Рецепт. 2021; : 614-624
Многоликость пост-COVID-синдрома и возможности коррекции постинфекционной иммуносупрессии
https://doi.org/10.34883/PI.2021.24.5.001Аннотация
В обзорной статье приводятся определение пост-COVID-синдрома и его классификации. Основные клинические проявления пост-COVID-синдрома включают в себя множество состояний и симптомов, частота проявлений которых варьирует в зависимости от тяжести острой инфекции и периода наблюдения. Наиболее распространенный симптом пост-COVID-синдрома – усталость, встречающаяся с частотой от 17,5% до 72%. По данным Dennis A. и соавт., МРТ выявила поражение хотя бы одного органа в 70% случаев пост-COVID-синдрома через 4 месяца после выздоровления от острой инфекции. Длительное воспаление, иммунная дисрегуляция играют ключевую роль в развитии большинства пост-COVID-проявлений, безусловно, являясь не единственным патофизиологическим механизмом их развития. Если воспалительный ответ слишком подавлен, то пациент, сумев «пережить» первоначальный гипервоспалительный цитокиновый шторм и прогрессирование полиорганной недостаточности, может вступить в стадию затяжной иммуносупрессии, известной как синдром стойкого воспаления, иммуносупрессии и катаболизма, что является одной из предполагаемых причин стойкого пост-COVID-синдрома. Приведена работа, в которой рассматривается возможность применения в лечении инфекции SARS-CoV-2 инозина пранобекса, который зарегистрирован как противовирусный иммуномодулирующий препарат более чем в 70 странах мира.
Список литературы
1. World Health Organization. Coronavirus Disease (COVID-19) Situation Reports. Available at: https://www.who.int/emergencies/situationreports (accessed June 17, 2021).
2. Pavli A., Theodoridou M., Maltezou H.C. (2021) Post-COVID syndrome: Incidence, clinical spectrum, and challenges for primary healthcare professionals. Arch. Med. Res, S0188-4409(21)00081-3. doi: 10.1016/j.arcmed.2021.03.010.
3. Greenhalgh T., Knight M., A’Court M. (2020) Management of post-acute COVID-19 in primary care. BMJ, vol. 370, m3026. doi: 10.1136/bmj.m3026.
4. Fernandez-de-Las-Penas C., Palacios-Cena D., Gomez-Mayordomo V. (2021) Defining post-COVID symptoms (post-acute COVID, long COVID, persistent post-COVID): An integrative classification. Int. J. Environ. Res. Public Health, vol. 18, no 5, p. 2621. doi: 10.3390/ijerph18052621.
5. Becker R.C. (2021) COVID-19 and its sequelae: A platform for optimal patient care, discovery and training. J. Thromb. Thrombolysis, vol. 51, no 3, pp. 587–594. doi: 10.1007/s11239-021-02375-w.
6. Havervall S., Rosell A., Phillipson M. (2021) Symptoms and functional impairment assessed 8 months after mild COVID-19 among health care workers. JAMA, vol. 325, no 19, pp. 2015–2016. doi: 10.1001/jama.2021.5612.
7. Covid-19 Long-Term Health Effects. Available at: https://www.gov.uk/government/publications/covid-19-long-term-health-effects/covid-19-long-term-health-effects (accessed 7 May 2021).
8. Huang C., Huang L., Wang Y. (2021) 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet, vol. 397, pp. 220–232.
9. Carfi A., Bernabei R., Landi R. (2020) Persistent symptoms in patients after acute COVID-19. JAMA, vol. 324, pp. 603–605.
10. Moreno-Pérez O., Merino E., Leon-Ramirez J.M. (2021) COVID19-ALC research Post-acute COVID-19 Syndrome. Incidence and risk factors: A Mediterranean cohort study. J. Infect., vol. 82, pp. 378–383.
11. Liang L., Yang B., Jiang N. (2020) Three-month follow-up study of survivors of Coronavirus Disease 2019 after discharge. J. Korean Med. Sci., vol. 35, e418.
