Журналов:     Статей:        

Рецепт. 2019; : 591-598

Особенности элиминации лекарственных препаратов для интенсивной терапии с помощью экстракорпоральных методов очищения крови при терапии критических состояний

Якубцевич Р. Э., Белявский Н. В.

Аннотация

Методы экстракорпорального очищения крови (ЭОК) являются важными составляющими комплексных мероприятий, проводимых пациентам в отделениях реанимации и интенсивной терапии, которые эффективно применяются для патогенетического и этиотропного лечения множества критических состояний. В обзоре обобщены и изложены существующие данные об элиминации лекарственных препаратов методами ЭОК. Проанализировано более сорока различных источников за последние 20 лет. Изучались литературные данные, касающиеся таких методов ЭОК, как продленный вено-венозный гемодиализ, гемофильтрация, плазмаферез, гемосорбция на различных сорбентах, а также применение аппарата «искусственная печень». Описаны особенности изменения общей эффективности и концентрации в плазме препаратов таких групп, как противоэпилептические, антибиотики, противогрибковые средства, цитостатики, иммунодепрессанты и др. Наиболее подробно представлены данные об изменении фармакокинетики антибактериальных препаратов, в том числе антибиотиков резерва, как одной из наиболее важных групп препаратов в интенсивной терапии критических состояний. Установлено, что методы ЭОК могут существенно повлиять на эффективность лакосамида, леветирацетама, парацетамола, ванкомицина, колистина, телаванцина, тейкопланина, меропенема, линезолида, амфотерицина B, метронидазола, далтепарина, гентамицина и др. Использование изложенных литературных данных позволит исключить возможные ошибки в применении описанных лекарственных средств у пациентов с необходимостью проведения заместительной почечной терапии, сорбционных и ферезных методов очищения крови. Влияние методов ЭОК на фармакокинетику антибиотиков резерва может сыграть существенную роль в эффективности антимикробной терапии у пациентов с сепсисом и сопутствующим синдромом полиорганной недостаточности.

Список литературы

1. Miller R. (2015) Anestesia Ronalda Millera [Miller’s Anesthesia]. St.Petersburg: Chelovek. (in Russian)

2. Rimmelé T., Kellum J.A. (2011) Clinical review: blood purification for sepsis. Crit Care, vol. 15, no 1, p. 205. doi:10.1186/cc9411

3. Ankawi G., Neri M., Zhang J., Breglia A., Ricci Z., Ronco C. (2018) Extracorporeal techniques for the treatment of critically ill patients with sepsis beyond conventional blood purification therapy: the promises and the pitfalls. Crit Care, vol. 22, no 1, p. 262. doi:10.1186/s13054-018-2181-z

4. Abe M., Kikuchi F., Kaizu K., Matsumoto K. (2008) The influence of hemodialysis membranes on the plasma insulin level of diabetic patients on maintenance hemodialysis. Clin. Nephrol., vol. 69, no 5, pp. 354–360.

5. Eden G., Kühn-Velten W.N., Hafer С., Kielstein J.T. (2018) Enhanced elimination of cyclophosphamide by high cut-off haemodialysis: single-dose pharmacokinetics in a patient with cast nephropathy. BMJ Case Rep., vol. 2018, Jan 4. doi:10.1136/bcr-2017-221735

6. Morgera S., Slowinski T., Melzer C., Sobottke V., Vargas-Hein O., Volk T., Zuckermann-Becker H., Wegner B., Müller J.M., Baumann G., Kox W.J., Bellomo R., Neumayer H.H. (2004) Renal replacement therapy with high-cutoff hemofilters: Impact of convection and diffusion on cytokine clearances and protein status. Am J Kidney Dis., vol. 43, no 3, pp. 444–453.

