Журналов:     Статей:        

Акушерство и Гинекология Санкт-Петербурга. 2019; : 19-24

Современные представления о патогенезе гипоксии плода и роли в нем гипоксия-индуцируемого фактора (HIF)

Большакова М. В., Беженарь В. Ф., Павлова Н. Г., Пастушенков В. Л., Габаева М. М.

Аннотация

В обзоре представлены данные литературы о гипоксии плода и роли в ней гипоксия-индуцируемого фактора (HIF). Особое внимание сконцентрировано на рассмотрении физиологических характеристик HIF в условиях нормоксии и гипоксии.

Список литературы

1. Кирова Ю.И. Регуляторная роль сукцинатзависимых сигнальных систем (HIF-1α и GPR91) при адаптации к гипоксии (экспериментальное исследование): Дисс. …д-р биол. наук. М.; 2016: 279.

2. Alam H., Weck J., Maizels E. et al. Role of the phosphatidylinositol-3-kinase and extracellular regulated kinase pathways in the induction of hypoxia-inducible factor (HIF)-1 activity and the HIF-1 target vascular endothelial growth factor in ovarian granulosa cells in response to folliclestimulating hormone. J.Endocrinology. 2009; 150 (2): 915-928.

3. Berra E., Roux D., Richard D.E., Pouyssegur J. Hypoxia inducible factor-1a (HIF1a) escapes O2-driven proteasomal degradation irrespective of its subcellular localization: nucleus or cytoplasm. EMBO Rep. 2001; 2 (7): 615-620.

4. Fandrey J., Gorr T.A., Gassmann M. Regulating cellular oxygen sensing by hydroxylation. J. Cardiovasc. Res. 2006; 71 (4): 642-651.

5. Wang G.L., Semenza G.L. General involvement of hypoxia-inducible factor 1 in transcriptional response hypoxia. Proc. Natl. Acad. Sci. U.S.A. 1993; 90 (9): 4304-4308.

6. Wang G.L., Semenza G.L. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood. 1993; 82: 3610-3615.

7. Wang G.L., Jiang B.H., Semenza G.L. etal. Effect of protein kinase and phosphatase inhibitors on expression of hypoxiainducible factor 1. Biochem. Biophys. Res. Commun. 1995; 216: 669-675.

8. Wang G.L., Semenza G.L. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem. 1995; 270 (3): 1230-1237.

9. Antonsson С., Arulampalam V., Whitelaw M.L. et al. Constitutive function of the basic helix-loop-helix/PAS factor Arnt. Regulation of target promoters via the E box motif. C J Biol Chem. 1995 Jun 9; 270 (23): 13968-72.

10. Berra E., Benizri E., Ginouves A. et al. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1 in normoxia. The EMBO Journal. 2003; 22 (16): 4082-4090.

11. Bruik R.K. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc. Natl. Acad. Sci. 2000; 97: 9082-9087.

12. Carmeliet P.I., Dor Y., M.Herbert J. et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 1998; 30: 485-90.

13. Carrero P.I., Okamoto K., Coumailleau P. et al. Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1alpha. Mol Cell Biol. 2000; 20 (1): 402-15.

14. Catrina S.B., Okamoto K., Pereira T. et al. Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function. Diabetes. 2004; 53 (12): 3226-32.

15. Xia Y., Choi H.K., Lee K. Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur J Med Chem. 2012; 49: 24-40.

16. Correia S.C., Moreira P.I. Hypoxia-inducible factor 1: a new hope to counteract neurodegeneration? J. Neurochem. 2010; 112 (1): 1-12.

17. Dimasuay K.G., Boeuf P., Powell T.L. etal. Placental responses to changes in the maternal environment determine fetal Growth. Front. Physiol. 2016; 7: 12.

18. Dubinsky V., Poehlmann T., Suman P. et al. Role of regulatory and angiogenic cytokines in invasion of trophoblastic cells. J. Reproductive Immunol. 2010; 63: 193-199.

19. D’Angelo G., Duplan E., Boyer N. et al. Hypoxia up-regulates prolyl hydroxylase activity: a feedback mechanism that limits HIF-1 responses during reoxygenation. J. Biol Chem. 2003; 278 (40): 38183-38187.

20. Faa A., Faa G., Papalois A. et al. Effects of Erythropoietin Administration on Cardiomyocytes in Landrace. Large White Pigs after Ventricular Fibrillation. J. Clin. Cardiol. 2016: 1-6.