12. Davis H.E., Assaf G.S., McCorkell L. Characterizing Long COVID in an International Cohort: 7 Months of Symptoms and Their Impact. Available at: https://www.medrxiv.org/content/10.1101/2020.12.24.20248802v2 (accessed 7 May 2021).
13. Writing Committee for the COMEBAC Study Group, Morin L., Savale L. (2021) Four-month clinical status of cohort of patients after hospitalization for COVID-19. JAMA, vol. 325, no 15, pp. 1525–1534. doi: 10.1001/jama.2021.3331.
14. Bellan M., Soddu D., Balbo P.E. (2021) Respiratory and psychophysical sequelae among patients with COVID-19 four months after hospital discharge. JAMA Netw. Open, vol. 4, e2036142.
15. Chopra V., Flanders S.A., O’Malley M. (2021) Sixty-day outcomes among patients hospitalized with COVID-19. Ann. Intern. Med., vol. 174, pp. 576–578.
16. Saeed S., Tadic M., Larsen T.H. (2021) Coronavirus disease 2019 and cardiovascular complications; focused clinical review. J. Hypertens., vol. 39, no 7, pp. 1282–1292. doi: 10.1097/HJH.0000000000002819.
17. Scordo K.A., Richmond M.M., Munro N. (2021) Post-COVID-19 syndrome: Theoretical basis, identification, and management. AACN Adv. Crit. Care, e1–e8.
18. Soloveva N.V., Makarova E.V., Kichuk I.V. (2021) Coronavirus syndrome: COVID-19 psychotrauma. Eur. J. Transl. Myol., vol. 30, p. 9302.
19. Raahimi M.M., Kane A., Moore C.E. (2021) Late onset of Guillain-Barre syndrome following SARS-CoV-2 infection: Part of long COVID-19 syndrome? BMJ Case Rep, vol. 14, e240178.
20. Emamikhah M., Babadi M., Mehrabani M. (2021) Opsoclonus-myoclonus syndrome, a post-infectious neurologic complication of COVID-19: Case series and review of literature. J. Neurovirol., vol. 27, pp. 26–34.
21. Scoppettuolo P., Borrelli S., Naeije G. (2020) Neurological involvement in SARS-CoV-2 infection: A clinical systematic review. Brain Behav. Immun. Health, vol. 5, 100094.
22. Shahali H., Ghasemi A., Farahani R.H. (2021) Acute transverse myelitis after SARS-CoV-2 infection: A rare complicated case of rapid onset paraplegia. J. Neurovirol., vol. 27, no 2, p. 3. doi: 10.1007/s13365-021-00957-1.
23. Leta V., Rodríguez-Violante M., Abundes A. (2021) Parkinson’s disease and post-COVID-19 syndrome: The Parkinson’s long-COVID spectrum. Mov. Disord., vol. 36, no 6, pp. 1287–1289. doi: 10.1002/mds.28622.
24. Dennis A., Wamil M., Alberts J. (2021) Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: A prospective, communitybased study. BMJ Open, vol. 11, no 3, e048391. doi: 10.1136/bmjopen-2020-048391.
25. Stratton C.W., Tang Y.W., Lu H. (2021) Pathogenesis-directed therapy of 2019 novel coronavirus disease. J. Med.Virol., vol. 93, pp. 1320–1342.
26. Ortelli P., Ferrazzoli D., Sebastianelli L. (2021) Neuropsychological and neurophysiological correlates of fatigue in post-acute patients with neurological manifestations of COVID-19: Insights into a challenging symptom. J. Neurol. Sci., vol. 420, pp. 117271. doi: 10.1016/j.jns.2020.117271.
27. Koumpa F.S., Forde C.T., Manjaly J.G. (2020) Sudden irreversible hearing loss post COVID-19. BMJ Case Rep., vol. 13, e238419. doi: 10.1136/bcr- 2020-238419.
28. Hotchkiss R.S, Monneret G., Payen D. (2013) Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol, vol. 13, pp. 862–874.