7. Wieruszewski P.M., Lopez-Ruiz A., Albright R.C., Fugate J.E., Barreto E.F. (2018) Lacosamide Pharmacokinetics in a Critically Ill Patient during Continuous Renal Replacement Therapy. J Pharm Pract., vol. 2018, Oct 18. doi:10.1177/0897190018803765

8. Wieruszewski P., Kashani K.B., Rabinstein A.A., Frazee E. (2018) Levetiracetam Pharmacokinetics in a Critically Ill Anephric Patient on Intermittent Hemodialysis. Neurocrit Care, vol. 28, no 2, pp. 243–246. doi:10.1007/s12028-017-0441-4

9. Scoville B.A., Vulaj V., Mueller B.A., Annich G.M., Wagner D.S. (2018) Acetaminophen clearance during ex vivo continuous renal replacement therapies. J Artif Organs., vol. 21, no 2, pp. 215–219. doi: 10.1007/s10047-017-1001-6

10. Baker A., Green R. (2016) Zamestitelnaya pochechnaya terapiya [Renal-replacement therapy]. Osnovy intensivnoy terapii [Intensive care basics]. WFSA, p. 375.

11. Trotman R.L., Williamson J.C., Shoemaker D.M., Salzer W.L. (2005) Antibiotic dosing in critically ill adult patients receiving continuous renal replacement therapy. Clin Infect Dis., vol. 41, no 8, pp. 1159–1166.

12. Chaijamorn W., Jitsurong A., Wiwattanawongsa K., Wanakamanee U., Dandecha P. (2011) Vancomycin clearance during continuous venovenous haemofiltration in critically ill patients. Int J Antimicrob Agents., vol. 38, no 2, pp. 152–156. doi: 10.1016/j.ijantimicag.2011.04.010

13. Shiraishi Y., Okajima M., Sai Y., Miyamoto K., Inaba H. (2012) Elimination of teicoplanin by adsorption to the filter membrane during haemodiafiltration: screening experiments for linezolid, teicoplanin and vancomycin followed by in vitro haemodiafiltration models for teicoplanin. Anaesth Intensive Care, vol. 40, no 3, pp. 442–449.

14. Yamashina T., Tsuruyama M., Odawara M., Tsuruta M., Miyata H., Kozono A., Tsuji Y., Miyoshi T., Kawamata Y., Hiraki Y. (2017) Pharmacokinetics of linezolid during continuous hemodiafiltration: A case report. J Infect Chemother, vol. 23, no 10, pp. 709–712. doi: 10.1016/j.jiac.2017.03.013

15. Hiraki Y., Tsuji Y., Misumi N., Hiraike M., Matsumoto K., Morita K., Kamimura H., Karube Y. (2013) Pharmacokinetics and elimination efficiency of linezolid during dialysis. Ren Fail., vol. 35, no 3, pp. 418–420. doi: 10.3109/0886022X.2012.761085

16. Nation R.L., Garonzik S.M., Thamlikitkul V., Giamarellos-Bourboulis E.J., Forrest A., Paterson D.L., Li J., Silveira F.P. (2017) Dosing guidance for intravenous colistin in critically-ill patients. Clin Infect Dis., vol. 64, no 5, pp. 565–571. doi: 10.1093/cid/ciw839

17. Stevenson J.M., Patel J.H., Churchwell M.D., Vilay A.M., Depestel D.D., Sörgel F., Kinzig M., Jakob V., Mueller B.A. (2008) Ertapenem clearance during modeled continuous renal replacement therapy. Int J Artif Organs, vol. 31, no 12, pp. 1027–1034.

18. Kesner J.M., Yardman-Frank J.M., Mercier R.C., Wong C.S., Walker S.E., Argyres D.P., Vilay A.M. (2014) Trimethoprim and sulfamethoxazole transmembrane clearance during modeled continuous renal replacement therapy. Blood Purif., vol. 38, no 3–4, pp. 195–202. doi: 10.1159/000368884

19. Isla A., Gascón A.R., Maynar J., Arzuaga A., Toral D., Pedraz J.L. (2005) Cefepime and continuous renal replacement therapy (CRRT): in vitro permeability of two CRRT membranes and pharmacokinetics in four critically ill patients. Clin Ther., vol. 27, no 5, pp. 599–608.

