz K. EOS Predictions of Compressibility and Phase Behavior in Systems Containing Water, Hydrocarbons, and CO2 // SPE Reservoir Engineering. 1988. Vol. 3. No. 2. P. 673–684.

14. Peng D.Y., Robinson D.B. Two and Three-Phase Equilibrium Calculations for Systems Containing Water // Canadian Journal of Chemical Engineering. 1976. Vol. 54. P. 595–599.

15. Wang M.C., Wong D. Calculation of Critical Lines of Hydrocarbon/Water Systems by Extrapolating Mixing Rules Fitted to Subcritical Equilibrium Data // Fluid Phase Equilibria. 2005. Vol. 227. No. 2. P. 183–196.

16. Michel S., Hooper H.H., Prausnitz J.M. Mutual Solubilities of Water and Hydrocarbons from an Equation of State. Need for an Unconventional Mixing Rule // Fluid Phase Equilibria. 1989. Vol. 45. No. 2–3. P. 173–189.

17. Kalinovskii Yu.V., Mineev A.V., Ponomarev A.I. Modifikatsiya kubicheskikh uravnenii sostoyaniya Penga – Robinsona i Brusilovskogo dlya opisaniya povedeniya vody i metanola // Neftegazovoe delo. 2006. T. 4. № 1. S. 293–297.

18. Mikhailov V.G., Ponomarev A.I., Topol'nikov A.S. Prognozirovanie gazovogo faktora s uchetom rastvorennogo v vode gaza na pozdnikh stadiyakh razrabotki neftyanykh mestorozhdenii // SOCAR Proceedings. 2017. № 3. S. 41–48.

19. Economou I.G., Donohue M.D. Equations of State for Hydrogen Bonding Systems // Fluid Phase Equilibria. 1996. Vol. 116. P. 518–529.

20. Economou I.G., Donohue M.D. Chemical, Quasi-Chemical and Perturbation Theories for Associating Fluids // American Institute of Chemical Engineers Journal. 1991. Vol. 37. No. 12. P. 1875–1894.

21. Huang S.H., Radosz M. Equation of State for Small, Large, Polydisperse and Associating Molecules // Industrial and Engineering Chemistry Research. 1990. Vol. 29. No. 11. P. 2284–2294.

22. Haghighi H., Chapoy A., Tohidi B. Methane and Water Phase Equilibria in the Presence of Single and Mixed Electrolyte Solutions Using the Cubic-PlusAssociation Equation of State // Oil and Gas Science and Technology – Revue de l'IFP. 2008. Vol. 64. No. 2. P. 141–154.

23. Zhidong L., Firoozabadi A. Cubic-Plus-Association Equation of State for Water-Containing Mixtures: Is “Cross Association” Necessary? // American Institute of Chemical Engineers Journal. 2009. Vol. 55. No. 7. P. 1803–1813.

24. Myint P.C., Hao Y., Firoozabadi A. The CPA Equation of State and an Activity Coefficient Model for Accurate Molar Enthalpy Calculations of Mixtures with Carbon Dioxide and Water/Brine. Technical Report. USA, 2015.

25. Liu Y., Zhu Y., Zhu J. Experiment and Prediction of Water Content of Sour Natural Gas With an Modified Cubic Plus Association Equation of State // Polish Journal of Chemical Technology. 2018. Vol. 20. No. 2. P. 98–106.

26. Kontogeorgis G.M., Michelsen M.L., Folas G.K., Derawi S. et al. Ten Years with the CPA (Cubic-Plus-Association) Equation of State. Part 1. Pure Compounds and Self-Association Systems // Industrial and Engineering Chemistry Research. 2006. Vol. 45. No. 14. P. 4855–4868.

27. Voutsas E.C., Boulougouris G.C., Economou I.G., Tassios D.P. Water/Hydrocarbon Phase Equilibria Using the Thermodynamic Perturbation Theory // Industrial & Engineering Chemistry Research. 2000. Vol. 39. P. 797–804.

28. Hajiw M. Etude des Conditions de Dissociation des Hydrates de Gaz en Pr sence de Gaz Acides [Hydrate Mitigation in Sour and Acid Gases]. Doctoral Dissertation. Paris, 2014. P. 132–157.

29. Aasen A., Hammer M., Skaugen G., Jakobsen J.P., Wilhelmsen O. Thermodynamic Models to Accurately Describe the PVTxy-Behavior of Water/Carbon Dioxide Mixtures // Fluid Phase Equilibria. 2017. Vol. 442. 125–139.

30. Oliveira M.B., Coutinho J.A.P., Queimada A.J. Mutual Solubilities of Hydrocarbons and Water with the CPA EoS // Fluid Phase Equilibria. 2007. Vol. 258. No. 1. P. 58–66.

31. Behrouz M., Aghajani M. Solubility of Methane, Ethane, and Propane in Pure Water Using New Binary Interaction Parameters // Iranian Journal of Oil and Gas Science and Technology. 2015. Vol. 4. No. 3. P. 51–59.

32. Wang Y., Han B., Yan H., Liu R. Solubility of CH4 in the Mixed Solvent t-Butyl Alcohol and Water // Thermochimica Acta. 1995. Vol. 253. P. 327–334.

33. Chapoy A., Mohammadi A.H., Richon D., Tohidi B. Gas Solubility Measurement and Modeling for Methane–Water And Methane–Ethane–n-Butane–Water Systems near Hydrate Forming Conditions // Fluid Phase Equilibria. 2004. Vol. 220. P. 111–119.