29. Bone R.C. (1996) Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med, vol. 24, pp. 1125–1128.
30. Sugimoto M.A., Sousa L.P., Pinho V. (2016) Resolution of infammation: what controls its onset? Front Immunol, vol. 7, p. 160.
31. Oronsky B., Larson C., Hammond T. (2021) A review of persistent post COVID syndrome (PPCS). Clinical Reviews in Allergy & Immunology. Available at: https://doi.org/10.1007/s12016-021-08848-3.
32. Channappanavar R. (2017) Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol., vol. 39, pp. 529–539. doi: 10.10 07/s0 0281-017-0629-x.
33. Tveito K. (2020) Cytokine storms in COVID-19 cases. Tidsskr Nor Laegeforen., vol. 23, p. 140. doi: 10.4045/tidsskr.20.0239.
34. Diao B., Wang Ch., Tan Y. (2019) Reduction and functional exhaustion of t cells in patients with coronavirus disease 2019 (covid-19). Medrxiv., vol. 11, p. 827. doi: 10.3389/fimmu.2020.00827.
35. Huang C., Wang Y., Li X. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, vol. 395, no 10223, pp. 497–506. doi: 10.1016/S0140-6736(20)30183-5.
36. Biradar V., Moran J.L. (2011) SIRS, Sepsis and Multiorgan Failure. Mechanisms of vascular disease: a reference book for vascular specialists [Internet]. Adelaide (AU): University of Adelaide Press 17. Available at: https://www.ncbi.nlm.nih.gov/books/NBK534275/.
37. Hamers L., Kox M., Pickkers P. (2015) Sepsis-induced immunoparalysis: mechanisms, markers, and treatment options. Minerva Anestesiol, vol. 81, no 4, pp. 426–439.
38. Walton A.H., Muenzer J.T., Rasche D. Boomer J.S., Sato B., Brownstein B.H., Pachot A., Brooks T.L., Deych E., Shannon W.D., Green J.M., Storch G.A.,
39. Hotchkiss R.S. (2014) Reactivation of multiple viruses in patients with sepsis. PLoS One, vol. 9, no 2, p. 98819.
40. Available at: https://www.npr.org/sections/coronavirus-live-updates/2020/04/17/836747242/in-south-korea-a-growing-number-ofcovid-19-patients-test-positive-after-recover.
41. Available at: https://www.reuters.com/article/us-health-coronavirus-southkorea/south-korea-reports-more-recovered-coronavirus-patientstestingpositive-again idUSKCN21V0JQ.
42. Kaijin X., Hongliu C., Yihong S. (2020) Management of corona virus disease-19 (COVID-19): the Zhejiang experience. Zhejiang Da Xue Xue Bao Yi Xue Ban, no 49 (1).
43. Le Balc’h P., Pinceaux K., Pronier Ch. (2020) Herpes simplex virus and cytomegalovirus reactivations among severe COVID-19 patients. Critical Care, vol. 24, no 1, p. 530. doi: 10.1186/s13054-020-03252-3.
44. Yang M. Cell Pyroptosis, a potential pathogenic mechanism of 2019-nCoV infection. Available at: https://ssrn.com/abstract=3527420or http:// dx.doi.org/10.2139/ssrn. 3527420.
45. Acharya D., Liu G.Q., Gack M.U. (2020) Dysregulation of type I interferon responses in COVID-19. Nat Rev Immunol., vol. 20, no 7, pp. 397–398.
46. Zheng M., Gao Y., Wang G. (2020) Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol., vol. 17, no 5, pp. 533–535.
47. Oberfeld B., Achanta A., Carpenter K. (2020) SnapShot: COVID-19. Cell, vol. 181, no 4, pp. 954–954.
48. Sanchez-Cerrillo I., Landete P., Aldave B. (2020) Differential redistribution of activated monocyte and dendritic cell subsets to the lung associates with severity of COVID-19. medRxiv, 20100925. doi: 10.1101/2020.05.13.20100925.
49. Odak I., Barros-Martins J., Bošnjak B. (2020) Reappearance of effector T cells is associated with recovery from COVID-19. EBioMedicine, vol. 57: 102885. https://doi.org/10.1016/j.ebiom.2020.102885.