21. Stockmann C., Fandrey J. Hypoxia-induced erythropoietin production: a paradigm for oxygen-regulated gene expression. Clin. Exp Pharmacol Physiol. 2006; 33 (10): 968-979.

22. Gradin K., Takasaki C., Fujii-Kuriyama Y. et al. The transcriptional activation function of the HIF-like factor requires phosphorylation at a conserved threonine. J. Biol. Chem. 2002; 277: 23508-23514.

23. Helton R., Cui J., Scheel J.R. et al. Brain-Specific Knock-Outof Hypoxia-Inducible Factor-1α Reduces Rather Than Increases Hypoxic-Ischemic Damage. The j. of Neuroscience. 2005; 25 (16): 4099-4107.

24. Hewitson K.S., McNeill L.A., Riordan M.V. et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem. 2002; 277 (29): 26351-26355.

25. Huang L.E, Gu J., Schau M. et al. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl Acad Sci USA. 1998; 95 (14): 7987-8992.

26. Hudson C.C., Liu M., Chiang G.G. et al. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. J.Mol. Cell. Biol. 2002; 22 (20): 7004-7014.

27. Huppertz I., Attig J., D’Ambrogio A. et al. iCLIP: protein-RNA interactions at nucleotide resolution. J.Methods. 2014; 65 (3): 274-287.

28. Ietta F., Wu Y., Winter J., Xu J., Wang J., Post M. et al. Dynamic HIF1a regulation during human placental development. Biology of Reproduction. 2006; 75: 112-121.

29. Ivan M., Kondo K., Yang H. et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. J.Science. 2001; 292: 464-468.

30. Kaelin W.G. Jr., Ratcliffe P.J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. J.Mol. Cell. 2008; 30: 393-402.

31. Katschinski D.M., Le L., Schindler S.G. et al. Interaction of the PAS B domain with HSP90 accelerates hypoxia-inducible factor-1 alpha; stabilization. J.Cell Physiol Biochem. 2004; 14 (4): 351-360.

32. Kim J.W., Tchernyshyov I., Semenza G.L. et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. J.Cell Metab. 2006; 3: 177-185.

33. Lando D., Peet D.J., Whelan D.A. et al. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. J.Science. 2002; 295: 858-861.

34. Levine B., Klionsky D.J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. J. Dev Cell. 2004; 6: 463-477.

35. Lonergan K.M., Iliopoulos O., Ohh M. etal. Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. J.Mol Cell Biol. 1998; 18: 732-741.

36. Laughner E., Taghavi P., Chiles K. et al. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. J. Mol Cell Biol. 2001; 21: 3995-4004.

37. Mahon P.C., Hirota K., Semenza G.L. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. J.Genes Dev. 2001; 15: 2675-2686.

38. Maiuri M.C., Zalckvar E., Kimchi A. et al. Self-eating and self-killing: crosstalk between autophagy and apoptosis. J.Nat.Rev. Mol. Cell. Biol. 2007; 8: 741-752.

39. Masson N., Willam C., Maxwell P.H. et al. Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. J.EMBO. 2001; 20: 5197-5206.

40. Mellor H.R., Harris A.L. The role of the hypoxia-inducible BH3-only proteins BNIP3 and BNIP3L in cancer. J. Cancer Metastasis Rev. 2007; 26: 553-566.

41. Metzen E., Berchner-Pfannschmidt U., Stengel P. et al. Intracellular localisation of human HIF-1 alpha hydroxylases: implications for oxygen sensing. J. Cell. Sci. 2003; 116: 1319-1326.

42. Ojeda S.R., Lomniczi A., Sandau U.S. Glial-gonadotrophin hormone (GnRH) neurone interactions in the median eminence and the control of GnRH secretion. J. Neuroendocrinol. 2008; 20: 732-742.

43. Onogi A., Naruse K., Sado T. et al. Hypoxia inhibits invasion of extravillous trophoblast cells through reduction of matrix metalloproteinase (MMP)-2 activation in the early first trimester of human pregnancy. Placenta. 2011; 32: 665-670.

44. Papandreou I., Cairns R.A., Fontana L. et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. J.Cell. Metab. 2006; 3: 187-197.

45. Piret J.P., Mottet D., Raes M. et al. CoCl2, a chemical inducer of hypoxia-inducible factor-1, and hypoxia reduce apoptotic cell death in hepatoma cell line HepG2. J.Ann.Acad. Sci. 2002; 973: 443-447.

