Рецепт. 2022; : 184-193
Болевые синдромы, ассоциированные с COVID-19, и основные подходы к их лечению
https://doi.org/10.34883/PI.2022.25.2.001Аннотация
В статье представлена информация о наиболее часто встречающихся болевых синдромах, ассоциированных с COVID-19. Механизмы возникновения боли связаны с особенностями взаимодействия вируса с рецептором ангиотензинпревращающего фермента 2, вовлеченного в процессы ноцицепции, высвобождением провоспалительных медиаторов, повышающих чувствительность ноцицептивных рецепторов к медиаторам боли, а также активацией тригеминоваскулярной системы и менингеальных ноцицепторов. Наиболее рациональным является всесторонний подход к ведению пациентов с COVID-19-ассоциированными болевыми синдромами с использованием как фармакологических, так и немедикаментозных методов лечения.
Список литературы
1. Widyadharma I.P.E., Sari N.N.S.P., Pradnyaswari K.E. Pain as clinical manifestations of COVID-19 infection and its management in the pandemic era: a literature review. Egypt J Neurol Psychiatr Neurosurg. 2020;56(1):121. doi: 10.1186/s41983-020-00258-0.
2. Berger J.R. COVID-19 and the nervous system. J Neurovirol. 2020;26(2):143–148. doi: 10.1007/s13365-020-00840-5.
3. Drożdżal S., Rosik J., Lechowicz K. COVID-19: pain management in patients with SARS-CoV-2 infection-molecular mechanisms, challenges, and perspectives. Brain Sci. 2020;10(7):465. doi: 10.3390/brainsci10070465.
4. Harrison A.G., Lin T., Wang P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol. 2020;41(12):1100–1115. doi: 10.1016/j.it.2020.10.004.
5. Hoffmann M., Kleine-Weber H., Schroeder S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and Is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.e8. doi: 10.1016/j.cell.2020.02.052.
6. Murat S., Dogruoz Karatekin B., Icagasioglu A. Clinical presentations of pain in patients with COVID-19 infection. Ir J Med Sci. 2021;190(3):913–917. doi: 10.1007/s11845-020-02433-x.
7. Guan W., Ni Z., Hu Y. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–1720. doi: 10.1056/NEJMoa2002032.
8. Loeser J.D., Treede R.D. The Kyoto protocol of IASP Basic Pain Terminology. Pain. 2008;137(3):473–477. doi: 10.1016/j.pain.2008.04.025.
9. Cascella M., Del Gaudio A., Vittori A. COVID-pain: acute and late-onset painful clinical manifestations in COVID-19 – molecular mechanisms and research perspectives. J Pain Res. 2021;14:2403–2412. doi: 10.2147/JPR.S313978.
10. Nemoto W., Ogata Y., Nakagawasai O. Angiotensin (1-7) prevents angiotensin II-induced nociceptive behaviour via inhibition of p38 MAPK phosphorylation mediated through spinal Mas receptors in mice. Eur J Pain. 2014;18(10):1471–1479. doi: 10.1002/ejp.512.
11. Forte B.L., Slosky L.M., Zhang H. Angiotensin-(1-7)/Mas receptor as an antinociceptive agent in cancer-induced bone pain. Pain. 2016;157(12):2709–2721. doi: 10.1097/j.pain.0000000000000690.
12. Nemoto W., Ogata Y., Nakagawasai O. Involvement of p38 MAPK activation mediated through AT1 receptors on spinal astrocytes and neurons in angiotensin II- and III-induced nociceptive behavior in mice. Neuropharmacology. 2015;99:221–231. doi: 10.1016/j.neuropharm.2015.07.022.
13. Su S., Cui H., Wang T. Pain: a potential new label of COVID-19. Brain Behav Immun. 2020;87:159–160. doi: 10.1016/j.bbi.2020.05.025.
14. Wang J.T., Sheng W.H., Fang C.T. Clinical manifestations, laboratory findings, and treatment outcomes of SARS patients. Emerg Infect Dis. 2004;10(5):818–824. doi: 10.3201/eid1005.030640.
15. Chen L.L., Hsu C.W., Tian Y.C. Rhabdomyolysis associated with acute renal failure in patients with severe acute respiratory syndrome. Int J Clin Pract. 2005;59(10):1162–1166. doi: 10.1111/j.1368-5031.2005.00540.x.
16. Kemp H.I., Corner E., Colvin L.A. Chronic pain after COVID-19: implications for rehabilitation. Br J Anaesth. 2020;125(4):436–440. doi: 10.1016/j.bja.2020.05.021.
17. Moisset X., Gautier N., Godet T. Nasopharyngeal swab-induced pain for SARS-CoV-2 screening: A randomised controlled trial of conventional and selfswabbing. Eur J Pain. 2021;25(4):924–929. doi: 10.1002/ejp.1722.