50. Banchereau J., Steinman R.M. (1998) Dendritic cells and the control of immunity. Nature, vol. 392, no 6673, pp. 245–252.
51. Qin C., Zhou L., Hu Z. (2020) Dysregulation of immune response in patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis, vol. 71, pp. 762–768.
52. Huang Y., Chen Z., Wang Y. (2020) Clinical characteristics of 17 patients with COVID-19 and systemic autoimmune diseases: a retrospective study. Ann Rheum Dis, vol. 79, no 9, pp. 1163–1169.
53. Afrin L.B., Weinstock L.B, Molderings G.J. (2020) Covid-19 hyperinflammation and post-Covid-19 illness may be rooted in mast cell activation syndrome. International Journal of Infectious Diseases, vol. 100, pp. 327–332. doi:10.1016/j.ijid.2020.09.016.
54. Theoharides T.C. (2021) Potential association of mast cells with coronavirus disease 2019. Annals of Allergy, Asthma & Immunology, vol. 126, pp. 217–218. doi: 10.1016/j.anai.2020.11.003.
55. Dani M., Dirksen A., Taraborrelli P. (2021) Autonomic dysfunction in ’long COVID’: Rationale, physiology and management strategies. Clin. Med., vol. 21, pp. 63–67.
56. Boumaza A., Gay L., Mezouar S. (2021) Monocytes and macrophages, targets of SARS-CoV-2: The clue for Covid-19 immunoparalysis. J. Infect. Dis., doi: 10.1093/infdis/jiab044.
57. Tale S., Ghosh S., Meitei S.P. (2020) Post-COVID-19 pneumonia pulmonary fibrosis. QJM, vol. 113, pp. 837–838.
58. Isakov D.V., Isakov V.A., Alekseeva E.A. (2018) Immunomodulyatoryi v terapii i profilaktike respiratornyih i gerpesvirusnyih infektsiy [Immunomodulators in the treatment and prevention of respiratory and herpes virus infections]. Klinicheskaya farmakologiya i terapiya, vol. 27, no 5, pp. 76–84.
59. Looker K., Magaret A., May M. (2015) Global and regional estimates of prevalent and incident Herpes simplex virus type 1 infections in 2012. PLoS One, vol. 10, no 10: e0140765.
60. Masihi K.N. (2000) Immunomodulatory agents for prophylaxis and therapy of infections. Int J Antimicrob Agents, vol. 14, no 3, pp. 181–191.
61. Isakov V.A., Afanaseva O.I., Isakov D.V. (2016) Klinicheskie osobennosti i perspektivyi terapii respiratornyih infektsiy u detey [Clinical features and prospects for the treatment of respiratory infections in children]. Pediatriya. Prilozhenie k zhurnalu Consilium Medicum, vol. 2, pp. 46–51.
62. Eliseeva M.Yu., Myinbaev O.A. (2011) Rol vspomogatelnoy terapii immunoterapii v reshenii problem VPCh-assotsiirovannyih patologicheskih porazheniy kozhi i slizistyih obolochek [The role of adjuvant immunotherapy in solving the problems of HPV-associated pathological lesions of the skin and mucous membranes]. Akusherstvo i ginekologiya, vol. 4, pp. 104–111.
63. (2020) British Society for Immunology. Available at: https://www.immunology.org/sites/default/files/BSI_Briefing_Note_August_2020_FINAL.pdf (accessed 30 June 2021).
64. Lucas C., Wong P., Klein J. (2020) Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature, doi: 10.1038/s41586-020-2588-y.
65. Votava M, Beran J. (2020) The role of non-specific immunostimulant inosine pranobex in the treatment of SARS-CoV-2 virus infection. Available at: https://www.researchgate.net/publication/341043129.