20. Miranda Bastos A.C., Vandecasteele S.J., Spinewine A., Tulkens P.M., Van Bambeke F. (2018) Temocillin dosing in haemodialysis patients based on population pharmacokinetics of total and unbound concentrations and Monte Carlo simulations. J Antimicrob Chemother., vol. 73, no 6, pp. 1630–1638. doi: 10.1093/jac/dky078

21. Lewis S.J., Switaj L.A., Mueller B.A. (2015) Tedizolid adsorption and transmembrane clearance during in vitro continuous renal replacement therapy. Blood Purif., vol. 40, no 1, pp. 66–71. doi: 10.1159/000430904

22. Patel J.H., Churchwell M.D., Seroogy J.D., Barriere S.L., Grio M., Mueller B. (2009) Telavancin and hydroxy propyl-beta-cyclodextrin clearance during continuous renal replacement therapy: an in vitro study. Int J Artif Organs., vol. 32, no 10, pp. 745–751.

23. Jang S.M., Hough G., Mueller B.A. (2018) Ex vivo Rezafungin adsorption and clearance during continuous renal replacement therapy. Blood Purif., vol. 46, no 3, pp. 214–219. doi: 10.1159/000489212

24. Kolbinger P., Gruber M., Roth G., Graf B.M., Ittner K.P. (2018) Filter adsorption of Anidulafungin to a polysulfone-based hemofilter during CVVHD In Vitro. Artif Organs, vol. 42, no 2, pp. 200–207. doi: 10.1111/aor.12982

25. Álvarez-Lerma F., Rodriguez M., Soriano M.C., Catalán M., Llorente A.M., Vidart N., Garitacelaya M., Maravi E., Fernández Rey E., Alvarado F., López-Sánchez M., Alvarez-Sánchez B., Granado D., Quintana E; Study Group of Liposomal Amphotericin B in the ICU. (2013) Effectiveness of liposomal amphotericin B in patients admitted to the ICU on renal replacement therapy. Rev Esp Quimioter, vol. 26, no 4, pp. 360–368.

26. Kiser T.H., Fish D.N., Aquilante C.L., Rower J.E., Wempe M.F., MacLaren R., Teitelbaum I. (2015) Evaluation of sulfobutylether-β-cyclodextrin (SBECD) accumulation and voriconazole pharmacokinetics in critically ill patients undergoing continuous renal replacement therapy. Crit Care, Feb 3. doi: 10.1186/s13054-015-0753-8

27. Chaijamorn W., Shaw A.R., Lewis S.J., Mueller B.A. (2017) Ex vivo Ceftolozane/Tazobactam clearance during continuous renal replacement therapy. Blood Purif., vol. 44, no 1, pp. 16–23. doi: 10.1159/000455897

28. Kale-Pradhan P.B., Woo M.H. (1997) A review of the effects of plasmapheresis on drug clearance. Pharmacotherapy, vol. 17, no 4, pp. 684–695.

29. El-Ghariani K., Unsworth D.J. (2006) Therapeutic apheresis-plasmapheresis. Clin Med., vol. 6, no 4, pp. 343–347.

30. Kawauchi S., Wada K., Oita A. (2018) Changes in blood concentration of mycophenolic acid and FK506 in a heart-transplant patient treated with plasmapheresis. Int J Clin Pharmacol Ther., Sep 17. doi: 10.5414/CP203278

31. Okechukwu C.N., Meier-Kriesche H.U., Armstrong D., Campbell D., Gerbeau C., Kaplan B. (2001) Removal of basiliximab by plasmapheresis. Am J Kidney Dis., vol. 37, no 1, E11.