18. Karateev A.E., Lila A.M., Alekseeva L.I. Chronic musculoskeletal pain associated with a previous SARS-CoV-2 infection. Doctor.Ru. 2021;20(7):7–11. doi: 10.31550/1727-2378-2021-20-7-7-11. (in Russian)
19. Attal N., Martinez V., Bouhassira D. Potential for increased prevalence of neuropathic pain after the COVID-19 pandemic. Pain Rep. 2021;6(1):e884. doi: 10.1097/PR9.0000000000000884.
20. Weng L.M., Su X., Wang X.Q. Pain symptoms in patients with coronavirus disease (COVID-19): a literature review. J Pain Res. 2021;14:147–159. doi: 10.2147/ JPR.S269206.
21. Li L.Q., Huang T., Wang Y.Q. COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020;92(6):577–583. doi: 10.1002/jmv.25757.
22. Karaarslan F., Demircioğlu Güneri F., Kardeş S. Postdischarge rheumatic and musculoskeletal symptoms following hospitalization for COVID-19: prospective follow-up by phone interviews. Rheumatol Int. 2021;41(7):1263–1271. doi: 10.1007/s00296-021-04882-8.
23. Akhmedzhanova L.T., Ostroumova T.M., Solokha O.A. Management of patients with pain syndromes associated with COVID-19. Neurology, Neuropsychiatry, Psychosomatics. 2021;13(5):96–101. doi: 10.14412/2074-2711-2021-5-96-101. (in Russian)
24. Østergaard L. SARS-CoV-2 related microvascular damage and symptoms during and after COVID-19: Consequences of capillary transit-time changes, tissue hypoxia and inflammation. Physiol Rep. 2021;9(3):e14726. doi: 10.14814/phy2.14726.
25. De Giorgio M.R., Di Noia S., Morciano C. The impact of SARS-CoV-2 on skeletal muscles. Acta Myol. 2020;39(4):307–312. doi: 10.36185/2532-1900-034.
26. Nesterovsky Yu.E., Zavadenko N.N., Kholin A.A. Headache and other neurological symptoms as clinical manifestations of novel coronavirus infection (COVID-19). Nervous diseases. 2020;2:60–68. doi: 10.24411/2226-0757-2020-12181. (in Russian)
27. Headache classification committee of the International Headache Society (IHS). The International classification of headache disorders, 3rd edition. Cephalalgia. 2018;38(1):1–211. doi: 10.1177/0333102417738202.
28. López J.T., García-Azorín D., Planchuelo-Gómez Á. Phenotypic characterization of acute headache attributed to SARS-CoV-2: an ICHD-3 validation study on 106 hospitalized patients. Cephalalgia. 2020;40(13):1432–1442. doi: 10.1177/0333102420965146.
29. Bolay H., Reuter U., Dunn A.K. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med. 2002;8(2):136–142. doi: 10.1038/ nm0202-136.
30. Edvinsson L., Haanes K.A., Warfvinge K. Does inflammation have a role in migraine? Nat Rev Neurol. 2019;15(8):483–490. doi: 10.1038/s41582-019-0216-y.
31. Bolay H., Gül A., Baykan B. COVID-19 is a Real Headache! Headache. 2020;60(7):1415–1421. doi: 10.1111/head.13856.
32. Goadsby P.J., Holland P.R., Martins-Oliveira M. Pathophysiology of migraine: a disorder of sensory processing. Physiol. Rev. 2017;97(2):553–622. doi: 10.1152/ physrev.00034.2015.
33. Fesyun A.D., Lobanov A.A., Rachin A.P. Challenges and approaches to medical rehabilitation of patients with COVID-19 complication. Bulletin of rehabilitation medicine. 2020;97(3):3–13. doi: 10.38025/2078-1962-2020-97-3-3-13. (in Russian)
34. Kukushkin M.L. Modern view on mechanism of action of Mydocalm. Consilium Medicum. 2013;15(2):89–94. (in Russian)
35. Okada H., Honda M., Ono H. Method for recording spinal reflexes in mice: effects of thyrotropin-releasing hormone, DOI, tolperisone and baclofen on monosynaptic spinal reflex potentials. Jpn J Pharmacol. 2001;86(1):134–136. doi: 10.1254/jjp.86.134.