Recipe. 2021; : 614-624
Post-COVID Syndrome Variety and Possibilities of Correction of Post-Infectious Immunosuppression
https://doi.org/10.34883/PI.2021.24.5.001Abstract
The review article provides the definition of post-COVID syndrome and its classification. The main clinical manifestations of post-COVID syndrome include many conditions and symptoms, the frequency of which varies depending on the severity of the acute infection and the observation period. The most common symptom of post-COVID syndrome is fatigue, ranging from 17.5% to 72%. According to Dennis A. et al., the MRI revealed damage to at least one organ in 70% of post- COVID cases in 4 months after recovery from acute infection. Prolonged inflammation and immune dysregulation play a key role in the development of the majority of post-COVID manifestations, certainly not being the only pathophysiological mechanism of its development. If the inflammatory response is too suppressed, the patient, having managed to "survive" the initial hyperinflammatory cytokine storm and the progression of multiple organ failure, may enter the stage of protracted immunosuppression known as persistent inflammation, immunosuppression and catabolism syndrome, which is one of the alleged reasons of persistent post-COVID syndrome. The work is presented, in which the possibility of using inosine pranobex, which is registered as an antiviral immunomodulatory drug in more than 70 countries of the world, is considered in the treatment of SARS-CoV-2 infection.
References
1. World Health Organization. Coronavirus Disease (COVID-19) Situation Reports. Available at: https://www.who.int/emergencies/situationreports (accessed June 17, 2021).
2. Pavli A., Theodoridou M., Maltezou H.C. (2021) Post-COVID syndrome: Incidence, clinical spectrum, and challenges for primary healthcare professionals. Arch. Med. Res, S0188-4409(21)00081-3. doi: 10.1016/j.arcmed.2021.03.010.
3. Greenhalgh T., Knight M., A’Court M. (2020) Management of post-acute COVID-19 in primary care. BMJ, vol. 370, m3026. doi: 10.1136/bmj.m3026.
4. Fernandez-de-Las-Penas C., Palacios-Cena D., Gomez-Mayordomo V. (2021) Defining post-COVID symptoms (post-acute COVID, long COVID, persistent post-COVID): An integrative classification. Int. J. Environ. Res. Public Health, vol. 18, no 5, p. 2621. doi: 10.3390/ijerph18052621.
5. Becker R.C. (2021) COVID-19 and its sequelae: A platform for optimal patient care, discovery and training. J. Thromb. Thrombolysis, vol. 51, no 3, pp. 587–594. doi: 10.1007/s11239-021-02375-w.
6. Havervall S., Rosell A., Phillipson M. (2021) Symptoms and functional impairment assessed 8 months after mild COVID-19 among health care workers. JAMA, vol. 325, no 19, pp. 2015–2016. doi: 10.1001/jama.2021.5612.
7. Covid-19 Long-Term Health Effects. Available at: https://www.gov.uk/government/publications/covid-19-long-term-health-effects/covid-19-long-term-health-effects (accessed 7 May 2021).
8. Huang C., Huang L., Wang Y. (2021) 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet, vol. 397, pp. 220–232.
9. Carfi A., Bernabei R., Landi R. (2020) Persistent symptoms in patients after acute COVID-19. JAMA, vol. 324, pp. 603–605.
10. Moreno-Pérez O., Merino E., Leon-Ramirez J.M. (2021) COVID19-ALC research Post-acute COVID-19 Syndrome. Incidence and risk factors: A Mediterranean cohort study. J. Infect., vol. 82, pp. 378–383.
11. Liang L., Yang B., Jiang N. (2020) Three-month follow-up study of survivors of Coronavirus Disease 2019 after discharge. J. Korean Med. Sci., vol. 35, e418.
12. Davis H.E., Assaf G.S., McCorkell L. Characterizing Long COVID in an International Cohort: 7 Months of Symptoms and Their Impact. Available at: https://www.medrxiv.org/content/10.1101/2020.12.24.20248802v2 (accessed 7 May 2021).
13. Writing Committee for the COMEBAC Study Group, Morin L., Savale L. (2021) Four-month clinical status of cohort of patients after hospitalization for COVID-19. JAMA, vol. 325, no 15, pp. 1525–1534. doi: 10.1001/jama.2021.3331.