32. Pütz G., Schmah O., Eckes J., Hug M.J., Winkler K. (2010) Controlled application and removal of liposomal therapeutics: effective elimination of pegylated liposomal doxorubicin by double-filtration plasmapheresis in vitro. J Clin Apher., vol. 25, no 2, pp. 54–62. doi: 10.1002/jca.20229

33. Ngoune R., Contini C., Hoffmann M.M., von Elverfeldt D., Winkler K., Putz G. (2018) Optimizing antitumor efficacy and adverse effects of pegylated liposomal Doxorubicin by scheduled plasmapheresis: impact of timing and dosing. Curr Drug Deliv., vol. 15, no 9, pp. 1261–1270. doi: 10.2174/1567201815666180518125839

34. Peters B.J., Hofer M., Daniels C.E., Winters J.L. (2018) Effect of plasma exchange on antifactor Xa activity of enoxaparin and serum levetiracetam levels. Am J Health Syst Pharm., vol. 75, no 23, pp. 1883–1888. doi: 10.2146/ajhp170885

35. Ibrahim R.B., Liu C., Cronin S.M., Murphy B.C, Cha R., Swerdlow P., Edwards D.J. (2007) Drug removal by plasmapheresis: an evidence-based review. Pharmacotherapy, vol. 27, no 11, pp. 1529–1549.

36. Wang G.S., Banerji S., Roussil T.K., Heard K.J. (2013) Survival after amphotericin B overdose treated with plasmapheresis. Ann Pharmacother, vol. 47, no 2, e9. doi: 10.1345/aph.1R527

37. Monroig-Bosque P.D.C., Balk J., Segura F., Salazar E., Leveque C.M., Ipe T.S. (2018) The utility of therapeutic plasma exchange for amphotericin B overdose. Transfus Apher Sci., Sep. 18. doi: 10.1016/j.transci.2018.09.015

38. Sartori M., Day S., De Rosa S., Ricatti M.G., Nalesso F., Zancato M., Ronco C. (2015) Pharmacokinetic analysis of antibiotic adsorption (vancomycin and teicoplanin) by the Lixelle extracorporeal unit. Int J Artif Organs., vol. 38, no 1, pp. 8–12. doi: 10.5301/ijao.5000383

39. Mariano F., Leporati M., Carignano P., Stella M., Vincenti M., Biancone L. (2015) Efficient removal of colistin A and B in critically ill patients undergoing CVVHDF and sorbent technologies. J Nephrol., vol. 28, no 5, pp. 623–631. doi: 10.1007/s40620-014-0143-3

40. Page M., Cohen S., Ber C.E., Allaouchiche B., Kellum J.A., Rimmelé T. (2014) In vivo antibiotic removal during coupled plasma filtration adsorption: a retrospective study. ASAIO J., vol. 60, no 1, pp. 70–75. doi: 10.1097/MAT.0000000000000009

41. Reiter K., Bordoni V., Dall’Olio G., Ricatti M.G., Soli M., Ruperti S., Soffiati G., Galloni E., D’Intini V., Bellomo R., Ronco C. (2002) In vitro removal of therapeutic drugs with a novel adsorbent system. Blood Purif., vol. 20, no 4, pp. 380–388.

42. Shimokawa K., Takakuwa R., Taya K., Wada Y., Yamazaki N., Murata M., Hirata K., Masuno T., Yokota H., Ishii F. (2012) Adsorption of various antimicrobial agents to endotoxin removal polymyxin-B immobilized fiber (Toraymyxin®). Colloids Surf B Biointerfaces, vol. 90, pp. 58–61. doi: 10.1016/j.colsurfb.2011.09.046

43. Harm S., Gruber A., Gabor F., Hartmann J. (2016) Adsorption of selected antibiotics to resins in extracorporeal blood purification. Blood Purif., vol. 41, no 1–3, pp. 55–63. doi: 10.1159/000440973

44. Roth G.A., Sipos W., Höferl M., Böhmdorfer M., Schmidt E.M., Hetz H., Schebesta K., Klaus D., Motal M., Jäger W., Krenn C.G. (2013) The effect of the molecular adsorbent recirculating system on moxifloxacin and meropenem plasma levels. Acta Anaesthesiol Scand., vol. 57, no 4, pp. 461–467. doi: 10.1111/aas.12041

45. Weiler S., Falkensammer G., Seger C., Joannidis M., Bellmann R. (2011) Teicoplanin pharmacokinetics during albumin dialysis. Artif Organs., vol. 35, no 10, pp. 969–971. doi: 10.1111/j.1525-1594.2010.01198.x

Recipe. 2019; : 591-598

Characteristics of Intensive Care Drugs Elimination by Extracorporeal Blood Purification Methods During Therapy of Critical Conditions

Yakubtsevich R. , Belyavskii N.