46. Schlotz W., Phillips D.W. Fetal origins of mental health: Evidence and mechanisms. J. Brain Behav. Immun. 23: 905-916

47. Newby J.M. Systematic review and meta-analysis of transdiagnostic psychological treatments for anxiety and depressive disorders in adulthood. J.Clinical Psychology Review. 2015; 40: 91-110.

48. Huppertz C. The Dopaminergic Reward System and Leisure Time Exercise Behavior: A Candidate Allele Study. J. BioMed Research International. 2014; 4: 9-16.

49. Richardson B.S., Bocking A.D. Metabolic and circulatory adaptations to chronic hypoxia in the fetus. J.Comp Biochem Physiol A Mol Integr Physiol. 1998; 119: 717-23.

50. Semenza G.L., Wang G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. J. Mol. Cell. Biol. 1992; 12: 5447-5454.

51. Semenza G.L. Regulation of cancer cell metabolism by hypoxia-inducible factor 1. J.Semin Cancer Biol. 2009; 19: 12-6, 320.

52. Semenza G.L. Targeting HIF-1 for cancer therapy. J.Nat.Rev.Cancer. 2003; 3 (10): 721-732.

53. Semenza G.L. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. J.Physiology. 2009; 24 (97): 96-106.

54. Rajakumar A., Conrad K.P. Expression, ontogeny, and regulation of hypoxiainducible transcription factors in the human placenta. J.Biol. Reprod. 2000; 63: 559-569.

55. Cowden Dahl K.D., Fryer B.H., Mack F.A. et al. Hypoxia-inducible factors 1alpha and 2alpha regulate trophoblast differentiation. J.Mol. Cell. Biol. 2005; 25: 10479-10491.

56. Tissot van Patot M.C., Murray A.J., Beckey V. et al. Human placental metabolic adaptation to chronic hypoxia, high altitude: hypoxic preconditioning. J. Physiol. Regul. Integr. Comp. Physiol. 2010; 298: 166-172.

Obstetrics and Gynaecology of Saint-Petersburg. 2019; : 19-24

Modern ideas about the pathogenesis of fetal hypoxia and the role of hypoxia-inducible factor (HIF) in it

Bolshakova M. V., Bezhenar V. F., Pavlova N. G., Pastushenkov V. L., Gabaeva M. M.

Abstract

The review provides an overview of literature data on the fetus hy- poxia and the role of hypoxia-inducible factor (HIF) in it. Particular atten- tion is focused on the consideration of the physiological characteristics of HIF under normoxia and hypoxia
References

1. Kirova Yu.I. Regulyatornaya rol' suktsinatzavisimykh signal'nykh sistem (HIF-1α i GPR91) pri adaptatsii k gipoksii (eksperimental'noe issledovanie): Diss. …d-r biol. nauk. M.; 2016: 279.

2. Alam H., Weck J., Maizels E. et al. Role of the phosphatidylinositol-3-kinase and extracellular regulated kinase pathways in the induction of hypoxia-inducible factor (HIF)-1 activity and the HIF-1 target vascular endothelial growth factor in ovarian granulosa cells in response to folliclestimulating hormone. J.Endocrinology. 2009; 150 (2): 915-928.

3. Berra E., Roux D., Richard D.E., Pouyssegur J. Hypoxia inducible factor-1a (HIF1a) escapes O2-driven proteasomal degradation irrespective of its subcellular localization: nucleus or cytoplasm. EMBO Rep. 2001; 2 (7): 615-620.

4. Fandrey J., Gorr T.A., Gassmann M. Regulating cellular oxygen sensing by hydroxylation. J. Cardiovasc. Res. 2006; 71 (4): 642-651.

5. Wang G.L., Semenza G.L. General involvement of hypoxia-inducible factor 1 in transcriptional response hypoxia. Proc. Natl. Acad. Sci. U.S.A. 1993; 90 (9): 4304-4308.

6. Wang G.L., Semenza G.L. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood. 1993; 82: 3610-3615.

7. Wang G.L., Jiang B.H., Semenza G.L. etal. Effect of protein kinase and phosphatase inhibitors on expression of hypoxiainducible factor 1. Biochem. Biophys. Res. Commun. 1995; 216: 669-675.

8. Wang G.L., Semenza G.L. Purification and characterization of hypoxia-inducible factor 1. J. Biol. Chem. 1995; 270 (3): 1230-1237.