14. Bellan M., Soddu D., Balbo P.E. (2021) Respiratory and psychophysical sequelae among patients with COVID-19 four months after hospital discharge. JAMA Netw. Open, vol. 4, e2036142.
15. Chopra V., Flanders S.A., O’Malley M. (2021) Sixty-day outcomes among patients hospitalized with COVID-19. Ann. Intern. Med., vol. 174, pp. 576–578.
16. Saeed S., Tadic M., Larsen T.H. (2021) Coronavirus disease 2019 and cardiovascular complications; focused clinical review. J. Hypertens., vol. 39, no 7, pp. 1282–1292. doi: 10.1097/HJH.0000000000002819.
17. Scordo K.A., Richmond M.M., Munro N. (2021) Post-COVID-19 syndrome: Theoretical basis, identification, and management. AACN Adv. Crit. Care, e1–e8.
18. Soloveva N.V., Makarova E.V., Kichuk I.V. (2021) Coronavirus syndrome: COVID-19 psychotrauma. Eur. J. Transl. Myol., vol. 30, p. 9302.
19. Raahimi M.M., Kane A., Moore C.E. (2021) Late onset of Guillain-Barre syndrome following SARS-CoV-2 infection: Part of long COVID-19 syndrome? BMJ Case Rep, vol. 14, e240178.
20. Emamikhah M., Babadi M., Mehrabani M. (2021) Opsoclonus-myoclonus syndrome, a post-infectious neurologic complication of COVID-19: Case series and review of literature. J. Neurovirol., vol. 27, pp. 26–34.
21. Scoppettuolo P., Borrelli S., Naeije G. (2020) Neurological involvement in SARS-CoV-2 infection: A clinical systematic review. Brain Behav. Immun. Health, vol. 5, 100094.
22. Shahali H., Ghasemi A., Farahani R.H. (2021) Acute transverse myelitis after SARS-CoV-2 infection: A rare complicated case of rapid onset paraplegia. J. Neurovirol., vol. 27, no 2, p. 3. doi: 10.1007/s13365-021-00957-1.
23. Leta V., Rodríguez-Violante M., Abundes A. (2021) Parkinson’s disease and post-COVID-19 syndrome: The Parkinson’s long-COVID spectrum. Mov. Disord., vol. 36, no 6, pp. 1287–1289. doi: 10.1002/mds.28622.
24. Dennis A., Wamil M., Alberts J. (2021) Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: A prospective, communitybased study. BMJ Open, vol. 11, no 3, e048391. doi: 10.1136/bmjopen-2020-048391.
25. Stratton C.W., Tang Y.W., Lu H. (2021) Pathogenesis-directed therapy of 2019 novel coronavirus disease. J. Med.Virol., vol. 93, pp. 1320–1342.
26. Ortelli P., Ferrazzoli D., Sebastianelli L. (2021) Neuropsychological and neurophysiological correlates of fatigue in post-acute patients with neurological manifestations of COVID-19: Insights into a challenging symptom. J. Neurol. Sci., vol. 420, pp. 117271. doi: 10.1016/j.jns.2020.117271.
27. Koumpa F.S., Forde C.T., Manjaly J.G. (2020) Sudden irreversible hearing loss post COVID-19. BMJ Case Rep., vol. 13, e238419. doi: 10.1136/bcr- 2020-238419.
28. Hotchkiss R.S, Monneret G., Payen D. (2013) Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol, vol. 13, pp. 862–874.
29. Bone R.C. (1996) Sir Isaac Newton, sepsis, SIRS, and CARS. Crit Care Med, vol. 24, pp. 1125–1128.
30. Sugimoto M.A., Sousa L.P., Pinho V. (2016) Resolution of infammation: what controls its onset? Front Immunol, vol. 7, p. 160.
31. Oronsky B., Larson C., Hammond T. (2021) A review of persistent post COVID syndrome (PPCS). Clinical Reviews in Allergy & Immunology. Available at: https://doi.org/10.1007/s12016-021-08848-3.
32. Channappanavar R. (2017) Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol., vol. 39, pp. 529–539. doi: 10.10 07/s0 0281-017-0629-x.