Abstract

Extracorporeal blood purification is one of the most important procedures in complex therapy of critical conditions in the intensive care unit. The aim of our study is to collect and represent exciting data on the elimination of therapeutic drugs by extracorporeal blood purification methods. More than forty different sources over the past twenty years has been analyzed. The literature data about hemodialysis, hemofiltration, plasmapheresis, hemosorption, and the use of extracorporeal liver support devices has been studied. The characteristics of changes in the overall efficacy and plasma concentration levels of drugs from various groups such as antiepileptic, antibiotics, antifungal agents, cytotoxic drugs, immunosuppressants, and others has been described. The most detailed data are presented on the changes in the pharmacokinetics of antibacterial drugs, including reserve antibiotics, as one of the most important groups of drugs in the intensive care of critical conditions. We have found that EOC methods can significantly affect the efficacy of lacosamide, levetiracetam, paracetamol, vancomycin, colistin, telavancin, teicoplanin, meropenem, linezolid, amphoterocin B, metronidazole, dalteparin, gentamicin, etc. Using of the founded literature data will allow to avoid possible mistakes in prescribing affected drugs to patients with the need for renal replacement therapy, hemadsorption or plasmapheresis. The effect of EOC methods on the pharmacokinetics of reserve antibiotics can play a significant role in the effectiveness of antimicrobial therapy in patients with sepsis and the concomitant multiple organ failure.

References

1. Miller R. (2015) Anestesia Ronalda Millera [Miller’s Anesthesia]. St.Petersburg: Chelovek. (in Russian)

2. Rimmelé T., Kellum J.A. (2011) Clinical review: blood purification for sepsis. Crit Care, vol. 15, no 1, p. 205. doi:10.1186/cc9411

3. Ankawi G., Neri M., Zhang J., Breglia A., Ricci Z., Ronco C. (2018) Extracorporeal techniques for the treatment of critically ill patients with sepsis beyond conventional blood purification therapy: the promises and the pitfalls. Crit Care, vol. 22, no 1, p. 262. doi:10.1186/s13054-018-2181-z

4. Abe M., Kikuchi F., Kaizu K., Matsumoto K. (2008) The influence of hemodialysis membranes on the plasma insulin level of diabetic patients on maintenance hemodialysis. Clin. Nephrol., vol. 69, no 5, pp. 354–360.

5. Eden G., Kühn-Velten W.N., Hafer S., Kielstein J.T. (2018) Enhanced elimination of cyclophosphamide by high cut-off haemodialysis: single-dose pharmacokinetics in a patient with cast nephropathy. BMJ Case Rep., vol. 2018, Jan 4. doi:10.1136/bcr-2017-221735

6. Morgera S., Slowinski T., Melzer C., Sobottke V., Vargas-Hein O., Volk T., Zuckermann-Becker H., Wegner B., Müller J.M., Baumann G., Kox W.J., Bellomo R., Neumayer H.H. (2004) Renal replacement therapy with high-cutoff hemofilters: Impact of convection and diffusion on cytokine clearances and protein status. Am J Kidney Dis., vol. 43, no 3, pp. 444–453.