9. Antonsson S., Arulampalam V., Whitelaw M.L. et al. Constitutive function of the basic helix-loop-helix/PAS factor Arnt. Regulation of target promoters via the E box motif. C J Biol Chem. 1995 Jun 9; 270 (23): 13968-72.

10. Berra E., Benizri E., Ginouves A. et al. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1 in normoxia. The EMBO Journal. 2003; 22 (16): 4082-4090.

11. Bruik R.K. Expression of the gene encoding the proapoptotic Nip3 protein is induced by hypoxia. Proc. Natl. Acad. Sci. 2000; 97: 9082-9087.

12. Carmeliet P.I., Dor Y., M.Herbert J. et al. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature. 1998; 30: 485-90.

13. Carrero P.I., Okamoto K., Coumailleau P. et al. Redox-regulated recruitment of the transcriptional coactivators CREB-binding protein and SRC-1 to hypoxia-inducible factor 1alpha. Mol Cell Biol. 2000; 20 (1): 402-15.

14. Catrina S.B., Okamoto K., Pereira T. et al. Hyperglycemia regulates hypoxia-inducible factor-1alpha protein stability and function. Diabetes. 2004; 53 (12): 3226-32.

15. Xia Y., Choi H.K., Lee K. Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors. Eur J Med Chem. 2012; 49: 24-40.

16. Correia S.C., Moreira P.I. Hypoxia-inducible factor 1: a new hope to counteract neurodegeneration? J. Neurochem. 2010; 112 (1): 1-12.

17. Dimasuay K.G., Boeuf P., Powell T.L. etal. Placental responses to changes in the maternal environment determine fetal Growth. Front. Physiol. 2016; 7: 12.

18. Dubinsky V., Poehlmann T., Suman P. et al. Role of regulatory and angiogenic cytokines in invasion of trophoblastic cells. J. Reproductive Immunol. 2010; 63: 193-199.

19. D’Angelo G., Duplan E., Boyer N. et al. Hypoxia up-regulates prolyl hydroxylase activity: a feedback mechanism that limits HIF-1 responses during reoxygenation. J. Biol Chem. 2003; 278 (40): 38183-38187.

20. Faa A., Faa G., Papalois A. et al. Effects of Erythropoietin Administration on Cardiomyocytes in Landrace. Large White Pigs after Ventricular Fibrillation. J. Clin. Cardiol. 2016: 1-6.

21. Stockmann C., Fandrey J. Hypoxia-induced erythropoietin production: a paradigm for oxygen-regulated gene expression. Clin. Exp Pharmacol Physiol. 2006; 33 (10): 968-979.

22. Gradin K., Takasaki C., Fujii-Kuriyama Y. et al. The transcriptional activation function of the HIF-like factor requires phosphorylation at a conserved threonine. J. Biol. Chem. 2002; 277: 23508-23514.

23. Helton R., Cui J., Scheel J.R. et al. Brain-Specific Knock-Outof Hypoxia-Inducible Factor-1α Reduces Rather Than Increases Hypoxic-Ischemic Damage. The j. of Neuroscience. 2005; 25 (16): 4099-4107.

24. Hewitson K.S., McNeill L.A., Riordan M.V. et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem. 2002; 277 (29): 26351-26355.

25. Huang L.E, Gu J., Schau M. et al. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl Acad Sci USA. 1998; 95 (14): 7987-8992.

26. Hudson C.C., Liu M., Chiang G.G. et al. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. J.Mol. Cell. Biol. 2002; 22 (20): 7004-7014.

27. Huppertz I., Attig J., D’Ambrogio A. et al. iCLIP: protein-RNA interactions at nucleotide resolution. J.Methods. 2014; 65 (3): 274-287.

28. Ietta F., Wu Y., Winter J., Xu J., Wang J., Post M. et al. Dynamic HIF1a regulation during human placental development. Biology of Reproduction. 2006; 75: 112-121.

29. Ivan M., Kondo K., Yang H. et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. J.Science. 2001; 292: 464-468.

30. Kaelin W.G. Jr., Ratcliffe P.J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. J.Mol. Cell. 2008; 30: 393-402.

31. Katschinski D.M., Le L., Schindler S.G. et al. Interaction of the PAS B domain with HSP90 accelerates hypoxia-inducible factor-1 alpha; stabilization. J.Cell Physiol Biochem. 2004; 14 (4): 351-360.

32. Kim J.W., Tchernyshyov I., Semenza G.L. et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. J.Cell Metab. 2006; 3: 177-185.