33. Tveito K. (2020) Cytokine storms in COVID-19 cases. Tidsskr Nor Laegeforen., vol. 23, p. 140. doi: 10.4045/tidsskr.20.0239.
34. Diao B., Wang Ch., Tan Y. (2019) Reduction and functional exhaustion of t cells in patients with coronavirus disease 2019 (covid-19). Medrxiv., vol. 11, p. 827. doi: 10.3389/fimmu.2020.00827.
35. Huang C., Wang Y., Li X. (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, vol. 395, no 10223, pp. 497–506. doi: 10.1016/S0140-6736(20)30183-5.
36. Biradar V., Moran J.L. (2011) SIRS, Sepsis and Multiorgan Failure. Mechanisms of vascular disease: a reference book for vascular specialists [Internet]. Adelaide (AU): University of Adelaide Press 17. Available at: https://www.ncbi.nlm.nih.gov/books/NBK534275/.
37. Hamers L., Kox M., Pickkers P. (2015) Sepsis-induced immunoparalysis: mechanisms, markers, and treatment options. Minerva Anestesiol, vol. 81, no 4, pp. 426–439.
38. Walton A.H., Muenzer J.T., Rasche D. Boomer J.S., Sato B., Brownstein B.H., Pachot A., Brooks T.L., Deych E., Shannon W.D., Green J.M., Storch G.A.,
39. Hotchkiss R.S. (2014) Reactivation of multiple viruses in patients with sepsis. PLoS One, vol. 9, no 2, p. 98819.
40. Available at: https://www.npr.org/sections/coronavirus-live-updates/2020/04/17/836747242/in-south-korea-a-growing-number-ofcovid-19-patients-test-positive-after-recover.
41. Available at: https://www.reuters.com/article/us-health-coronavirus-southkorea/south-korea-reports-more-recovered-coronavirus-patientstestingpositive-again idUSKCN21V0JQ.
42. Kaijin X., Hongliu C., Yihong S. (2020) Management of corona virus disease-19 (COVID-19): the Zhejiang experience. Zhejiang Da Xue Xue Bao Yi Xue Ban, no 49 (1).
43. Le Balc’h P., Pinceaux K., Pronier Ch. (2020) Herpes simplex virus and cytomegalovirus reactivations among severe COVID-19 patients. Critical Care, vol. 24, no 1, p. 530. doi: 10.1186/s13054-020-03252-3.
44. Yang M. Cell Pyroptosis, a potential pathogenic mechanism of 2019-nCoV infection. Available at: https://ssrn.com/abstract=3527420or http:// dx.doi.org/10.2139/ssrn. 3527420.
45. Acharya D., Liu G.Q., Gack M.U. (2020) Dysregulation of type I interferon responses in COVID-19. Nat Rev Immunol., vol. 20, no 7, pp. 397–398.
46. Zheng M., Gao Y., Wang G. (2020) Functional exhaustion of antiviral lymphocytes in COVID-19 patients. Cell Mol Immunol., vol. 17, no 5, pp. 533–535.
47. Oberfeld B., Achanta A., Carpenter K. (2020) SnapShot: COVID-19. Cell, vol. 181, no 4, pp. 954–954.
48. Sanchez-Cerrillo I., Landete P., Aldave B. (2020) Differential redistribution of activated monocyte and dendritic cell subsets to the lung associates with severity of COVID-19. medRxiv, 20100925. doi: 10.1101/2020.05.13.20100925.
49. Odak I., Barros-Martins J., Bošnjak B. (2020) Reappearance of effector T cells is associated with recovery from COVID-19. EBioMedicine, vol. 57: 102885. https://doi.org/10.1016/j.ebiom.2020.102885.
50. Banchereau J., Steinman R.M. (1998) Dendritic cells and the control of immunity. Nature, vol. 392, no 6673, pp. 245–252.
51. Qin C., Zhou L., Hu Z. (2020) Dysregulation of immune response in patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis, vol. 71, pp. 762–768.