7. Wieruszewski P.M., Lopez-Ruiz A., Albright R.C., Fugate J.E., Barreto E.F. (2018) Lacosamide Pharmacokinetics in a Critically Ill Patient during Continuous Renal Replacement Therapy. J Pharm Pract., vol. 2018, Oct 18. doi:10.1177/0897190018803765

8. Wieruszewski P., Kashani K.B., Rabinstein A.A., Frazee E. (2018) Levetiracetam Pharmacokinetics in a Critically Ill Anephric Patient on Intermittent Hemodialysis. Neurocrit Care, vol. 28, no 2, pp. 243–246. doi:10.1007/s12028-017-0441-4

9. Scoville B.A., Vulaj V., Mueller B.A., Annich G.M., Wagner D.S. (2018) Acetaminophen clearance during ex vivo continuous renal replacement therapies. J Artif Organs., vol. 21, no 2, pp. 215–219. doi: 10.1007/s10047-017-1001-6

10. Baker A., Green R. (2016) Zamestitelnaya pochechnaya terapiya [Renal-replacement therapy]. Osnovy intensivnoy terapii [Intensive care basics]. WFSA, p. 375.

11. Trotman R.L., Williamson J.C., Shoemaker D.M., Salzer W.L. (2005) Antibiotic dosing in critically ill adult patients receiving continuous renal replacement therapy. Clin Infect Dis., vol. 41, no 8, pp. 1159–1166.

12. Chaijamorn W., Jitsurong A., Wiwattanawongsa K., Wanakamanee U., Dandecha P. (2011) Vancomycin clearance during continuous venovenous haemofiltration in critically ill patients. Int J Antimicrob Agents., vol. 38, no 2, pp. 152–156. doi: 10.1016/j.ijantimicag.2011.04.010

13. Shiraishi Y., Okajima M., Sai Y., Miyamoto K., Inaba H. (2012) Elimination of teicoplanin by adsorption to the filter membrane during haemodiafiltration: screening experiments for linezolid, teicoplanin and vancomycin followed by in vitro haemodiafiltration models for teicoplanin. Anaesth Intensive Care, vol. 40, no 3, pp. 442–449.

14. Yamashina T., Tsuruyama M., Odawara M., Tsuruta M., Miyata H., Kozono A., Tsuji Y., Miyoshi T., Kawamata Y., Hiraki Y. (2017) Pharmacokinetics of linezolid during continuous hemodiafiltration: A case report. J Infect Chemother, vol. 23, no 10, pp. 709–712. doi: 10.1016/j.jiac.2017.03.013

15. Hiraki Y., Tsuji Y., Misumi N., Hiraike M., Matsumoto K., Morita K., Kamimura H., Karube Y. (2013) Pharmacokinetics and elimination efficiency of linezolid during dialysis. Ren Fail., vol. 35, no 3, pp. 418–420. doi: 10.3109/0886022X.2012.761085

16. Nation R.L., Garonzik S.M., Thamlikitkul V., Giamarellos-Bourboulis E.J., Forrest A., Paterson D.L., Li J., Silveira F.P. (2017) Dosing guidance for intravenous colistin in critically-ill patients. Clin Infect Dis., vol. 64, no 5, pp. 565–571. doi: 10.1093/cid/ciw839

17. Stevenson J.M., Patel J.H., Churchwell M.D., Vilay A.M., Depestel D.D., Sörgel F., Kinzig M., Jakob V., Mueller B.A. (2008) Ertapenem clearance during modeled continuous renal replacement therapy. Int J Artif Organs, vol. 31, no 12, pp. 1027–1034.

18. Kesner J.M., Yardman-Frank J.M., Mercier R.C., Wong C.S., Walker S.E., Argyres D.P., Vilay A.M. (2014) Trimethoprim and sulfamethoxazole transmembrane clearance during modeled continuous renal replacement therapy. Blood Purif., vol. 38, no 3–4, pp. 195–202. doi: 10.1159/000368884

19. Isla A., Gascón A.R., Maynar J., Arzuaga A., Toral D., Pedraz J.L. (2005) Cefepime and continuous renal replacement therapy (CRRT): in vitro permeability of two CRRT membranes and pharmacokinetics in four critically ill patients. Clin Ther., vol. 27, no 5, pp. 599–608.