33. Lando D., Peet D.J., Whelan D.A. et al. Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. J.Science. 2002; 295: 858-861.

34. Levine B., Klionsky D.J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. J. Dev Cell. 2004; 6: 463-477.

35. Lonergan K.M., Iliopoulos O., Ohh M. etal. Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. J.Mol Cell Biol. 1998; 18: 732-741.

36. Laughner E., Taghavi P., Chiles K. et al. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. J. Mol Cell Biol. 2001; 21: 3995-4004.

37. Mahon P.C., Hirota K., Semenza G.L. FIH-1: a novel protein that interacts with HIF-1alpha and VHL to mediate repression of HIF-1 transcriptional activity. J.Genes Dev. 2001; 15: 2675-2686.

38. Maiuri M.C., Zalckvar E., Kimchi A. et al. Self-eating and self-killing: crosstalk between autophagy and apoptosis. J.Nat.Rev. Mol. Cell. Biol. 2007; 8: 741-752.

39. Masson N., Willam C., Maxwell P.H. et al. Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. J.EMBO. 2001; 20: 5197-5206.

40. Mellor H.R., Harris A.L. The role of the hypoxia-inducible BH3-only proteins BNIP3 and BNIP3L in cancer. J. Cancer Metastasis Rev. 2007; 26: 553-566.

41. Metzen E., Berchner-Pfannschmidt U., Stengel P. et al. Intracellular localisation of human HIF-1 alpha hydroxylases: implications for oxygen sensing. J. Cell. Sci. 2003; 116: 1319-1326.

42. Ojeda S.R., Lomniczi A., Sandau U.S. Glial-gonadotrophin hormone (GnRH) neurone interactions in the median eminence and the control of GnRH secretion. J. Neuroendocrinol. 2008; 20: 732-742.

43. Onogi A., Naruse K., Sado T. et al. Hypoxia inhibits invasion of extravillous trophoblast cells through reduction of matrix metalloproteinase (MMP)-2 activation in the early first trimester of human pregnancy. Placenta. 2011; 32: 665-670.

44. Papandreou I., Cairns R.A., Fontana L. et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. J.Cell. Metab. 2006; 3: 187-197.

45. Piret J.P., Mottet D., Raes M. et al. CoCl2, a chemical inducer of hypoxia-inducible factor-1, and hypoxia reduce apoptotic cell death in hepatoma cell line HepG2. J.Ann.Acad. Sci. 2002; 973: 443-447.

46. Schlotz W., Phillips D.W. Fetal origins of mental health: Evidence and mechanisms. J. Brain Behav. Immun. 23: 905-916

47. Newby J.M. Systematic review and meta-analysis of transdiagnostic psychological treatments for anxiety and depressive disorders in adulthood. J.Clinical Psychology Review. 2015; 40: 91-110.

48. Huppertz C. The Dopaminergic Reward System and Leisure Time Exercise Behavior: A Candidate Allele Study. J. BioMed Research International. 2014; 4: 9-16.

49. Richardson B.S., Bocking A.D. Metabolic and circulatory adaptations to chronic hypoxia in the fetus. J.Comp Biochem Physiol A Mol Integr Physiol. 1998; 119: 717-23.

50. Semenza G.L., Wang G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. J. Mol. Cell. Biol. 1992; 12: 5447-5454.

51. Semenza G.L. Regulation of cancer cell metabolism by hypoxia-inducible factor 1. J.Semin Cancer Biol. 2009; 19: 12-6, 320.

52. Semenza G.L. Targeting HIF-1 for cancer therapy. J.Nat.Rev.Cancer. 2003; 3 (10): 721-732.

53. Semenza G.L. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. J.Physiology. 2009; 24 (97): 96-106.

54. Rajakumar A., Conrad K.P. Expression, ontogeny, and regulation of hypoxiainducible transcription factors in the human placenta. J.Biol. Reprod. 2000; 63: 559-569.

55. Cowden Dahl K.D., Fryer B.H., Mack F.A. et al. Hypoxia-inducible factors 1alpha and 2alpha regulate trophoblast differentiation. J.Mol. Cell. Biol. 2005; 25: 10479-10491.

56. Tissot van Patot M.C., Murray A.J., Beckey V. et al. Human placental metabolic adaptation to chronic hypoxia, high altitude: hypoxic preconditioning. J. Physiol. Regul. Integr. Comp. Physiol. 2010; 298: 166-172.