36. Szolcsanyi J., Farkas S., Zieglgansberger W. The analgesic activity of Mydocalm leads to the occurrence of muscle spasm. Good Clinical Practice. 2003;1:83–88. (in Russian)
Recipe. 2022; : 184-193
Pain Syndromes Associated with COVID-19 and Main Approaches to Their Treatment
https://doi.org/10.34883/PI.2022.25.2.001Abstract
The article provides information on the most common pain syndromes associated with COVID-19. The mechanisms of pain occurrence are associated with the specific effects of the virus with the angiotensin-converting enzyme 2 receptor involved in the processes of nociception, the release of pro-inflammatory mediators that increase the sensitivity of nociceptive receptors to pain mediators, as well as the activation of the trigeminovascular system and meningeal nociceptors. The most rational is a comprehensive approach to the management of patients with COVID-19-associated pain syndromes using both pharmacological and non-pharmacological methods of treatment.
References
1. Widyadharma I.P.E., Sari N.N.S.P., Pradnyaswari K.E. Pain as clinical manifestations of COVID-19 infection and its management in the pandemic era: a literature review. Egypt J Neurol Psychiatr Neurosurg. 2020;56(1):121. doi: 10.1186/s41983-020-00258-0.
2. Berger J.R. COVID-19 and the nervous system. J Neurovirol. 2020;26(2):143–148. doi: 10.1007/s13365-020-00840-5.
3. Drożdżal S., Rosik J., Lechowicz K. COVID-19: pain management in patients with SARS-CoV-2 infection-molecular mechanisms, challenges, and perspectives. Brain Sci. 2020;10(7):465. doi: 10.3390/brainsci10070465.
4. Harrison A.G., Lin T., Wang P. Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol. 2020;41(12):1100–1115. doi: 10.1016/j.it.2020.10.004.
5. Hoffmann M., Kleine-Weber H., Schroeder S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and Is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280.e8. doi: 10.1016/j.cell.2020.02.052.
6. Murat S., Dogruoz Karatekin B., Icagasioglu A. Clinical presentations of pain in patients with COVID-19 infection. Ir J Med Sci. 2021;190(3):913–917. doi: 10.1007/s11845-020-02433-x.
7. Guan W., Ni Z., Hu Y. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382:1708–1720. doi: 10.1056/NEJMoa2002032.
8. Loeser J.D., Treede R.D. The Kyoto protocol of IASP Basic Pain Terminology. Pain. 2008;137(3):473–477. doi: 10.1016/j.pain.2008.04.025.
9. Cascella M., Del Gaudio A., Vittori A. COVID-pain: acute and late-onset painful clinical manifestations in COVID-19 – molecular mechanisms and research perspectives. J Pain Res. 2021;14:2403–2412. doi: 10.2147/JPR.S313978.
10. Nemoto W., Ogata Y., Nakagawasai O. Angiotensin (1-7) prevents angiotensin II-induced nociceptive behaviour via inhibition of p38 MAPK phosphorylation mediated through spinal Mas receptors in mice. Eur J Pain. 2014;18(10):1471–1479. doi: 10.1002/ejp.512.
11. Forte B.L., Slosky L.M., Zhang H. Angiotensin-(1-7)/Mas receptor as an antinociceptive agent in cancer-induced bone pain. Pain. 2016;157(12):2709–2721. doi: 10.1097/j.pain.0000000000000690.
12. Nemoto W., Ogata Y., Nakagawasai O. Involvement of p38 MAPK activation mediated through AT1 receptors on spinal astrocytes and neurons in angiotensin II- and III-induced nociceptive behavior in mice. Neuropharmacology. 2015;99:221–231. doi: 10.1016/j.neuropharm.2015.07.022.
13. Su S., Cui H., Wang T. Pain: a potential new label of COVID-19. Brain Behav Immun. 2020;87:159–160. doi: 10.1016/j.bbi.2020.05.025.
14. Wang J.T., Sheng W.H., Fang C.T. Clinical manifestations, laboratory findings, and treatment outcomes of SARS patients. Emerg Infect Dis. 2004;10(5):818–824. doi: 10.3201/eid1005.030640.
15. Chen L.L., Hsu C.W., Tian Y.C. Rhabdomyolysis associated with acute renal failure in patients with severe acute respiratory syndrome. Int J Clin Pract. 2005;59(10):1162–1166. doi: 10.1111/j.1368-5031.2005.00540.x.
16. Kemp H.I., Corner E., Colvin L.A. Chronic pain after COVID-19: implications for rehabilitation. Br J Anaesth. 2020;125(4):436–440. doi: 10.1016/j.bja.2020.05.021.
17. Moisset X., Gautier N., Godet T. Nasopharyngeal swab-induced pain for SARS-CoV-2 screening: A randomised controlled trial of conventional and selfswabbing. Eur J Pain. 2021;25(4):924–929. doi: 10.1002/ejp.1722.
18. Karateev A.E., Lila A.M., Alekseeva L.I. Chronic musculoskeletal pain associated with a previous SARS-CoV-2 infection. Doctor.Ru. 2021;20(7):7–11. doi: 10.31550/1727-2378-2021-20-7-7-11. (in Russian)
19. Attal N., Martinez V., Bouhassira D. Potential for increased prevalence of neuropathic pain after the COVID-19 pandemic. Pain Rep. 2021;6(1):e884. doi: 10.1097/PR9.0000000000000884.