20. Miranda Bastos A.C., Vandecasteele S.J., Spinewine A., Tulkens P.M., Van Bambeke F. (2018) Temocillin dosing in haemodialysis patients based on population pharmacokinetics of total and unbound concentrations and Monte Carlo simulations. J Antimicrob Chemother., vol. 73, no 6, pp. 1630–1638. doi: 10.1093/jac/dky078

21. Lewis S.J., Switaj L.A., Mueller B.A. (2015) Tedizolid adsorption and transmembrane clearance during in vitro continuous renal replacement therapy. Blood Purif., vol. 40, no 1, pp. 66–71. doi: 10.1159/000430904

22. Patel J.H., Churchwell M.D., Seroogy J.D., Barriere S.L., Grio M., Mueller B. (2009) Telavancin and hydroxy propyl-beta-cyclodextrin clearance during continuous renal replacement therapy: an in vitro study. Int J Artif Organs., vol. 32, no 10, pp. 745–751.

23. Jang S.M., Hough G., Mueller B.A. (2018) Ex vivo Rezafungin adsorption and clearance during continuous renal replacement therapy. Blood Purif., vol. 46, no 3, pp. 214–219. doi: 10.1159/000489212

24. Kolbinger P., Gruber M., Roth G., Graf B.M., Ittner K.P. (2018) Filter adsorption of Anidulafungin to a polysulfone-based hemofilter during CVVHD In Vitro. Artif Organs, vol. 42, no 2, pp. 200–207. doi: 10.1111/aor.12982

25. Álvarez-Lerma F., Rodriguez M., Soriano M.C., Catalán M., Llorente A.M., Vidart N., Garitacelaya M., Maravi E., Fernández Rey E., Alvarado F., López-Sánchez M., Alvarez-Sánchez B., Granado D., Quintana E; Study Group of Liposomal Amphotericin B in the ICU. (2013) Effectiveness of liposomal amphotericin B in patients admitted to the ICU on renal replacement therapy. Rev Esp Quimioter, vol. 26, no 4, pp. 360–368.

26. Kiser T.H., Fish D.N., Aquilante C.L., Rower J.E., Wempe M.F., MacLaren R., Teitelbaum I. (2015) Evaluation of sulfobutylether-β-cyclodextrin (SBECD) accumulation and voriconazole pharmacokinetics in critically ill patients undergoing continuous renal replacement therapy. Crit Care, Feb 3. doi: 10.1186/s13054-015-0753-8

27. Chaijamorn W., Shaw A.R., Lewis S.J., Mueller B.A. (2017) Ex vivo Ceftolozane/Tazobactam clearance during continuous renal replacement therapy. Blood Purif., vol. 44, no 1, pp. 16–23. doi: 10.1159/000455897

28. Kale-Pradhan P.B., Woo M.H. (1997) A review of the effects of plasmapheresis on drug clearance. Pharmacotherapy, vol. 17, no 4, pp. 684–695.

29. El-Ghariani K., Unsworth D.J. (2006) Therapeutic apheresis-plasmapheresis. Clin Med., vol. 6, no 4, pp. 343–347.

30. Kawauchi S., Wada K., Oita A. (2018) Changes in blood concentration of mycophenolic acid and FK506 in a heart-transplant patient treated with plasmapheresis. Int J Clin Pharmacol Ther., Sep 17. doi: 10.5414/CP203278

31. Okechukwu C.N., Meier-Kriesche H.U., Armstrong D., Campbell D., Gerbeau C., Kaplan B. (2001) Removal of basiliximab by plasmapheresis. Am J Kidney Dis., vol. 37, no 1, E11.