34. Wang L.K., Chen G.J., Han G.H., Guo X.Q., Guo T.M. Experimental Study on the Solubility of Natural Gas Components in Water with or without Hydrate Inhibitor // Fluid Phase Equilibria. 2003. Vol. 207. P. 143–154.

35. Culberson O.L., McKetta-Jr. J.J. Phase Equilibria in Hydrocarbon-water Systems, IV-Vaporliquid Equilibrium Constants in the Methane-water and Ethanewater Systems // Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers. 1951. Vol. 192. P. 297–300.

36. Duffy J.R., Smith N.O., Nagy B. Solubility of Natural Gases in Aqueous Salt Solutions. 1. Liquidus Surfaces in the System CH4 –H2 O–NaCl–CaCl2 at Room Temperatures and at Pressures below 1000 psia // Geochimica et Cosmochimica Acta. 1961. Vol. 24. No. 1. P. 23–31.

37. Yang S.O., Cho S.H., Lee H., Lee C.S. Measurement and Prediction of Phase Equilibria for Water + Methane in Hydrate Forming Conditions // Fluid Phase Equilibria. 2001. Vol. 185. No. 1–2. P. 53–63.

38. Amirijafari R., Campbell J. Solubility of Gaseous Hydrocarbon Mixtures in Water // Society of Petroleum Engineers Journal. 1972. Vol. 12. No. 1. P. 21–27.

39. Chapoy A., Mohammadi A., Tohidi B., Valtz A., Richon D. Experimental Measurement and Phase Behavior Modeling of Hydrogen Sulfide–Water Binary System // Industrial and Engineering Chemistry Research. 2005. Vol. 44. No. 19. P. 7567–7574.

40. Mohammadi A., Chapoy A., Richon D., Tohidi B. Experimental Measurement and Thermodynamic Modeling of Water Content in Methane and Ethane Systems // Industrial and Engineering Chemistry Research. 2004. Vol. 43. No. 22. P. 7148–7162.

41. Rigby M., Prausnitz J.M. Solubility of Water in Compressed Nitrogen, Argon and Methane // Journal of Chemical Physics. 1968. Vol. 72. No. 1. P. 330–334.

42. Roberts O.L., Brownscombe E.R., Howe L.S. Constitution Diagrams and Composition of Methane and Ethane Hydrates // Oil and Gas Journal. 1940. Vol. 39. P. 37–43.

43. Deaton W.M., Frost E.M. Gas Hydrate Composition and Equilibrium Data // Oil and Gas Journal. 1946. Vol. 45. P. 170–178.

44. McLeod H.O., Campbell J.M. Natural Gas Hydrates at Pressures to 10,000 psia // Journal of Petroleum Technology. 1961. Vol. 13. No. 6. P. 590–594.

45. Marshall D.R., Saito S., Kobayashi R. Hydrates at High Pressures: Part I. Methane-Water, Argon-Water, and Nitrogen-Water Systems // American Institute of Chemical Engineers Journal. 1964. Vol. 10. P. 202–205.

46. Jhaveri J., Robinson D.B. Hydrates in the methane-nitrogen system // Canadian Journal of Chemical Engineering. 1965. No. 43. P. 75–78.

47. Galloway T.J., Ruska W., Chappelear P.S., Kobayashi R. Experimental Measurement of Hydrate Numbers for Methane and Ethane and Comparison with Theoretical Values // Industrial and Engineering Chemistry Fundamentals. 1970. No. 9. P. 237–243.

48. Verma V.K. Gas Hydrates From Liquid Hydrocarbon-Water Systems. Ph.D. Thesis. USA: University of Michigan, 1974.

49. De Roo J.L., Peters C.J., Lichtenthaler R.N., Diepen G.A.M. Occurrence of Methane Hydrate in Saturated and Unsaturated Solutions of Sodium Chloride and Water in Dependence of Temperature and Pressure // American Institute of Chemical Engineers Journal. 1983. Vol. 29. No. 4. P. 651–657.

50. Thakore J.L., Holder G.D. Solid-Vapor Azeotropes Inhydrate-Forming Systems // Industrial and Engineering Chemistry Research. 1987. Vol. 26. P. 462–469.

51. Adisasmito S., Franck R.J., Sloan E.D. Hydrates of Carbondioxide and Methane Mixtures // Journal of Chemical and Engineering Data. 1991. Vol. 36. P. 68–71.

52. Jager M.D., Sloan E.D. The Effect of Pressure on Methane Hydration in Pure Water and Sodium Chloride Solutions // Fluid Phase Equilibria. 2001. Vol. 185. No. 1–2. P. 89–99.

53. Klauda J.B., Sandler S.I. A Fugacity Model for Gas Hydrate Phase Equilibria // Industrial and Engineering Chemistry Research. 2000. Vol. 39. P. 3377–3386.

54. Sloan E.D., Koh C.A. Clathrate Hydrates of Natural Gases. 3d ed. Boca Raton – London – New York: Taylor & Francis Group, 2007. P. 148–157.

55. Tse J.S. Thermal Expansion of the Clathrate Hydrates of Ethylene Oxide and Tetrahydrofuran // Journal de Physique Colloques. 1987. Vol. 48. No. C1. P. 543–548.