52. Huang Y., Chen Z., Wang Y. (2020) Clinical characteristics of 17 patients with COVID-19 and systemic autoimmune diseases: a retrospective study. Ann Rheum Dis, vol. 79, no 9, pp. 1163–1169.
53. Afrin L.B., Weinstock L.B, Molderings G.J. (2020) Covid-19 hyperinflammation and post-Covid-19 illness may be rooted in mast cell activation syndrome. International Journal of Infectious Diseases, vol. 100, pp. 327–332. doi:10.1016/j.ijid.2020.09.016.
54. Theoharides T.C. (2021) Potential association of mast cells with coronavirus disease 2019. Annals of Allergy, Asthma & Immunology, vol. 126, pp. 217–218. doi: 10.1016/j.anai.2020.11.003.
55. Dani M., Dirksen A., Taraborrelli P. (2021) Autonomic dysfunction in ’long COVID’: Rationale, physiology and management strategies. Clin. Med., vol. 21, pp. 63–67.
56. Boumaza A., Gay L., Mezouar S. (2021) Monocytes and macrophages, targets of SARS-CoV-2: The clue for Covid-19 immunoparalysis. J. Infect. Dis., doi: 10.1093/infdis/jiab044.
57. Tale S., Ghosh S., Meitei S.P. (2020) Post-COVID-19 pneumonia pulmonary fibrosis. QJM, vol. 113, pp. 837–838.
58. Isakov D.V., Isakov V.A., Alekseeva E.A. (2018) Immunomodulyatoryi v terapii i profilaktike respiratornyih i gerpesvirusnyih infektsiy [Immunomodulators in the treatment and prevention of respiratory and herpes virus infections]. Klinicheskaya farmakologiya i terapiya, vol. 27, no 5, pp. 76–84.
59. Looker K., Magaret A., May M. (2015) Global and regional estimates of prevalent and incident Herpes simplex virus type 1 infections in 2012. PLoS One, vol. 10, no 10: e0140765.
60. Masihi K.N. (2000) Immunomodulatory agents for prophylaxis and therapy of infections. Int J Antimicrob Agents, vol. 14, no 3, pp. 181–191.
61. Isakov V.A., Afanaseva O.I., Isakov D.V. (2016) Klinicheskie osobennosti i perspektivyi terapii respiratornyih infektsiy u detey [Clinical features and prospects for the treatment of respiratory infections in children]. Pediatriya. Prilozhenie k zhurnalu Consilium Medicum, vol. 2, pp. 46–51.
62. Eliseeva M.Yu., Myinbaev O.A. (2011) Rol vspomogatelnoy terapii immunoterapii v reshenii problem VPCh-assotsiirovannyih patologicheskih porazheniy kozhi i slizistyih obolochek [The role of adjuvant immunotherapy in solving the problems of HPV-associated pathological lesions of the skin and mucous membranes]. Akusherstvo i ginekologiya, vol. 4, pp. 104–111.
63. (2020) British Society for Immunology. Available at: https://www.immunology.org/sites/default/files/BSI_Briefing_Note_August_2020_FINAL.pdf (accessed 30 June 2021).
64. Lucas C., Wong P., Klein J. (2020) Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature, doi: 10.1038/s41586-020-2588-y.
65. Votava M, Beran J. (2020) The role of non-specific immunostimulant inosine pranobex in the treatment of SARS-CoV-2 virus infection. Available at: https://www.researchgate.net/publication/341043129.
События
-
Журнал «Неотложная кардиология и кардиоваскулярные риски» присоединился к Elpub >>>
6 июн 2025 | 09:45 -
К платформе Elpub присоединился «Медицинский журнал» >>>
5 июн 2025 | 09:41 -
НЭИКОН принял участие в конференции НИИ Организации здравоохранения и медицинского менеджмента >>>
30 мая 2025 | 10:32 -
Журнал «Творчество и современность» присоединился к Elpub! >>>
27 мая 2025 | 12:38 -
Журналы НЦЭСМП приняты в Scopus >>>
27 мая 2025 | 12:35