32. Pütz G., Schmah O., Eckes J., Hug M.J., Winkler K. (2010) Controlled application and removal of liposomal therapeutics: effective elimination of pegylated liposomal doxorubicin by double-filtration plasmapheresis in vitro. J Clin Apher., vol. 25, no 2, pp. 54–62. doi: 10.1002/jca.20229

33. Ngoune R., Contini C., Hoffmann M.M., von Elverfeldt D., Winkler K., Putz G. (2018) Optimizing antitumor efficacy and adverse effects of pegylated liposomal Doxorubicin by scheduled plasmapheresis: impact of timing and dosing. Curr Drug Deliv., vol. 15, no 9, pp. 1261–1270. doi: 10.2174/1567201815666180518125839

34. Peters B.J., Hofer M., Daniels C.E., Winters J.L. (2018) Effect of plasma exchange on antifactor Xa activity of enoxaparin and serum levetiracetam levels. Am J Health Syst Pharm., vol. 75, no 23, pp. 1883–1888. doi: 10.2146/ajhp170885

35. Ibrahim R.B., Liu C., Cronin S.M., Murphy B.C, Cha R., Swerdlow P., Edwards D.J. (2007) Drug removal by plasmapheresis: an evidence-based review. Pharmacotherapy, vol. 27, no 11, pp. 1529–1549.

36. Wang G.S., Banerji S., Roussil T.K., Heard K.J. (2013) Survival after amphotericin B overdose treated with plasmapheresis. Ann Pharmacother, vol. 47, no 2, e9. doi: 10.1345/aph.1R527

37. Monroig-Bosque P.D.C., Balk J., Segura F., Salazar E., Leveque C.M., Ipe T.S. (2018) The utility of therapeutic plasma exchange for amphotericin B overdose. Transfus Apher Sci., Sep. 18. doi: 10.1016/j.transci.2018.09.015

38. Sartori M., Day S., De Rosa S., Ricatti M.G., Nalesso F., Zancato M., Ronco C. (2015) Pharmacokinetic analysis of antibiotic adsorption (vancomycin and teicoplanin) by the Lixelle extracorporeal unit. Int J Artif Organs., vol. 38, no 1, pp. 8–12. doi: 10.5301/ijao.5000383

39. Mariano F., Leporati M., Carignano P., Stella M., Vincenti M., Biancone L. (2015) Efficient removal of colistin A and B in critically ill patients undergoing CVVHDF and sorbent technologies. J Nephrol., vol. 28, no 5, pp. 623–631. doi: 10.1007/s40620-014-0143-3

40. Page M., Cohen S., Ber C.E., Allaouchiche B., Kellum J.A., Rimmelé T. (2014) In vivo antibiotic removal during coupled plasma filtration adsorption: a retrospective study. ASAIO J., vol. 60, no 1, pp. 70–75. doi: 10.1097/MAT.0000000000000009

41. Reiter K., Bordoni V., Dall’Olio G., Ricatti M.G., Soli M., Ruperti S., Soffiati G., Galloni E., D’Intini V., Bellomo R., Ronco C. (2002) In vitro removal of therapeutic drugs with a novel adsorbent system. Blood Purif., vol. 20, no 4, pp. 380–388.

42. Shimokawa K., Takakuwa R., Taya K., Wada Y., Yamazaki N., Murata M., Hirata K., Masuno T., Yokota H., Ishii F. (2012) Adsorption of various antimicrobial agents to endotoxin removal polymyxin-B immobilized fiber (Toraymyxin®). Colloids Surf B Biointerfaces, vol. 90, pp. 58–61. doi: 10.1016/j.colsurfb.2011.09.046

43. Harm S., Gruber A., Gabor F., Hartmann J. (2016) Adsorption of selected antibiotics to resins in extracorporeal blood purification. Blood Purif., vol. 41, no 1–3, pp. 55–63. doi: 10.1159/000440973

44. Roth G.A., Sipos W., Höferl M., Böhmdorfer M., Schmidt E.M., Hetz H., Schebesta K., Klaus D., Motal M., Jäger W., Krenn C.G. (2013) The effect of the molecular adsorbent recirculating system on moxifloxacin and meropenem plasma levels. Acta Anaesthesiol Scand., vol. 57, no 4, pp. 461–467. doi: 10.1111/aas.12041

45. Weiler S., Falkensammer G., Seger C., Joannidis M., Bellmann R. (2011) Teicoplanin pharmacokinetics during albumin dialysis. Artif Organs., vol. 35, no 10, pp. 969–971. doi: 10.1111/j.1525-1594.2010.01198.x