20. Weng L.M., Su X., Wang X.Q. Pain symptoms in patients with coronavirus disease (COVID-19): a literature review. J Pain Res. 2021;14:147–159. doi: 10.2147/ JPR.S269206.
21. Li L.Q., Huang T., Wang Y.Q. COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020;92(6):577–583. doi: 10.1002/jmv.25757.
22. Karaarslan F., Demircioğlu Güneri F., Kardeş S. Postdischarge rheumatic and musculoskeletal symptoms following hospitalization for COVID-19: prospective follow-up by phone interviews. Rheumatol Int. 2021;41(7):1263–1271. doi: 10.1007/s00296-021-04882-8.
23. Akhmedzhanova L.T., Ostroumova T.M., Solokha O.A. Management of patients with pain syndromes associated with COVID-19. Neurology, Neuropsychiatry, Psychosomatics. 2021;13(5):96–101. doi: 10.14412/2074-2711-2021-5-96-101. (in Russian)
24. Østergaard L. SARS-CoV-2 related microvascular damage and symptoms during and after COVID-19: Consequences of capillary transit-time changes, tissue hypoxia and inflammation. Physiol Rep. 2021;9(3):e14726. doi: 10.14814/phy2.14726.
25. De Giorgio M.R., Di Noia S., Morciano C. The impact of SARS-CoV-2 on skeletal muscles. Acta Myol. 2020;39(4):307–312. doi: 10.36185/2532-1900-034.
26. Nesterovsky Yu.E., Zavadenko N.N., Kholin A.A. Headache and other neurological symptoms as clinical manifestations of novel coronavirus infection (COVID-19). Nervous diseases. 2020;2:60–68. doi: 10.24411/2226-0757-2020-12181. (in Russian)
27. Headache classification committee of the International Headache Society (IHS). The International classification of headache disorders, 3rd edition. Cephalalgia. 2018;38(1):1–211. doi: 10.1177/0333102417738202.
28. López J.T., García-Azorín D., Planchuelo-Gómez Á. Phenotypic characterization of acute headache attributed to SARS-CoV-2: an ICHD-3 validation study on 106 hospitalized patients. Cephalalgia. 2020;40(13):1432–1442. doi: 10.1177/0333102420965146.
29. Bolay H., Reuter U., Dunn A.K. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med. 2002;8(2):136–142. doi: 10.1038/ nm0202-136.
30. Edvinsson L., Haanes K.A., Warfvinge K. Does inflammation have a role in migraine? Nat Rev Neurol. 2019;15(8):483–490. doi: 10.1038/s41582-019-0216-y.
31. Bolay H., Gül A., Baykan B. COVID-19 is a Real Headache! Headache. 2020;60(7):1415–1421. doi: 10.1111/head.13856.
32. Goadsby P.J., Holland P.R., Martins-Oliveira M. Pathophysiology of migraine: a disorder of sensory processing. Physiol. Rev. 2017;97(2):553–622. doi: 10.1152/ physrev.00034.2015.
33. Fesyun A.D., Lobanov A.A., Rachin A.P. Challenges and approaches to medical rehabilitation of patients with COVID-19 complication. Bulletin of rehabilitation medicine. 2020;97(3):3–13. doi: 10.38025/2078-1962-2020-97-3-3-13. (in Russian)
34. Kukushkin M.L. Modern view on mechanism of action of Mydocalm. Consilium Medicum. 2013;15(2):89–94. (in Russian)
35. Okada H., Honda M., Ono H. Method for recording spinal reflexes in mice: effects of thyrotropin-releasing hormone, DOI, tolperisone and baclofen on monosynaptic spinal reflex potentials. Jpn J Pharmacol. 2001;86(1):134–136. doi: 10.1254/jjp.86.134.
36. Szolcsanyi J., Farkas S., Zieglgansberger W. The analgesic activity of Mydocalm leads to the occurrence of muscle spasm. Good Clinical Practice. 2003;1:83–88. (in Russian)
События
-
Журнал «Неотложная кардиология и кардиоваскулярные риски» присоединился к Elpub >>>
6 июн 2025 | 09:45 -
К платформе Elpub присоединился «Медицинский журнал» >>>
5 июн 2025 | 09:41 -
НЭИКОН принял участие в конференции НИИ Организации здравоохранения и медицинского менеджмента >>>
30 мая 2025 | 10:32 -
Журнал «Творчество и современность» присоединился к Elpub! >>>
27 мая 2025 | 12:38 -
Журналы НЦЭСМП приняты в Scopus >>>
27 мая 2025 | 12:35